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Abstract 
 
Interest in large-scale sensor networks for both civilian 
and military applications is burgeoning. The deployment 
of such networks will require new approaches in resource 
discovery, query processing and data routing.  This paper 
presents a framework and some analytic results for query 
satisfaction and data routing in networks consisting of 
clients, sensors and data filtering/fusion servers. In this 
model, multiple clients pose queries that are satisfied by 
processing a set of sensor data streams through a set of 
filters or fuselets. Fuselets are lightweight data fusion 
algorithms that can be deployed in a network 
environment. The queries can have common sub-
expressions (sub-queries) that should be reused by 
multiple clients if possible and appropriate. Moreover, 
effective routing of data streams from sensors to clients 
requires routing the streams through network nodes that 
can implement the required filtering/fusion operations.  
We formulate these problems quantitatively and propose a 
dynamic programming based solution using sensor-fuselet 
location and performance tables.  The framework is 
preliminary in that many details and variations are 
abstracted or ignored.  However, at the end of the paper 
we discuss several directions that can be explored to make 
these preliminary results more relevant to real scenarios. 
 

1.  Introduction 
 
Several efforts are currently underway to design, build 
and/or deploy large-scale integrated sensor network, data 
fusion and command-control systems. Those efforts 
include: 
 
•  the Air Force's Joint Battlespace Infosphere (JBI) [1]; 
•  DARPA's SensIT Program [2]; 
•  DARPA's Information Exploitation Office (IXO) [3]; 
•  NASA's JPL Sensor Webs Project [4]. 
 
Meanwhile several other research programs are organized 
around developing the basic technologies to support such 
systems.  Among those research programs are: 
 
•  UC Berkeley's TINY Sensor project [5]; 
•  DARPA Network Embedded Software Technology 

Program [6]; 
•  Dartmouth's Sensor Web Project [7]. 

At Dartmouth, we have been working with about 100 re-
configurable wireless sensor platforms that include: 
Global Positioning System (GPS) capabilities, wireless 
(RF) communications, iButton and serial sensor 
capabilities, simple microprocessor control (Intel 8051 
processor) and self-contained power.  One of the sensors is 
depicted in Figure 1 below. Details of these devices and 
the ad hoc routing algorithms for establishing wireless 
network connectivity can be found in [8]. 
 
 

 
 

Figure 1: Dartmouth Re-configurable Wireless  
Sensor Platform 

 
Deploying a complete, highly functional end-to-end 
system of such sensor nodes is a complex, multi-faceted 
problem. For example, sensors will likely be 
heterogeneous so some sort of self-defining registration 
protocol is required for maximal flexibility. Our early 
work is focused on a Sensor Markup Language, based on 
the DARPA Agent Markup Language (DAML) [9] for 
defining sensor capabilities in a standardized way. 
Another important technology, addressed in this paper, 
required to realize such system is to effectively and 
efficiently route sensor data streams to different clients 
through the network fabric.  Ideally, those data streams 
would be processed, merged and multicast within the 
network to optimize some combination of performance 
metrics such as latency, bandwidth utilization or fuselet 
server loads.   
 
In this paper, we first formulate a simple version of the 
sensor data stream routing problem, and then show how it 



can be solved using dynamic programming ideas. Lastly 
we extend the basic model and framework to some more 
complicated situations. 
 

2. Sensor Communication Networks 
 
Our abstract model of a battlespace sensor communication 
network consists of the following ingredients: Clients, 
Fuselet Servers and Sensors. The abstract model of this 
network is illustrated in Figure 2, where C, N and S 
represent clients, fuselet server nodes and sensors, 
respectively.    
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Figure 2: The abstract model of the network 

 
The sensors in the battlespace include various sensing 
systems or devices such as radars, satellites, sonar, 
acoustic and other environmental monitoring devices. 
Such systems can generate a huge amount of radar, image, 
video, audio and other kinds of data from forward 
battlespace locations. Fuselets are programs that perform 
lightweight signal processing and data fusion operations 
on those streams. Network management operators are 
responsible for developing fuselets and uploading them to 
fuselet servers. When clients perform queries requiring 
battlespace information from the sensors, the sensor data 
streams are routed through the appropriate fuselet servers 
for data processing and then the processed data are 
returned to the clients. 
 
In our framework, the fuselet server network is a peer-to-
peer overlay network, which consists of geographically 
distributed fuselet server nodes. These server nodes are 
powerful computers with stable and high-speed network 
links between them. Subsets of these nodes may be 
managed by different organizations such as different 
services or agencies. The sensors describe themselves with 
the Sensor Markup Language (SML) using DAML and 
publish themselves to a local fuselet server. The SML-
tagged description includes all the details about the sensor 
such as its capabilities, its functionality and its interfaces. 
The local fuselet server broadcasts the sensor information 
to all other fuselet servers. E.g. Sensor S1 and S2 publish 
themselves to their local access point – the fuselet server 
N5. Then N5 broadcasts their markup information to all 
other fuselet nodes. In the same way, when a network 
management operator develops a new fuselet, they use the 
Fuselet Markup Language (FML) to describe its 
capability, functionality and interface. While the fuselet 

program is only uploaded to a subset of servers managed 
by these operators, the fuselet description information is 
broadcast to all other fuselet server nodes. 
     

3. Sensor and Fuselet Tables 
 
Every fuselet server in the network has a sensor 
information table that lists all sensors in this network, their 
SML tagged descriptions and their access points. That is, 
the server N1 has an abstract sensor table illustrated in 
Table 1. 

 
S1: SML-Description, N5
S2: SML-Description, N5
S3: SML-Description, N6
S4: SML-Description, N6

……
 

Table 1: An abstract sensor table 
 
Similarly, every fuselet server maintains a fuselet 
information table that lists all fuselets available in the 
network, their FML tagged descriptions and their host 
server network ID.  An abstract fuselet table is shown in 
table 2. 
 

 
F1: FML-Description

: N1, N4, N6
F2: FML-Description

: N2, N3, N4
……

  
Table 2: An abstract fuselet table 

 
Since both the fuselet and sensor information are 
broadcast across the network, every fuselet node maintains 
the same sensor table and fuselet table at a generic 
operating time. However, for routing purpose, these tables 
may also include metrics to represent their routing 
preferences from every node’s view, which differentiate 
these tables from each other. These sensor and fuselet 
tables are updated dynamically. Once a new sensor or 
fuselet goes online, the related information is 
automatically communicated and inserted into these tables. 
By contrast if a sensor or fuselet is not available anymore, 
the related information is automatically withdrawn from 
these tables. 
 

4. Query Routing 
 

For specific missions, clients submit queries for 
battlespace information to their local access points – local 
fuselets servers. Usually these queries are described in 
natural language or in high-level query languages. For 
example, client C1 may submit a query to node N1 and 
ask “Are there moving vehicles in battlespace region #1?”. 
With all sensors and fuselets properly described in the 
corresponding markup languages, "composer" software we 
are developing will be able to discover specific sensor and 



fuselet resources to satisfy the query. Based on semantic 
brokering, matching and reasoning, the composer 
assembles these sensors and fuselets into a sequence and 
creates a processing model. The processing model is 
interpreted and formatted into a Query Request Packet 
(QRP), which can be described in the following abstract 
format: 

<Source, Fuselets-sequence>.

Source is the client’s network identification, and 
Fuselets-sequence is the composed processing 
sequence of sensors and fuselets. The QRP may be 
decomposed into multiple sub-QRPs during the query 
routing process. For example, suppose that sensor S1 is an 
acoustic sensor and sensor S2 is a seismic sensor, which 
are both deployed in battlespace region #1 to detect 
moving targets. The server node N1 possibly decomposes 
C1’s query into two sub-query request packets (sub-
QRPs):  

<C1,F1(F2(F8(S1)))>
and  

<C1,F2(F5(F9(S2)))>. 
 

The first QRP packet requests sensor S1 to route its data 
stream via fuselets F8, F2 and F1 for data processing 
before the processed data is returned to C1. The second 
QRP packet requests the sensor S2 to route its stream 
through fuselets F9, F5 and F2. Here we analyze a simple 
single-sensor filtering process first to illustrate the routing 
mechanism. Later in this paper, we will analyze the 
routing problem in the multi-sensor fusing process.    
 
Since a fuselet is uploaded to several server nodes in the 
network for reliability and load balancing, the network 
must resolve the QRP’s fuselets-sequence to physical 
server nodes that execute the fuselets. In this context, 
every node is not only a fuselet server but also a router. As 
in BGP routing (the Border Gateway Protocol (BGP) [10] 
is the main routing mechanism in Internet backbone 
routing), every server in the sensor network can choose 
one node from the node list as the best node to run each 
fuselet. In this case, the fuselet tables are not the same 
anymore since each node has a different view of the 
network. There are several routing mechanisms to 
compute a route, which are illustrated in Figure 3. 
 
- Forward Routing:  The client sends the QRP to the end 
sensor directly. The sensor sends its data stream to the 
network nodes capable of computing the first required 
fuselet processing. After one node invokes the first fuselet 
and processes the data stream, that node searches its 
fuselet table to find the best execution node for the next 
fuselet task listed in the QRP, and sends the processed data 
stream to that node. The new node continues this data 
processing and routing process. Eventually the processed 
data stream is forwarded to the requesting client. 
 

- Reverse Routing: Just as in source routing mechanisms 
used in IP routing, the reverse routing approach resolves 
the route when the client forwards the QRP to the end 
sensors. At each hop, a node searches its fuselet table to 
find the best execution node for the next fuselet task, and 
sends the QRP to that node. The new node continues this 
QRP forwarding process and eventually the QRP is 
forwarded to the end sensor. The nodes in the route are 
sequentially added into the QRP. After the end sensor 
returns a data stream to the network, the data stream is 
routed through the nodes listed in the QRP in reverse order 
for data processing, and eventually the processed data 
stream is routed back to the client. 
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Figure 3: Different routing approaches  

 
Compared to the IP routing, query routing in sensor 
networks has some significant differences. The data 
stream is not only routed but also processed sequentially 
along the route; since the sensor data stream usually has 
much larger amounts of data than the QRP, the data flow 
from sensors to clients is much bigger than the flow from 
clients to sensors. In sensor communication networks, we 
use reverse routing to improve the network performance. 
A client forwards the QRP via fuselet nodes to the end 
sensor in reverse routing. Every node in the route 
maintains a QRP waiting table to list its pending QRPs. 
These fuselet nodes are aware of the required fuselet 
computing tasks before the sensor data streams are fed to 
them.  That is, the client must “make a reservation” on 
those nodes before the nodes can offer the specific fuselet 
computing services. Those nodes can invoke resource 
control to receive and process the large amounts of sensor 
stream data passing through them. 
 
The real advantage of reverse routing as described here is 
to merge overlapped QRPs in the network, which is 
illustrated in Figure 4. In Figure 4, the client C1 has a sub-
query QRP <C1,F1(F2(F8(S1)))> resolved by the 
network as <C1,F1@N1(F2@N4(F8@N5(S1)))> and 
the client C3 has a sub-query QRP 
<C3,F9(F2(F8(S1)))> resolved by the network as 
<C3,F9@N2(F2@N4(F8@N5(S1)))>,where Fx@Ny 
means that the fuselet Fx is assigned to execute at the 
fuselet node y. After client C1 and server N1 forward C1’s 
sub-QRP <N1,F2(F8(S1))> to N4, at first N4 adds 
F2<-F8<-S1 to its QRP waiting table and then forwards 
the sub-QRP <N2,F8(S1)> to N5. N5 continues this 
process. Meanwhile N2 forwards C3’s sub-QRP 



<N2,F2(F8(S1))> to N4. When N4 tries to insert the 
new sub-QRP F2<-F8<-S1 to its QRP waiting table, it 
finds that it has already been routing and processing this 
data stream from sensor S1. N4 will not forward C3’s sub-
QRP to F8 and S1 anymore. Instead it just adds N2 into its 
source address and later multicasts the processed data 
stream to both N1 and N2. The overlapped QRPs are 
merged in the middle of the route and the data stream will 
not be pulled and processed twice along that route. 
Sensors devices can output large amount of data using 
much slower links in the network. This QRP merging 
process can dramatically reduce both network traffic and 
computation loads on the fuselet nodes.   
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Figure 4: Merge the overlapped QRPs 

   
5. Routing Optimization 

 
Based on a local preference, every node can choose one 
node as the best node or default node to run each fuselet 
from its view of the network. If a node is not available, 
another node takes its place. Although this approach is 
very reliable in dynamic networks, this routing algorithm 
is similar to a greedy search algorithm. The sensor query 
routing optimization we describe is more complicated than 
existing IP routing optimization such as distance vector 
routing. The sensor data stream is not only routed but also 
processed along the route. Query latency is due to both 
data communication and fuselet computation along the 
route. Since a query resolves to a specific fuselet 
sequence, each query might have to form a specific 
routing path even though they can have the same source 
and destination nodes. In this section, we discuss how to 
minimize query latency under some assumptions. 
 
Here Nc and Ns are used to represent the network access 
points of client C and sensor S respectively. Nc submits a 
QRP:  

<C, )...)...)((...(...1 SFxFxFx mi >

for client C, where iFx represents fuselet ix  and 
mi ≤≤1 . Now we use )( iFxS  to represent the subnet of 

all nodes that have the fuselet iFx , and use in to 
represent the node number in this subset )( iFxS . For 
every QRP, the routing process is to find the best path 
from node Ns to Nc via these subsets, which is illustrated 
in Figure 5. The total search space for the routing path is 

i

m

i
n

1=
∏ . 

In order to minimize query latency, we will make the 
following assumptions: 
 
Assumption 1:  Every fuselet node maintains an up-to-date 
table that lists the current communication latency between 
every pair of fuselet nodes in the network.  

   )( 1FxS )( 2FxS )( mFxS

CN SN

 
 

Figure 5: the routing optimization process 
 

Assumption 2: Every node’s fuselet table maintains the up-
to-date fuselet computation time on their hosted nodes. 
 
Theorem 1:  Under Assumptions 1 and 2, for any QRP 
<C, )...)...)((...(...1 SFxFxFx mi >, the path with minimal 
query latency can be found for reverse routing with 

computational complexity o( ∑
=

+

m

i
iinn

0
1 ). 

 
Proof: For any query request packet – QRP 
<C, )...)...)((...(...1 SFxFxFx mi >, the access point Nc of 
client C can search its sensor table and find sensor S’s 
access point Ns. With its fuselet table, Nc can form a 
directed multipartite graph G(V, E) from node Ns to Nc as 
illustrated in Figure 5. The graph includes m layers of 
nodes between Nc and Ns, with in nodes in layer i . Here 
we define Nc as layer 0 with node number 10 =n  and 
define Ns as layer m+1 with node number 11 =+mn . jiV ,  
is used to represent node j at layer i , where 10 +≤≤ mi  
and inj≤≤1 . Define the communication time between 
nodes jiV , and kiV ,1− as ),( ,1, kiji VVC − , where inj≤≤1 , 

11 −≤≤ ink  and 11 +≤≤ mi . The communication time 
is the time used for two nodes to exchange the data stream 
and QRP packet, which can be computed based on 
Assumption 1 and the data stream size. If jiV , and kiV ,1−  
are the same physical server, that is two fuselets running 
on the same machine, we define their communication time 
as zero. We define the processing time of fuselet iFx on 
the node jiV ,  as )( ,jiVP , which can be computed based on 
Assumption 2. Since there is no computation on the Nc 
node in the layer 0, we define 0)( ,0 =jVP . Edge weights 
for the graph G(V,E) can be defined as: 
 

,10,,1 +≤≤≤≤∀ minkj i  
+∞=),( ,, kiji VVd ; 

1,0,1,1 +≤≤≤≤≤≤∀ mpinqnj pi , if 1−≠ ip , 



+∞=),( ,, qpji VVd ; 

11,1,11 −≤≤≤≤+≤≤∀ ii nknjmi , 
)(),(),( ,1,1,,1, kikijikiji VPVVCVVd −−− += , 

0)( ,0 =jVP ; 
 
We have thus formulated the query latency optimization 
problem as a classic shortest path problem. The path with 
the shortest distance from node 1,1+mV  to node 1,0V  in the 
graph is the path with the minimal query latency in the 
network. To solve this shortest path problem, we can use, 
for example, the Bellman-Ford algorithm [11] and reduce 

the computing complexity from o( i

m

i
n

1=
∏ ) to 

o( ∑
=

+

m

i
iinn

0
1 ).                                                                ■ 

 
In order to maintain network connectivity, each fuselet 
server periodically sends “probing” or “keep-alive” 
messages to its peers. The latency between two peers can 
be measured with these existing “probing” messages. To 
satisfy Assumption 1, each node has to broadcast its 
communication latency to other peers in the network, 
which causes extra-overhead in network communication. 
However, if there are only dozens of fuselet nodes in the 
network, the broadcast will add only a small amount of 
network traffic due to this overhead. Assumption 2 can be 
satisfied if each node broadcasts its fuselet execution time 
periodically within the peer-to-peer network. This 
broadcast process also adds communication overhead to 
the network.   
 
Although Theorem 1 theoretically solves the optimal 
routing problem, this routing mechanism is not practical in 
a real sensor network. It is difficult to measure and 
broadcast fuselet computing times and peer-to-peer 
communication times so dynamically. The challenge in 
query latency optimization is that we have to use the same 
metric - time, to measure the latency due to fuselet 
computation and network communication. In the distance 
vector routing approach,  “hops” are used to count the 
distance between two nodes. In the task scheduling, “CPU 
Usage” and “Memory Usage” are used to represent the 
task load on a machine. Since query latency arises from 
both task computation and data communication, it is not 
clear how to combine metrics, namely “hops” and “CPU 
usage”, to represent the latency. However, if we are not 
seeking the optimal path but a “good” path in query 
routing, we can use some static metrics to represent those 
dynamic parameters [12]. For example, the bandwidth 
between two peers can be used to represent the 
communication latency between them; a server node’s 
CPU speed and memory size can be used to represent the 
fuselet computing time on that node.   
 
 
 

6.  Dynamic Multi-Sensor Fusion  
 
We have analyzed the simple query routing scenario in 
sensor communication network: A single sensor’s data 
stream goes through fuselets sequentially for data 
processing and eventually the processed data is returned to 
the client. In fact a fuselet is more like a filter in this 
situation. The query routing process is more complicated 
in a multi-sensor fusion process. However, our routing 
scheme and optimization results can be readily extended to 
such more complicated situations. 
 
- A sensor has multiple access points.  A sensor can have 
multiple access points to the network. For a QRP routed to 
this sensor, in the routing decision process, we just need to 
add another layer of nodes between the sensor and the last 
layer )Fx(S m . Theorem 1 applies to this situation if the 
communication latencies from the sensor to these access 
points are known. 
 
- A fuselet integrates multi-sensor’s data stream.  If a 
fuselet only integrates and fuses data streams for several 
specific fixed sensors, we can consider this fuselet to be an 
integrated sensor instead of a dynamic fuselet program. 
This fuselet publishes itself as a new sensor in the 
network. 
   
- Dynamic multi-sensor fusion.  In a dynamic multi-sensor 
fusion process, the client’s queries are represented as more 
complicated QRPs such as QRP0: 
 

<C,F2(F4(F5(F6(S1)),S2),S3)>
 
QRP0 requests sensor S1’s data to be processed via the 
fuselets F6 and F5 sequentially. That processing result and 
sensor S2’s data stream are fed to the fuselet F4. After 
that, F4’s computing result and sensor S3’s data stream are 
fed into fuselet F2 and the process continues. In the 
reverse routing illustrated in Figure 6, at first the node Na 
forwards the QRP0 to node Nb with fuselet F2. Then Nb 
splits the QRP0 to two sub-QRPs: QRP1 <Nb,S3> to the 
sensor S3 and QRP2 <Nb,F4(F5(F6(S1)),S3)> to 
a node Nc with fuselet F4. Nc splits the QRP2 to another 
two sub-QRPs: QRP3 <Nc,S2> to the sensor S2 and 
QRP4 <Nc,F5(F6(S1))> to a node Nd with fuselet 
F5. The routing process continues to forward the sub-QRP 
until it gets to the end sensor S1. Based on this approach, 
some QRPs are actually processed concurrently such as 
QRP3 and QRP4. 
 
If every node chooses a best node or default node to run 
each fuselet based on a local preference, the routing 
process in multi-sensor fusion is the same as that in single 
sensor fusion.  For the optimal routing process, Theorem 1 
can still be applied in multi-sensor fusion although we 
need to change the latency computation method for 
parallel QRPs. 
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Figure 6: An example of QRP routing  

in multi-sensor fusion  
 

Here we use )QRP(L i  to represent the minimal query 
latency for the query request packet iQRP . At fuselet 
node Na illustrated in Figure 6, the minimal query latency 

)QRP(L 0  can be computed from with the following 
relationship: 
 

))Nx,Na(C)Nx@F(P

))QRP(L),QRP(L(max(min

)QRP(L

xN

++

=

2

21

0
 

 
where )Nx@F(P 2  is fuselet F2’s computing time at node 
Nx and )Nx,Na(C  is the data communication time 
between two nodes Na and Nx. Furthermore, we can 
compute )QRP(L 1 and )QRP(L 2  from similar equations. 
With these recursive equations, it is clear that the 
Bellman-Ford algorithm can be applied to solve this 
optimal routing problem. However, we should expect that 
multiple optimal paths may exist in this routing process 
because of the “max” operation in the above equations. 
 

7. Conclusions 
 

In this paper, we have presented a framework and some 
analytic results for query satisfaction and data routing in 
sensor communication networks. In our model, sensor 
data streams are routed through specific fuselet sequences 
for data processing before the processed data are returned 
to the clients. With our routing mechanism, multiple 
clients’ overlapped sub-queries can be merged along the 
route to increase network utilization and performance. 
Furthermore, we have described a dynamic programming 
based solution for the optimal routing problems in multi-
sensor fusion.  
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