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Abstract

We develop distributed algorithms for sensor net-
works that respond by directing a target (robot
or human) through a region. The sensor network
models the event levels sensed across a geograph-
ical area, adapts to changes, and guides a moving
object incrementally across the network. We de-
scribe a device we call a Flashlight for interacting
with the sensor field. This interaction includes
collecting navigation information from the sen-
sors in the local neighborhood, activating and de-
activating specified areas of the sensor network,
and detecting events in the sensor network. We
report on hardware experiments using a physical
sensor network consisting of Mote sensors.

1 Introduction

We wish to create more versatile information systems by us-
ing autonomous and distributed sensor networks: thousands
of small sensors, equipped with limited memory and actu-
ation capabilities will autonomously organize themselves
and move to track a source and convey information about
its location to a human user, and to the rest of the team.
Such distributed active mobile sensor networks are perva-
sive computing systems, well-suited for tasks in extreme
environments, especially when the environmental model
and the task specifications are uncertain and the system has
to adapt to it. A collection of active sensors can follow the
movement of the source to be tracked, for example a chemi-
cal plume as it spreads in the air, a fire to localize its source,
or a herd of sheep grazing on the Taihape farms.

An ad-hoc network is formed by a group of mobile hosts
upon a wireless local network interface. It is a tempo-
rary network formed without the aid of any established in-
frastructure or centralized administration. A sensor net-
work consists of a collection of sensors distributed over
some area that form an ad-hoc network. Each sensor is
equipped with some limited memory and processing ca-
pabilities, multiple sensing modalities, and communication

capabilities. Previous work in sensor networks has con-
centrated on communication protocols for static sensor net-
works. Often the network topology is unknown and the net-
work has to discover the best route for a packet.

In this paper we focus on mobile sensor networks, where
each sensor node is capable of actuation, sensing, and com-
munication. We examine the user interaction with a mas-
sively distributed sensor network. The user may be a robot
or a human traversing the network.

More specifically, we build on important previous work
by [Cerpa and Estrin, 2002; Xu et al., 2001; Wattenhofer
et al., ; Ramanathan and Hain, 2000; Chu et al., 2002] and
examine in more detail sensor networks that provide direc-
tions to a moving user. We developed a device we call a
Flashlight for interacting with the sensor field. This in-
teraction includes collecting navigation information from
the sensors in the local neighborhood, activating and deac-
tivating specified areas of the sensor network, and detecting
events in the sensor network. We describe the Flashlight
and present protocols for each of these tasks. Finally, we
discuss an implementation of our Flashlight protocols on a
physical sensor network consisting of 48 Mote sensors [Hill
et al., 2000; 2001] and present our experimental data.

2 Motivation: A Distributed Protocol for
Guiding Navigation

Sensors detect information about the area they cover. They
can store this information locally or forward it to a base sta-
tion for further analysis and use. Sensors can also use com-
munication to integrate their sensed values with the rest of
the sensor landscape. Users of the network (robots or peo-
ple) can use this information as they traverse the network.
We illustrate this property of a reactive sensor network in
the context of a guiding task, where a moving object is
guided across the network along a safe path, away from the
type of danger that can be detected by the sensors.

The guiding application can be formulated as a robotics
motion planning problem in the presence of obstacles. The
interesting areas of the sensor network are those where sen-
sors have triggered. They can be represented as obstacles.
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Figure 1: Navigating along the safest path as computed in-
crementally by sensors in a sensor network.

Such areas may include excessive heat (from volcanoes,
fire, etc), people, etc. We assume that each sensor can sense
the presence or absence of such an event. An event config-
uration protocol run across all the nodes of the network cre-
ates the event map. We do not envision that the network will
create an accurate geometric map, distributed across all the
nodes. Instead, we wish for the nodes in the network to pro-
vide some information about how far from the event each
node is. If the sensors are uniformly distributed, the small-
est number of communication hops to a sensor that triggers
“yes” to the event is a measure of the distance. The goal is
to find a path for the moving object that moves toward the
events (or avoids them, depending on the application.) The
user may ask the network regularly for where to go next.
The nodes within broadcasting range from the user supply
the next best step.

Inspired by [Lengyel et al., 1990], we developed several
protocols for the distributed guidance problem across sen-
sor networks and reported the details of these algorithms in
[Li et al., 2003]. The map can be constructed incrementally
and adaptively as an artificial potential field using hop-by-
hop communication (see Figure 1). The “obstacles” corre-
spond to events and have repulsing values and the goal has
an attracting value. The potential field is computed in the
following way. Each node whose sensor triggers “event”
diffuses the information about the event to its neighbors in a
message that includes its source node id, the potential value,
and the number of hops from the source of the message to
the current node. This message is used to update the poten-
tial value at the current node. The node then broadcasts a
message with its new potential value and number of hops to
its neighbors.

The potential field information stored at each node can
be used to guide an object equipped with a sensor that can
talk to the network in an on-line fashion. The safest path to
the goal can be identified with a distributed protocol using
dynamic programming. In [Li et al., 2003] we prove that
our algorithm does not get stuck in local minima. A user
of the sensor network can get continuous feedback from
the network on how to traverse the area. The user asks the
network for where to go next. The neighboring nodes reply
with their current values. The user sensor chooses the best
possibility from the returned values.

3 An Interaction Device: The Flashlight

The navigation guidance application is an example of how
simple nodes distributed over a large geographical area can
assist with global tasks. This application relies on the abil-
ity of the network user to interact with the network as a
whole and with specific nodes in the network. This interac-
tion is directed at retrieving data from the network (such as
collecting local information from individual nodes and col-
lecting global maps from the network) and injecting data
into the network (such as configuring the network with a
new task or reprogramming its nodes).

The ability to re-task and reposition sensors in a network
by sending state changes or uploading new code greatly en-
hances the utility of such a network. It allows different parts
of the network to be tailored to specific tasks, capabilities
to be added or changed, and information to be stored in the
nodes in the network. When robots or people interact with
the network, the sensors become an extension of the user
capabilities, basically extending their sensory systems and
ability to act over a much large range.

We have developed a hand-held device that allows a user
of the network (a human or a robot) to interact with the
network as a whole or to talk to individual nodes in the
network. This device is called a sensory Flashlight and
is based on the optical flashlight metaphor. When pointed
in a specific direction, the Flashlight collects information
from all the sensors located in that direction and provides
its user with sensory feedback. The device can also issue
commands to the sensors in that direction.

Applications of the Flashlight device for interacting with
the sensor network include: (1) Guiding robots or people
along paths that may change over time; (2) Reconfiguring a
wireless sensor network in a patterned way; (3) Interacting
with a wireless sensor network, both consuming and pro-
viding information stored within the network, changing and
reacting to its topology, re-tasking the network; (4) Invisi-
ble markup of a geographic region with information; (5)
Sensor management; and (6) Efficiency improvements in
message routing.

In this section we describe the Flashlight hardware and
illustrate its capabilities with algorithms for three tasks: (1)
using the Flashlight to activate or deactivate a specified area
of the sensor network; (2) using the Flashlight to detect
events in the sensor network; and (3) using the Flashlight to
provide guidance feedback across the sensor network. We
also describe the implementation of these algorithms and
present experimental data.

3.1 The Hardware

The Flashlight prototype we designed and built is shown
in Figure 2(left). This device can be carried by a human
user or placed on a mobile robot (or flying robot) to interact
with a sensor field. The beam of the Flashlight is sensor-to-
sensor, multi-hop routed RF messages which send or return
information.

The Flashlight consists of an analog compass, alert LED,
pager vibrator, a 3 position mode switch, a power switch,
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Figure 2: The left figure shows the Flashlight prototype.
The center figure shows a Mote board. The right figure
shows the Mote sensor board.

a range potentiometer, some power conditioning circuitry,
and a microcontroller based CPU/RF transceiver. The pro-
cessing and RF communication components of the Flash-
light and the sensor network are Berkeley Motes [Hill et
al., 2001], shown in Figure 2(center,right). A switch se-
lects the sensor type (light, sound, temperature, etc.) When
the user points the Flashlight in a direction, if sensor re-
ports of the selected type are received from any sensors in
that direction, a silent vibrating alarm activates. The vibra-
tion amplitude can be used to encode how far (in number
of hops) was the sensor that triggered. The potentiometer
is used to set the detection range (calibrated in number of
network hops from sensor to sensor.) The electronic com-
pass supplies heading data indicating the pointed direction
of the device.

The Flashlight uses one Berkeley Mote
(http://today.CS.Berkeley.EDU/tos/) as a main proces-
sor and sensor board. The Mote handles data processing
tasks, A/D conversion of sensor output, RF transmission
and reception, and user interface I/O. It consists of an
Atmel ATMega128 microcontroller (with 4 MHz 8 bit
CPU, 128KB flash program space, 4K RAM, 4K EEP-
ROM), a 916 MHz RF transceiver (50Kbits/sec, 100ft
range), a UART and a 4Mbit serial flash. A Mote runs for
approximately one month on two AA batteries. It includes
light, sound, and temperature sensors, but other types
of sensors may be added. Each Mote runs the TinyOS
operating system.

A moving Flashlight interacts with a wireless sensor net-
work consisting of Mote sensors. The sensors are currently
programmed to react to sudden increases in light and tem-
perature intensity, but other sensory modes are possible.
The Flashlight and all sensors know their location coordi-
nates. These are currently provided to each sensor, but the
location parameters can be acquired with GPS or with a cal-
ibration procedure.

3.2 The Communication Protocols

The Flashlight has three modes, Activate Sensors, Deacti-
vate Sensors, and Detect, selected by the mode switch. In

Algorithm 1 The Route Update routing algorithm.
1: if NumberOfHops < k∗ MessageSize then
2: if RouteIsSet AND MessageIsFromParent then
3: Set route timeout
4: Increment message hop count
5: Add network ID to message hop history
6: Broadcast updated message
7: if NOT RouteIsSet then
8: Record route to Flashlight
9: Set route timeout

10: Increment message hop count
11: Add network ID to message hop history
12: Broadcast updated message

Figure 3: (Left) A snapshot of the sensor network after each
sensor has established a multi-hop route to the Flashlight.
(Right) The directional activation of sensors. A VR mes-
sage travels in a specified direction. The sensors contained
within a given range (shown in black) have been selected.

this section we describe each of these protocols.

Route Updates
The Route Update protocol establishes a multi-hop path
from each sensor to the Flashlight (see Figure 3(Left)).
These paths are then used by other functions of the Flash-
light to collect data from the sensors.

In all modes the device sends out Route Update messages
every t seconds which are used and forwarded by the sen-
sors to determine a valid multi-hop route to the Flashlight.
These routes depend on the network configuration and may
change over time.

The Route Update (RU) messages are 32 bytes and con-
sist of the Flashlight Network ID, the Network IDs for the
last k hops and the CRC checksum.

Each sensor uses this information to store the network
ID of a parent through which it can route messages to the
Flashlight (see Algorithm 1). The messages are propagated
across the entire sensor network in a hop-by-hop fashion.
Each sensor prevents loops by allowing only RU messages
from its parent node until a timeout limit is reached. Af-
ter the timeout, the sensor chooses the first rebroadcasting
node it hears as its parent. The CRC checksum is used
to discard corrupted messages since TinyOS has minimal
measures for preventing message collisions.

Activate/Deactivate Region
The Flashlight can turn on all the sensors in a specified ge-
ographical area to activate the area or it can turn them off
to deactivate that area. Activate allows the network and its
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Algorithm 2 The Vector Route routing algorithm.
1: if ThisMessageID 6= AnyOfLastkMessageIDs then
2: Update message ID list
3: Calculate Flashlight direction vector
4: Calculate perpendicular to Flashlight vector that

goes through the sensor location
5: Find point on Flashlight vector that is closest to this

sensor
6: Calculate distance of sensor from Flashlight beam

center
7: if the point on Flashlight vector is not behind the

Flashlight then
8: DistanceFromBeam = distance of sensor from

Flashlight beam center
9: DistanceFromFlashlight = distance of sensor from

Flashlight
10: if (Range < DistanceFromFlashlight) AND (Dis-

tanceFromBeam < Beamwidth) then
11: Activate or Deactivate sensor based on flag
12: Rebroadcast Vector Route message

user to collect higher-resolution information about given lo-
cations when all the sensors in the area are on. Activate can
be augmented with a probabilistic component that selects
only a fraction of the sensors in the area. Deactivate allows
the network to switch off all (or a fraction of) the sensors
in an area. This functionality is especially useful during a
quiet period, when no events trigger and sleeping sensors
preserve battery power to extend the network lifetime.

In the Activate mode the Flashlight sends out a Vec-
tor Route message regularly, every s seconds. The Vector
Route (VR) message is 32 bytes long and consists of the
following information: 2 bytes - Flashlight Network ID;
4 bytes - Flashlight Latitude; 4 bytes - Flashlight Longi-
tude; 2 bytes - Range to travel in feet; 2 bytes - Direction to
travel; 2 bytes - Beamwidth; 2 bytes - Hop count; 4 bytes
- Unique message ID; 1 byte - Activate/Deactivate flag; 1
byte - mode flag; and 2 bytes - CRC checksum.

Algorithm 2 shows the Vector Route protocol that is used
to activate an area. At a top level, a message carrying the
geometry of an area (specified as a direction dir and dis-
tance dis from the device) propagates through the network
in dir, selecting all the sensors that are at least dis away.
Each sensor uses the message information and its local state
to determine whether it is part of the activation area or not.
This protocol can be extended easily to accomodate areas
of any given geometry.

Detect

Activated sensors watch for events and send messages to
the Flashlight using the paths computed with Route Update
messages. The Flashlight can store time-stamped sensor
triggers in a database for later use. Sensor detects can also
be used instantly to present feedback about the direction
and distance to the sensor that triggered. Such feedback
can be used to provide locomotion direction for a robot or
human traversing the sensor field to find the sensor that trig-

Algorithm 3 The Detect routing algorithm.
1: if RouteIsSet AND (RouteTimeOut > 0) AND

(ThisMessageID 6= PreviousMessageID) then
2: PreviousMessageID = ThisMessageID
3: Add network ID to hop history
4: Send the data message to parent

Figure 4: (Left) A snapshot of the sensor network after
an area of the network (the red node) has been activated.
(Right) A sensor detect event is forwarded to the Flashlight
along a mulithop route.

gered. More detailed information and history may be stored
locally on the sensor for future consumption.

Sensor Detect messages contain the coordinates of the
sensor and sensor data. In our implementations, we have
used light and temperature intensity data.

Detect messages are generated from a sensor when it
detects a change in its current sensory values, based on a
threshold. Detect messages are then forwarded from sensor
to sensor along the routes previously established by the RU
messages (see Figure 4(Right)). Upon reaching the Flash-
light, the heading toward the detection and the number of
hops to the sensor that triggered are stored in a table. The
Flashlight gives feedback to a human user by lighting its
LED and turning on a vibration if its current physical head-
ing matches a heading stored in the table. The vibration
amplitude depends on the number of hops to the the sensor
that triggered.

4 Experiments
We have implemented the Flashlight communication infras-
tructure described in Section 3 and Section 2 and verified
their correctness. We also implemented two guidance ap-
plications. The first application computes the safest path
across a dangerous region—for example across a forest fire
or a contaminated compound. In this application, the sen-
sors are assumed to record danger levels. The safest path
across the sensor field is then computed and updated incre-
mentally, as the danger levels change [Li et al., 2003]. In
the second application, we use this system to guide a fire-
fighter or robot to a victim trapped in smoke; we then guide
the people out. In this application, a sensor triggers (for
example by user contact). A path from this sensor to an
outside base station is then computed. The Flashlight inter-
acts with the sensors one-by-one, each time giving the next
direction of movement to the user.

These applications have been implemented using the
Flashlight we built and a 48 node Mote sensor network
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Figure 6: The average beam width for selected sensors for
a suite of Vector Route messages. The x axis shows the
Flashlight heading. The y axis shows the average distance
from the beam center of the selected sensors for the given
Flashlight heading.

running our communication protocols. These experiments
were also used to collect data about the effectiveness of our
communication protocols.

4.1 Experimental Setup
We have placed 48 Mote sensors in a grid pattern and in
a U-shaped pattern for all our evaluation experiments (see
Figure 5). The sensors were provided with location coordi-
nates corresponding to a horizontal separation of 32.4 feet
and a vertical separation of 35.4 feet. The Flashlight was
placed at the location of one of the grid sensors and given
its coordinates1. A software adjustment allows us to scale
down the area covered by the sensor network to carry out
experiments on a desk top. We adjusted the transmission
power of the Mote sensors to a half a foot using the digital
potentiometer.

It is generally difficult to collect data from a distributed
set of sensors connected only by an unreliable low band-
width radio link. As a result, information about incoming
and outgoing messages, as well as internal events of inter-
est, were logged to the 4Mbit flash chip on the Mote sensors
with a resoltuion of 1/128 of a second. After each exper-
iment the data was read out over the radio link and then
postprocessed using custom C programs.

4.2 Beam accuracy experiments
In the first experiment we measured the accuracy of the
beam estimation in the Vector Route algorithm (see Algo-
rithm 2). We ran the Vector Route algorithm and observed
the sensors that were identified to be within the beam width
(these sensors’ LED lit up.) We placed the Flashlight at
one corner of the sensor grid and repeated the Vector Route
algorithm for several orientations. We then computed the
distance of each activated sensor from the actual beam cen-
ter path. The distances for each angular increment were
averaged and the results are shown in Figure 6.

Since the beam width parameter was chosen at 50 feet,
we expected the average distance to the beam to be less
than 50 feet. In general, the algorithm did quite well,

1By placing the Flashlight at grid corners we accomplish “vir-
tual grids” of 200 sensors.

Figure 7: Vector Route message latency. The x axis is time.
The y axis shows sensor percentage. The curves correspond
to different experiments.

with the sensors that were activated being mostly within
the beam. We observed some error in the experiments
conducted around a Flashlight heading around true North
and West. We believe these errors are due to the non-
homogeneous magnetic environment where the experiment
was conducted. This introduced nonlinearities in the com-
pass readings within the Flashlight. Such nonlinearities are
likely to show up in actual use as well, hence a magnetic
compass is not the best device to use for getting bearing.

4.3 Message propagation latency experiments
In a different set of experiments, we measured the mes-
sage propagation latency for Vector Route messages. To
maximize the number of hops in the network we used the
U-shaped testbed. All the sensors were given the same lo-
cation, so that they would all be within the beamwidth of
a VR message simultaneously and propagation time from
the start to the end of the chain could be measured. Note
that messages often jump over more than one sensor along
the chain due to the variability of RF transmission/reception
range. Thus, although we had 48 sensors, the max hop
range for the network was less.

The results for the VR message propagation times are
shown in Figure 7 for sensor activation times. The prop-
agation times are the sum of the delays caused by mes-
sage transmission time, computational load2 causing delays
in forwarding, collision delays causing message loss, and
hop range variability which affects the number of sensors
reached by each message.

4.4 Directional Guidance
We have deployed 12 Mote sensors along corridors in our
building and used the Flashlight and the communication in-
frastructure presented here to guide a human user out of the
building. The Flashlight interacted with sensors to com-
pute the next direction of movement towards the exit. For
each interaction, the user did a rotation scan until the Flash-
light was pointed in the direction computed from the sensor
data. The user then walked in that direction to the next sen-
sor. Each time we recorded the correct direction and the

2Trigonometry is expensive for a 4MHz 8 bit microcontroller
with no floating point co-processor and software implemented
multiplies and divides.
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Figure 5: (Left) The Mote grid testbed. (Right) The Mote U-shape testbed.

direction detected by the Flashlight. The directional error
was 8% (or 30 degrees) on average, and it was due to the
non-homogeneous magnetic field in the building, especially
around metal stairs. However, because the corridors and of-
fice doorways are wide, and the sensors sufficiently dense,
the exit was identified successfully. The user was never di-
rected towards a blocked or wrong configuration. We envi-
sion an application where the sensors will collect tempera-
ture gradients and the guidance algorithm will compute the
safest path to the exit.

5 Conclusions
We have discussed sensor networks that can interact with
robot or human users. We have described the Flashlight,
an interaction device for sending commands to the sensor
network and discussed several protocols in the context of
navigation guidance applications: activating a given area of
the sensor network, deactivating a given area of the sensor
network, detecting events in the sensor network and using
these events for navigation. We have implemented these
protocols on a network of 48 Mote sensors and presented
some experimental data collected from this testbed.

This work has given us several insights into using ad-
hoc networks for robot interactions with sensor networks.
Data loss is not rare in sensor networks. This is due to
network congestion, transmission interference, and garbled
messages. The transmission range of one direction may be
quite different from that of the opposite direction. Thus,
the assumption that if a node receives a packet from an-
other node, it can send back a packet does not hold. Net-
work congestion is very likely when the message rate is
high. This is aggravated when the nodes in proximity of
each other try to send packets at the same time. The un-
certainty introduced by data loss, asymmetry, congestion,
and transient links is fundamental in sensor networks and
should be carefully considered in developing models and
algorithms for systems that involve sensor networks.
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