
Copyright 1996 by the Association for Computing Machinery, Inc.
From the Fourth Workshop on I/O in Parallel and Distributed Systems, May 1996.
THIS COPY IS THE AUTHORS’ PRE-PUBLICATION VERSION; it may differ slightly from the official published version.
doi:10.1145/236017.236034

ENWRICH: A Compute-Processor Write Caching Scheme for Parallel File Systems∗

Apratim Purakayastha Carla Schlatter Ellis David Kotz
Department of Computer Science Department of Computer Science Department of Computer Science

Duke University Duke University Dartmouth College
Durham NC 27708-0129 Durham NC 27708-0129 Hanover NH 03755-3510

ap@cs.duke.edu carla@cs.duke.edu dfk@cs.dartmouth.edu

Abstract

Many parallel scientific applications need high-performance I/O.
Unfortunately, end-to-end parallel-I/O performance has not been
able to keep up with substantial improvements in parallel-I/O hard-
ware because of poor parallel file-system software. Many radical
changes, both at the interface level and the implementation level,
have recently been proposed. One such proposed interface is col-
lective I/O, which allows parallel jobs to request transfer of large
contiguous objects in a single request, thereby preserving useful se-
mantic information that would otherwise be lost if the transfer were
expressed as per-processor non-contiguous requests. Kotz has pro-
posed disk-directed I/O as an efficient implementation technique
for collective-I/O operations, where the compute processors make a
single collective data-transfer request, and the I/O processors there-
after take full control of the actual data transfer, exploiting their de-
tailed knowledge of the disk layout to attain substantially improved
performance.

Recent parallel file-system usage studies show that writes to
write-only files are a dominant part of the workload. Therefore, op-
timizing writes could have a significant impact on overall perfor-
mance. In this paper, we propose ENWRICH, a compute-processor
write-caching scheme for write-only files in parallel file systems.
ENWRICH combines low-overhead write caching at the compute
processors with high performance disk-directed I/O at the I/O pro-
cessors to achieve both low latency and high bandwidth. This com-
bination facilitates the use of the powerful disk-directed I/O tech-
nique independent of any particular choice of interface. By collect-
ing writes over many files and applications, ENWRICH lets the I/O
processors optimize disk I/O over a large pool of requests. We eval-
uate our design via simulated implementation and show that EN-
WRICH achieves high performance for various configurations and
workloads.

1 Introduction

Many parallel scientific applications need high-performance
I/O [17, 30]. The computational performance of multiprocessors
has leaped far ahead of their I/O performance, making I/O the

∗This work was supported in part by the National Science Foundation under grant
number CCR-9113170 and CCR-9404919.

bottleneck for many of these applications. Although raw parallel-
I/O hardware capabilities have improved substantially in recent
years, they rarely lead to substantially faster application I/O. This
shortfall is largely due to poor performance of the file-system soft-
ware. In this paper we propose one technique that can dramatically
improve file-system performance.

Most current multiprocessor file systems are derivatives of
Unix file systems. Typical Unix workloads [29, 11], however,
differ significantly from scientific multiprocessor workloads [24,
31]. Scientific programs use files for checkpointing, application-
controlled virtual memory [9, 12], and visualization output, which
are not common in Unix workloads. Furthermore, parallel scien-
tific programs exhibit patterns that are more complicated than sim-
ple sequential patterns observed in vector scientific or Unix work-
loads. For example, many exhibit “forward-jumping” sequential
patterns [24, 31], many of which are actually complex strided pat-
terns [26, 27]. Clearly, parallel file systems must be redesigned to
fit these common access patterns.

Several recent works have proposed changes to the file-system
interface [3, 7, 8, 10, 12, 18, 19, 26]. One such proposed interface
is collective I/O. In a traditional file-system interface, processes
within a parallel job often have to express the transfer of a large ob-
ject (e.g., a large matrix) as small, non-contiguous, per-processor
requests, thereby losing valuable semantic information that a large
contiguous object is being transferred. A collective interface allows
all processes to make a single large request, preserving semantic in-
formation and thereby making it possible for the I/O subsystem to
better coordinate the actual data transfer.

Disk-directed I/O (DDIO) is one efficient implementation tech-
nique for collective I/O [19]. In DDIO, the I/O processor (IOP)
directs the order in which disk I/O operations should occur, after
the job as a whole makes a collective I/O request. The IOP uses
its intimate knowledge of the disk subsystem to optimize perfor-
mance. Compared to a traditional-caching system, in which each
IOP manages a buffer cache dynamically in response to many un-
coordinated requests from all compute processors, DDIO has been
shown to provide much higher throughput. It is not often easy, how-
ever, for a program to form its I/O requests as large, collective re-
quests. Even in data-parallel programs, where all I/O was collec-
tive, we saw a surprising abundance of small requests [31]. These
patterns and the difficulty of rewriting code to fit a collective inter-
face can dilute the benefits of DDIO.

The CHARISMA workload studies— which spanned two sys-
tems, two sites, and two programming models [24, 31, 27]— ex-
posed certain trends in multiprocessor file access. First, write traffic
was high; the number of bytes written was almost double the num-
ber read, and the number of files written was almost double the num-
ber read. Though not generalizable to an arbitrary multiprocessor
workload, it appears that optimizing writes may result in high per-
formance for many applications. Second, bytes within write-only
files were almost never shared across processors, although blocks

were often shared, resulting in false sharing. Third, there were
many small writes. Even collective writes from many programs
were limited to a few hundred bytes. These small writes tended
to overload the I/O subsystem with many small requests, each of
which had appreciable overhead, resulting in poor disk throughput.

In this paper we introduce ENWRICH (Efficient compute-
Node WRIte caCHes)— a system that combines compute-node
write caches for write-only files with disk-directed I/O for high-
performance writes. Kotz explores ways to adapt many of the exist-
ing interfaces to DDIO [22], but, as proposed so far, DDIO enhances
performance over one collective request from one job on one file.
Moreover, to accommodate a set of generic patterns, the IOP has to
maintain a sizable library of those pattern mappings. ENWRICH al-
lows the powerful disk-directed I/O technique to be used for writes
irrespective of any specific interface, and allows IOPs to optimize
disk I/O not over just one collective request, but over many requests
collected from many files and applications. Our simulations show
that ENWRICH achieves high performance for various configura-
tions and workloads.

In Section 2 we outline related work in this area. Section 3
outlines the design of ENWRICH and its operation. Section 4 de-
scribes our simulated implementation and evaluation methods, and
Section 5 presents the results of our experiments. Finally, in Sec-
tion 6 we conclude with our main observations and discuss possible
future work.

2 Background

In this section we outline our model of a multiprocessor and its
I/O subsystem, briefly survey write-caching studies, and summarize
some recent relevant work in parallel I/O.

2.1 Model

In this work we focus on a MIMD multiprocessor model. We as-
sume that there are, in general, two classes of processors: Compute
Processors (CP) and I/O Processors (IOP). The CPs mainly run ap-
plication code that involves computation, message passing, and file-
system requests. The IOPs mainly service file-system requests from
the applications. The processors are connected via an interconnec-
tion network. Each IOP may have one or more disks attached to
it. We use a traditional file abstraction (a file is an addressable se-
quence of bytes), though we assume an underlying implementation
that stripes file blocks across all disks. We assume the Parallel In-
dependent Disk (PID) model, which means that each disk can be
accessed independently and that different blocks can be read from
different disks at the same time. Existing multiprocessors like the
Intel iPSC/860, Intel Paragon, Thinking Machines CM-5, KSR/2,
IBM SP-2, nCUBE, and the Meiko CS-2 are based on this model.

2.2 Write Caching

Write caches in multiprocessors have been limited to IOP caches at
the file-block level. Kotz compared several IOP write-caching poli-
cies on a shared-memory multiprocessor. He concluded that a strat-
egy in which a disk write was issued only after n bytes were writ-
ten to an n-byte buffer (the WriteFull strategy) performed the best
for his test workload [23]. Huber et al. propose centralized caching
agents for write-shared files [16], a technique which still suffers net-
work latency on every write request.

Compute-processor write caching in multiprocessors has been
unpopular because of anticipated consistency overhead. Indeed, the
amount of block sharing between compute nodes clearly predicts

high consistency overhead for a block-level cache at the compute
nodes [24, 31].

For uniprocessors, however, there have been numerous studies
on various kinds of write-caching. In the log-structured file system
[32], for example, file system changes are buffered and periodically
written to disk in a single, big disk-write operation.

In Zebra [14], the log-structured file system is combined with
a distributed striped file system. In the Scotch Parallel File Sys-
tem, targeted for a network-of-workstations supercomputing envi-
ronment, client write caches provide weakly consistent file-sharing
with the help of propagate and expunge mechanisms and explicit
barriers to avoid read/write data hazards [13]. The xFS [1] exploits
high speeds offered by ATM networks by using a technique called
cooperative-caching. This technique allows a client to access file
data directly from another client’s memory. Cache consistency in
xFS is maintained by a token-based scheme.

With emerging memory technology, the use of non-volatile,
battery-backed-up RAMs (NV-RAMs) for write caching is becom-
ing attractive. NV-RAMs allow write caches to use write-behind
strategies, thereby reducing the number of disk-write operations.
Biswas et al. show that a small amount of NV-RAM (about 1 MB) is
sufficient to provide large performance gains [4]. Baker et al. show
similar gains using a persistent write cache with a log-structured file
system [2]. In ENWRICH, we draw on some of these results in the
uniprocessor domain and apply them to multiprocessors.

2.3 Recent Advances in Parallel I/O

Earlier generations of parallel file systems like Intel CFS extended
the Unix interface with file-pointer modes for parallel access [5, 28].
The Scalable File System (SFS) on the CM-5 also provides a Unix-
like interface, but has an additional collective-I/O interface [3].
Among more recent parallel file systems, Vesta [8] allows users to
specify both the logical partitioning of file data among the CPs and
the physical partitioning of file blocks across the disks.

Some recent proposals focus on devising and implementing new
and meaningful interfaces. Corbett et al. propose MPI-IO, which
models I/O as message passing and allows programmers to express
I/O with program datatypes rather than byte offsets within a file [7].
Nieuwejaar and Kotz propose a nested-batched interface for com-
plex access patterns [26].

Two-phase I/O, proposed by Del Rosario et al., is an efficient
implementation of a large transfer operation where data is permuted
in CP memory before a collective I/O operation so that the I/O
operation conforms to the actual file layout for better I/O perfor-
mance [10]. Disk-directed I/O (discussed in Section 1), proposed
by Kotz, efficiently implements collective I/O, out-of-core compu-
tations, data-dependent distributions, and both regular and irregular
requests [20, 21].

3 Design and Operation of ENWRICH

Write caches are normally used to delay writes, avoiding extrane-
ous disk I/O for blocks that are overwritten in pieces. Although
ENWRICH achieves that, its primary motivation is different. EN-
WRICH’s caches hoard a large number of writes, and then flush
them periodically, simultaneously, with disk-directed I/O. The
main focus is not to reduce the number of block I/Os but to ac-
cumulate a large number of them and then perform them in an
order dictated by DDIO. Thus we optimize disk access over a
large number of writes involving many jobs and files. Putting the
caches at the compute processor rather than on the I/O proces-
sor has other advantages: first, it avoids network delay for every
write, and second, it relieves the IOP of managing a cache that is

shared by many CPs. This technique of batching writes, although
for somewhat different reasons, has been used successfully in the
log-structured file system [32] and in the Zebra file system [14].
Note that ENWRICH only caches writes to files opened only for
writing (writes to write-only files were dominant in CHARISMA
studies; the number of files that were both read and written was
tiny). Read-only files could be cached in separate per-CP caches
and read-write files could be cached in IOP buffer caches. As out-
lined later, this selective compute-node write caching allows us to
solve the cache-consistency problem with minimal overhead. The
consistency check is actually overlapped with useful work that elim-
inates extra block I/O at the IOPs.

3.1 The Cache Organization

Each compute processor has a cache that is divided into two sec-
tions, a directory section and a data section (Figure 1). For each
write request on that particular processor, the data is appended to
the data section and a new entry is appended to the directory sec-
tion. The directory entry consists of a compute-processor number,1

a unique file id, a timestamp, an offset into the file where the write
has occurred, and the number of bytes written. Note that the cache is
not aware of file blocks. This log-based cache design was inspired
by the presence of false-sharing of file blocks in our traces. A CP
write cache based on file blocks would waste space through repli-
cation and cause excessive consistency traffic. Our system only in-
curs minimal cache-management overhead for each write. When
the caches are emptied out in a flush phase (discussed below), the
CP can easily calculate an offset in the data section corresponding
to a particular directory entry by summing the byte counts in the
preceding directory entries. Note that the ENWRICH design does
not specify how the physical cache is logically divided into a data
section and a directory section. An implementation may choose to
divide it into two static parts, which implies that the cache is full
when either section is full, or it may choose to use the same phys-
ical memory for both sections but have them grow in opposite di-
rections, which implies that the cache is full when the two sections
meet.

3.2 The Flush Operation

Each write appends data to the CP cache. Obviously, the caches oc-
casionally need to be written out to the disk (called a cache flush).
Figure 2 summarizes the events in a flush operation. When the
cache in one CP becomes full, it broadcasts interrupts to all proces-
sors, triggering a flush operation. Each flush operation starts with a
barrier involving all the processors. The barrier does not halt user
computation, unless the computation attempts to write to the file
system. It is merely a means of synchronizing the flush activity
across all CPs. After the barrier, the CPs send relevant parts of their
directories to different IOPs and then wait for the IOPs to request
data from them. IOPs start to process the directories after they have
received them from all the CPs.

Each IOP checks consistency as follows: it first sorts the di-
rectory entries by the unique file-id field; then it sorts the entries
in increasing file-offset order; then it traverses down the sorted list
checking for byte-sharing between any two entries; if there is byte-
sharing, it is resolved using the timestamp values associated with
the conflicting entries (the older entries are ignored). This opera-
tion not only ensures consistency but also saves extra disk I/O that
may have occurred in a traditional-caching system. We assume ad-
equately synchronous CP clocks. To be consistent with causal or-
dering, the clock drift should be less than the message-passing delay

1The CP number is not strictly necessary, but it simplifies processing at the IOP.

between any two processors. This is a reasonable assumption for
current-generation multiprocessors like the SP-1, SP-2, and CM-5.
In a cluster of workstations, clocks drift by larger amounts; as long
as the clock drift is less than the message-passing delay, our tech-
nique works. Systems that have hot replacement of processors must
adapt by blocking on cache writes (continuing all other operations),
until the new processor is in adequate synchrony with all the other
processors.

After the above phase, the IOPs perform pure DDIO: each IOP
constructs a list of unique blocks that it needs to write in this flush;
then it re-orders the block list according to actual disk layout; then
it requests data corresponding to each block from CPs that have di-
rectory entries for this block. When CPs receive a request for data,
they look up their directory entries and return the relevant portion of
the data cache to the requesting IOP. When all data corresponding
to a block has arrived, the IOP issues a disk write request for that
block and starts the above procedure for the next block.

When an IOP has finished writing all its blocks, it broadcasts
“done” messages to all the CPs and ends the flush operation. When
a CP has received “done” messages from all the IOPs, it clears its
cache for the next flush operation and exits the current flush opera-
tion.

The time interval between cache flushes depends on the partic-
ular flush policy. The flush policy may be a static policy based on a
timeout, or it may be a dynamic policy based on cache fullness. A
dynamic policy that potentially holds write-data in the cache for a
long time would likely result in more throughput because the IOP
would be able optimize over a larger number of writes; it also would
be more adaptive to system load than a static policy. It could also
lead to longer stalls during the flush phase, however, since no new
writes could be added to a full cache, while in a static policy data
could be written to empty parts of the cache while a flush is in
progress. A well-tuned ENWRICH implementation would likely
have a policy that flushes the cache when either a timeout occurs
or more than a threshold of the cache is full, thereby allowing com-
putation and new writes to happen while the cache is flushed in the
background. Any policy may also result in write data being cached
for a time long enough to violate read-after-write consistency. An
ENWRICH implementation would likely use a per-file flush-on-
read policy when a file is re-opened for reading after having been
written.

We claim that combining compute-node write caches with disk-
directed I/O in this way has several benefits. First, it enables pro-
grams to use the power of disk-directed I/O irrespective of a par-
ticular interface. Second, the caches collect writes over many files
and applications, which let the IOPs optimize disk I/O over a large
pool of requests rather than a single collective request. This ca-
pability is especially important since we observed even collective
requests to be small. Third, the consistency scheme is not purely
overhead since it also eliminates unnecessary disk I/O in the pro-
cess. Moreover, the consistency mechanism is implemented with-
out inter-CP communication, which saves message-passing over-
head. Fourth, this approach results in low-latency writes. Since
the flush operation offers high throughput via DDIO, this approach
combines low latency and high throughput for writes, a desired but
so far unreached goal in existing parallel file systems.

4 Evaluation Method

We have implemented ENWRICH on top of the STARFISH2 simu-
lator, which is further based on the Proteus parallel architecture sim-
ulator [6]. Proteus is an execution-driven simulator that provides a

2More information about STARFISH, including source code, can be found at the
URL http://www.cs.dartmouth.edu/research/starfish.

Directory section Data Section

bytes

Write (file id, offset, bytes)

new data entrynew directory entry

CP#, timestamp, file id, offset, # bytes

Figure 1: The log-structured write cache at each compute processor.

generic framework with basic message-passing capabilities, inter-
processor interrupts, thread operations, and shared memory. Pro-
teus runs as a single multithreaded process on a uniprocessor.

The STARFISH simulator is essentially a Proteus applica-
tion, but it provides various higher level abstractions to facilitate
parallel-I/O simulation. It includes a validated disk model [25]
based on Ruemmler and Wilkes’ HP97560 model [33]. It provides
the framework of a multiprocessor system with CPs and IOPs, and
IOPs having one or more disks and one I/O bus attached to each
IOP. Some file systems, like the traditional-caching system and the
disk-directed system, are also implemented as part of STARFISH.

ENWRICH Implementation. We have implemented EN-
WRICH as a new file system on STARFISH. We use the
STARFISH disk model with minor modifications. Since we focus
on write caching, the current implementation of ENWRICH does
not have a read interface at the API level.

Each CP has a main thread that generates file system requests ac-
cording to a pattern, manages the local write cache, and broadcasts
flush interrupts according to the flush policy. The CP write caches
are statically divided into a data section and a directory section, both
of which have fixed maximum sizes. The maximum size of the di-
rectory section is a simulator parameter, directory fraction, that de-
termines what percentage of the total cache is to be used to store
directory metadata. In our experiments, flush interrupts are gener-
ated by a CP when either the directory part or the data part of its
cache is full.3 In response to a flush interrupt, each CP wakes up a
flush thread that coordinates the actual flush operation (Figure 2).

The IOP is essentially idle except for the flush phase. The flush
interrupts broadcast from a CP are handled by an interrupt handler
at the IOP that wakes up the IOP flush thread. The IOP flush thread
coordinates the actual flush operation (Figure 2).

Traditional Caching. We have borrowed the traditional-
caching implementation directly from STARFISH and extended it
for multiple files. In this system, the CP simply forwards each I/O

3A flush operation is also forced when each experiment terminates, to write out
cached data to disks, as in the traditional caching system.

request to the IOP. Each IOP manages a cache that has two buffers
per CP per local disk, large enough to double-buffer an indepen-
dent stream of requests from each CP to each disk. The IOP write
cache uses a WriteFull policy (Section 2). More details about the
traditional-caching implementation can be found in [19].

4.1 Experimental Design

Most of our experiments had 32 processors (16 CPs and 16 IOPs).
Each CPU was a generic RISC with a 50 MHz clock. Each IOP
had one SCSI bus with 10 MB/s peak bandwidth. Most experiments
had 16 disks (one per IOP); each disk had a maximum capacity of
1.3 GB and a peak transfer rate of 2.34 MB/s. The interconnect for
most experiments was a 6-by-6 bidirectional torus with wormhole
routing. The interconnect latency was set to 20 ns per router with
a peak bandwidth of 200 MB/s. Appropriate message-specific soft-
ware overhead is accumulated within the simulator. For ENWRICH
experiments, the per-CP write-cache size was 1 MB with the direc-
tory fraction set to one-tenth of the cache size. Some of these base-
configuration parameters were varied to conduct sensitivity studies;
we discuss our variation of these parameters in relevant sections.

We ran experiments to compare ENWRICH with traditional
caching, using data-transfer throughput as a metric.4 Each experi-
ment was repeated five times, and results averaged, to account for
disk-layout and network randomness.

Workload. Most of our experiments used synthetic access
patterns that were derived from different modes of distributing
two-dimensional matrices in CP memories, as suggested by those
available in High Performance Fortran [15, 10] (Figure 3, adapted
from [19]). Elements in each dimension of a multidimensional array
could be mapped fully in one CP (denoted as NONE), distributed
in contiguous segments among the CPs (BLOCK5), or distributed

4ENWRICH cache size was larger than that of TC. TC would not benefit from a
larger cache due to lack of temporal locality in our workload. Moreover, Figure 6 shows
that ENWRICH outperformed TC even when the total cache sizes were almost equal.

5“BLOCK” here represents simply a name for a mapping, and is distinct from a
file-system block.

I/O Processor

barrier ();

while (not received directories from all CPs)
 accumulate directories received from the CPs;
endwhile;

Perform consistency check by sorting and

Form a list of blocks that need to be written to the

for each (block in the list)

 request data from relevant CPs;

send "done" message to all CPs;

 process relevant directory entries;

Compute Processor

barrier ();

for each (IOP)

 send relevant part of

endfor;

while (not received "done" messages

endwhile;

 service data requests from

 when all data is received issue disk write;

endfor;

reset data and directory pointers

 the directory;

 from all IOPs)

 different IOPs;

 in cache;

 comparing directory entry timestamps;

 disk and re-order them according to physical
 layout;

Figure 2: Events during a flush operation at the Compute and I/O processors. The flush operation begins in response to interrupts
broadcast from the CP that is causing the flush.

in a round-robin fashion among the CPs (CYCLIC). We named the
patterns in a shorthand notation starting with w for write, followed
by the first letter of the mapping pattern for the first dimension, and
then the first letter of the mapping pattern for the second dimension
(e.g., in this system a 2-d array mapped NONE in the first dimension
and CYCLIC in the second dimension would be called wnc).

For some experiments we wrote a single file that contained a sin-
gle 2-d array mapped in the CPs in one of the above patterns. For
some experiments we used another pattern named wss (for Write
Synchronous Sequential). For this pattern, the array layout was
NONE-CYCLIC, but the CPs requested corresponding chunks syn-
chronously. This pattern was abundant in CMMD programs [31].

Our studies show that some jobs write to two files at the same
time [31]. To capture the flavor of such a scenario, we devised pat-
terns for experiments where CPs simultaneously wrote two differ-
ent arrays with different mappings that were output to two different
files on disk. We experimented with a few combinations of simple
patterns, and the order in which one CP wrote chunks belonging two
arrays was arbitrarily set to round-robin. The shorthand names we
use for these patterns start with w for write, followed by r for round-
robin, followed by the abbreviations for the simple patterns (e.g., a
pattern with two arrays mapped in NONE-BLOCK and BLOCK-
NONE fashion that were output to two different files was named
wrnbbn). The patterns that we actually used for this paper were
wrnnbb, wrnncc, wrnbbn, and wrbccb.

It is also common for multiprocessors to have separate partitions
that run different jobs at the same time. These partitions often share
the same I/O subsystem that services requests from jobs running in
different partitions simultaneously. Again, to roughly model such a

scenario, we devised patterns in which we essentially had half the
CPs writing out an array in some simple pattern to one file, and an-
other half writing out yet another array in a possibly different pat-
tern, to a different file. The actual interleaving of requests gener-
ated was determined by the way Proteus scheduled the CP threads
to run. We named the patterns like the round-robin ones, but sim-
ply changed the letter r to p to indicate partition (e.g., if two dif-
ferent CP groups wrote two arrays mapped in NONE-BLOCK and
BLOCK-NONE fashion, the pattern was called wpnbbn). The pat-
terns that we actually used were wpnnbb, wpnncc, wpnbbn, and wp-
bccb.

We chose three different record sizes. Experiments with an 8-
byte record size (size of a double-precision floating point number)
investigated system performance at one extreme with tremendous
contention and interprocess locality. Experiments with an 8192-
byte record size (size of a file-system block) exercised the system
at another extreme where there was minimal contention and inter-
process locality. Experiments with a 512-byte record size reflect a
“popular” range of request sizes [31].

The synthetic patterns described above helped us explicitly
control the experiments and answer questions such as why perfor-
mance of both TC and ENWRICH varied from pattern to pattern
in different configurations. For a more realistic comparison we
also experimented with a workload derived from some of the
traces we collected in [31]. Section 5.3 describes the trace-driven
experiments in more detail.

File and Disk Layout. We used an 8-KB file-system block
size in all the experiments. Each file was striped, at block granu-

NONE-NONE

cs = 64

NONE-BLOCK NONE-CYCLIC BLOCK-NONE

cs = 16

BLOCK-BLOCK

cs = 2 s = 8 cs = 1 s = 4

BLOCK-CYCLIC

cs = 1 s = 2

CYCLIC-NONE

cs = 8 s = 32

CYCLIC-BLOCK

cs = 4 s = 16

CYCLIC-CYCLIC

0
0

1
2

3

0
1

2
3

0
1

0

1

2

3

0 1

2 3

0

1

0

1

0

1

0

1

2

3

2

3

2

3

2

3

0
1

2
3

0
1

2
3

0
2

0
2

0
2

0
2

1
3

1
3

1
3

1
3

0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 0 0 01 1 1 1
2 2 2 23 3 3 3
0 0 0 01 1 1 1
2 2 2 23 3 3 3
0 0 0 01 1 1 1
2 2 2 23 3 3 3

3
2

cs = 4 s = 8

cs = 4 s = 2 , 10

Figure 3: 2-d array patterns that represent several ways of distributing an 8x8 matrix over four processors as suggested in HPF.
Patterns are named by the distribution method (NONE, BLOCK, or CYCLIC) in each dimension. Each region of the matrix is
labeled with the number of the CP that it gets mapped to. The chunk size (cs) is the largest contiguous chunk of the file that is
sent to a single CP (in units of array elements), and the stride (s) is the file distance between the beginning of one chunk and the
beginning of the next chunk mapped to the same CP, where relevant.

larity, across all disks. The arrays were stored in row-major order
within the files. The total amount of data written in most synthetic
experiments was 64 MB. For two-file experiments we wrote two
files of 32 MB each. We experimented with larger and smaller files
but found no qualitative changes in our results. The 64 MB data size
appeared to be a good compromise that saved us simulation time but
still caused a significant number of cache flushes in ENWRICH ex-
periments. For some patterns with 8-byte records we used file sizes
of 8 MB for both TC and ENWRICH experiments to save excessive
simulation time.

We experimented with two extreme disk layout policies: con-
tiguous, where logically consecutive file blocks were actually
mapped on the disk in a physically consecutive manner; and ran-
dom, where files blocks were placed on random physical locations
on the disk. Kotz in [19] asserts that a real system would have a
layout intermediate between the two and would have intermediate
performance.

5 Results

In this section we first study ENWRICH and Traditional Caching
(TC) performance on the base configuration described in section
4.1. We then investigate how the systems respond to various
changes to the parameters in our base-configuration. Finally, we
compare the systems using some traces collected from a production
workload.

5.1 Base-configuration Experiments

Figures 4 and 5 compare the performance of ENWRICH with
the traditional caching method for 8192-byte, 512-byte and 8-byte
record sizes. ENWRICH was almost always faster than TC. Indeed

in one case it was up to 13 times faster.
Figure 4 compares TC and ENWRICH in a random-blocks disk

layout. For 8192-byte and 512-byte record sizes ENWRICH al-
most always reached throughputs between 7 and 8 MB/s, while the
highest TC could reach was 5.3 MB/s. The only pattern where TC
was faster than ENWRICH was the NONE-NONE pattern, which
was heavily biased against ENWRICH. In this pattern, all data is
mapped to one CP. Thus, even with 16 CPs and a 1 MB cache per
CP, the effective total ENWRICH write cache size for the whole
system was reduced to just 1 MB. Hence ENWRICH caused a
whopping 72 cache flushes to write out the 64 MB file, instead of
just 5 flushes as in most other cases. On the other hand, when
we diluted the pure NONE-NONE pattern with another pattern like
BLOCK-BLOCK or CYCLIC-CYCLIC in two-array experiments
such as wrnnbb and wpnncc — where still half the data (32 MB)
is mapped to one CP and the other half mapped to all CPs — EN-
WRICH performed better than TC. Hence, even in a scenario where
one CP monopolized half the data in the system, ENWRICH per-
formed better than TC. We also found that both ENWRICH and
TC had difficulty with some patterns for 8-byte record sizes. For
patterns like wnc, wcc, and wpnncc, I/O took place in small 8-
byte chunks. In such cases, while TC suffered badly due to intense
buffer contention problems, ENWRICH inherited DDIO overhead
for transferring 8-byte chunks from CPs [19] and also caused exces-
sive directory flushes. A directory flush was an undesirable situation
where a flush occurred because there was no space to write meta-
data. With 8-byte I/O, the CP stored 24 bytes of directory metadata
for each 8 bytes of real data. Hence, each flush actually transferred
little real data to disk, requiring many directory flushes. Even with
such disadvantages, ENWRICH almost always performed at par or
better than TC, although not quite as well as pure DDIO [19] wher-
ever DDIO could be applied.

0 2 4 6 8

Throughput (MB/s)

wpbccb

wpnbbn

wpnnbb

wpnncc

wrbccb

wrnbbn

wrnnbb

wrnncc?

wss

wcc

wcb

wcn

wbc

wbb

wbn

wnc

wnb

wnn

a) 8192-byte records

Traditional Caching
ENWRICH

0 2 4 6 8

Throughput (MB/s)

wpbccb

wpnbbn

wpnnbb

wpnncc

wrbccb

wrnbbn

wrnnbb

wrnncc

wss

wcc

wcb

wcn

wbc

wbb

wbn

wnc

wnb

wnn

b) 512-byte records

0 2 4 6 8

Throughput (MB/s)

_wpbccb?

wpnbbn

wpnnbb

_wpnncc?

_wrbccb

wrnbbn

wrnnbb

_wrnncc?

_wss

_wcc

wcb

wcn

_wbc?

wbb

wbn

_wnc?

wnb

wnn

c) 8-byte records

Figure 4: Graphs comparing the throughput of ENWRICH to that of traditional caching with a random disk layout for three record
sizes. The 8-byte patterns starting with an underscore used a file size of 8 MB instead of 64 MB. Each bar represents the average of
five independent trials (maximum coefficient of variation was 0.16). Results for all patterns except the ones ending with a question
mark were statistically significant at the 95% confidence level.

0 10 20 30

Throughput (MB/s)

wpbccb

wpnbbn

wpnnbb

wpnncc

wrbccb

wrnbbn

wrnnbb

wrnncc

wss

wcc

wcb

wcn

wbc

wbb

wbn

wnc

wnb

wnn

a) 8192-byte records

Traditional Caching
ENWRICH

0 10 20 30

Throughput (MB/s)

wpbccb

wpnbbn

wpnnbb

wpnncc

wrbccb

wrnbbn

wrnnbb

wrnncc

wss

wcc

wcb

wcn

wbc

wbb

wbn

wnc

wnb

wnn

b) 512-byte records

0 10 20 30

Throughput (MB/s)

_wpbccb

wpnbbn

wpnnbb

_wpnncc

_wrbccb

wrnbbn

wrnnbb

_wrnncc

_wss

_wcc

wcb

wcn

_wbc

wbb

wbn

_wnc

wnb

wnn

c) 8-byte records

Figure 5: Graphs comparing the throughput of ENWRICH to that of traditional caching with contiguous disk layout for three
record sizes. The 8-byte patterns starting with an underscore used a file size of 8 MB instead of 64 MB. Each bar represents the
average of five independent trials (maximum coefficient of variation was 0.14). All results were statistically significant at the 95%
confidence level.

Although disk-layout strategies are not the focus of this work,
we wanted to test system performance with a contiguous layout,
the opposite extreme of a random-blocks layout. Figure 5 sum-
marizes the results of our experiments. With this layout, higher
throughputs were obtained for both TC and ENWRICH, but EN-
WRICH exploited the advantages of a contiguous disk layout much
more than TC could. For a large majority of cases, ENWRICH
reached throughputs in the range of 30 MB/s (80% of the peak disk
throughput of 37.5 MB/s), and for some favorable cases it reached
34.1 MB/s (91% of the peak disk throughput). For a few tests with
favorable patterns and record sizes, TC also reached 34.1 MB/s,
but for a large majority of patterns and record-sizes, TC through-
put hovered around 9-10 MB/s (25% of the peak disk through-
put). As in the random layout, TC performed markedly better
than ENWRICH for the wnn pattern. Again, when the wnn pat-
tern was diluted with another array distributed as BLOCK-BLOCK
or CYCLIC-CYCLIC (bringing the data distribution a little closer
to reality), ENWRICH outperformed TC comfortably. For reasons
discussed in the random-blocks layout case, for some patterns such
as wcc, wpbccb, with 8-byte record sizes, ENWRICH lost perfor-
mance significantly. It still performed at par with TC but worse than
DDIO [19]. Except for the wnn pattern, in the few other cases where
ENWRICH performed worse than TC, it was never worse by more
than 5%.

TC lost performance for a few important reasons. For pat-
terns like wcn, there was little interprocess spatial locality. For 8-
byte cyclic patterns, buffer contention increased tremendously and
brought TC performance down appreciably. In general, higher data
rates in the contiguous layout exposed the cache-management over-
head as a bottleneck in TC. TC appeared to have suffered most with
two-array patterns. For all two-array patterns and all record sizes,
its throughput never exceeded 12 MB/s, and the average was less
than 9 MB/s. Multiple per-file localities hurt IOP caching and disk-
access locality in these cases.

For reasons quite different than the above, ENWRICH also
failed to deliver high-performance in some cases. For wnn EN-
WRICH failed due to effective reduction of the overall write-cache
size to just 1 MB. For certain 8-byte patterns, ENWRICH failed due
to metadata overhead. For some patterns, like wbn, ENWRICH per-
formed twice as well as TC but could not deliver more than 20 MB/s
because of an imbalance in the per-IOP block distribution during
each flush. In ENWRICH, the delay in a flush phase was determined
by the slowest IOP: if all IOPs had n blocks to flush but one had
n + 4 blocks to flush, the flush operation did not end until that IOP
had transferred n+4 blocks. Additional IOP buffering could elim-
inate the impact of some load imbalances.

ENWRICH succeeded in a critical way. Without new and un-
usual interfaces, an issue that the parallel-I/O community is still
debating, ENWRICH often delivered more than 80% of the disk-
bandwidth in our experiments with contiguous disk layout. The per-
formance upper bound for ENWRICH was DDIO, wherever DDIO
was applicable. This makes sense, because ENWRICH incurs all
the DDIO overheads as well as the CP cache-management and flush
overheads.

5.2 Sensitivity Study

Figure 6 shows the performance variation of ENWRICH with dif-
ferent sizes of the per-CP cache. We kept the parameters in our
base configuration fixed except for the per-CP cache size, which
was set at 0.25 MB, 0.5 MB, 1 MB, and 2 MB for four sets of ex-
periments. The directory fraction (part of the total cache reserved
for metadata) was kept constant at one-tenth. Even with a 0.25 MB
per-CP cache, ENWRICH performance was markedly better than
TC performance in the same configuration for most patterns. EN-

WRICH performance increased with increasing per-CP cache size
mainly because fewer flushes were caused and because there were
more blocks per flush operation over which each IOP could opti-
mize disk-I/O. For most patterns, the percent performance increase
with increasing cache size declined as cache sizes were successively
doubled from 0.25 MB to 2 MB. This was caused by an increase in
per-flush directory overhead on the IOPs. Patterns like wnc, wbc,
wcc, and wss— which generated more directory entries for the same
amount of data than patterns like wbn, wcn, and wbb— exhibited di-
minishing returns with increasing cache size.

Figure 7 shows performance of ENWRICH and TC when vary-
ing the number of CPs. The numbers of IOPs and disks were kept
constant at 16. The IOP cache size for traditional caching was two
buffers per CP per disk. The ENWRICH cache size was 1 MB per
CP. The total cache size increased with the number of CPs in both
systems. We used the contiguous disk layout and 8192-byte record
sizes. We chose to illustrate only selected patterns from different
sets such as 1-array patterns, 2-array round-robin patterns, and 2-
array partition patterns. A sensitivity study on all patterns was not
feasible, but we believe that these patterns, in general, were able to
capture all the nuances. With TC, performance in general fell off
with an increasing number of CPs (there were some exceptions that
showed a slight performance increase from 4 to 8 CPs). For two pat-
terns, TC showed tremendous performance for a 1-CP system, but
they degraded sharply as the number of CPs increased. The gen-
eral degradation of TC performance with increasing number of CPs
can be attributed to greater contention involving multiple CPs and
greater cache-management overhead with increasing cache size on
the IOP and less disk locality. ENWRICH performance usually fell
from a 1-CP to a 2-CP system. Apparently, the benefit obtained by
having a bigger overall cache with the 2-CP system was offset by in-
creased synchronization overhead in the flush phase with the 2-CP
system compared with the 1-CP system. For larger systems, how-
ever, ENWRICH performance scaled fairly well with an increasing
number of CPs, and hence increasing overall cache size. The benefit
from increasing total cache size and the resulting decreasing number
of flushes seemed to outweigh the increased cost of synchronization
at each flush in systems with more than 2 CPs.

We also varied the number of IOPs, keeping the number of CPs
and disks fixed at 16, and keeping the total cache size for both TC
and ENWRICH constant (Figure 8). For a 1-IOP system with 16
disks serviced by just the one SCSI bus, ENWRICH and TC per-
formed at par in the 8-9 MB/s range (peak throughput was limited to
10 MB/s by the bus bandwidth). With more IOPs and hence fewer
disks per IOP, performance of both ENWRICH and TC improved
but ENWRICH improved much more dramatically over TC. EN-
WRICH seemed to take better advantage of the reduced bus con-
tention than TC. Apparently, TC performance was limited by the
multiple disk localities seen in most of these patterns. For patterns
like wnc, which did not have multiple localities, TC performance
scaled with the number of IOPs.

Finally, we varied the number of disks, keeping the number of
CPs fixed at 16 and the number of IOPs fixed at 8 (Figure 9). We
tried configurations with 8, 16, 24, 32, and 40 disks, that is, the num-
ber of disks per IOP varied from 1 to 5. The IOP cache size for
TC was 2 buffers per CP per disk, which increased with the number
of disks in the system. The per-CP cache size for ENWRICH was
kept constant. Performance of both systems scaled with number
of disks, but ENWRICH achieved throughputs as high as 46 MB/s
with 5 disks/IOP, where TC could only achieve about 25 MB/s for
the same configuration. The ENWRICH performance gain for the
pattern wpnncc was worse than other patterns because the benefit
from a larger number of disks was offset by mapping 32 MB of data
to just one CP. Similar results were obtained using the random lay-
out (Figure 10), although the throughput values were much lower.

wsswccwcbwcnwbcwbbwbnwncwnbwnn
0

5

10

15

20

25

30

35

40

T
hr

ou
gh

pu
t (

M
B

/s
)

TC
ENWRICH, cache size 0.25 MB/CP
ENWRICH, cache size 0.5 MB/CP
ENWRICH, cache size 1.0 MB/CP
ENWRICH, cache size 2.0 MB/CP

a) 1-array patterns

wrnncc wrnnbb wrnbbn wrbccb wpnncc wpnnbb wpnbbn wpbccb
0

5

10

15

20

25

30

35

40

T
hr

ou
gh

pu
t (

M
B

/s
)

TC
ENWRICH, cache size 0.25 MB/CP
ENWRICH, cache size 0.5 MB/CP
ENWRICH, cache size 1.0 MB/CP
ENWRICH, cache size 2.0 MB/CP

b) 2-array patterns

Figure 6: Graphs showing ENWRICH performance for various per-CP cache sizes for 1-array and 2-array patterns, compared
with TC performance. All experiments used contiguous disk layout, 8192-byte records, 64 MB files, and 16 each of CP, IOP, and
disks.

5.3 Trace-driven Experiments

In this section we describe results obtained by driving both EN-
WRICH and TC with traces obtained from a workload study on the
CM-5 at the NCSA [31]. We had to make some significant com-
promises in using the traces. First, due to hardware limitations we
could not simulate multiprocessors with a large number of nodes,
which limited us to using traces only from jobs that ran on 32-node
partitions (the next bigger partition was 64 nodes, which was too big
for our simulations). Second, our current ENWRICH implementa-
tion only has a write interface, limiting us to use traces from jobs
that only wrote to files. Third, we had to exclude jobs that wrote
files larger than 2 GB because our simulator could only handle 4-
byte file offsets. Write requests were sorted in increasing time or-
der, and a proportional number of simulator cycles were added be-
tween two write requests to represent computational delay that was
derived from the traces.

The traces included several self-selecting CMMD jobs, and
most CMF jobs. For logistical convenience, traces were pre-

processed and coalesced from selected CMMD jobs into one trace
called cmmd, and from selected CMF jobs into three traces called
cmf1, cmf2, and cmf3. These jobs mirrored certain observations
made in [31]: the average write-request size was small (they var-
ied between 500 and 1200 bytes for the four files), and CMMD files
were, on average, an order of magnitude larger than CMF files. We
used 32 CPs, 16 IOPs, 16 disks, and a 7-by-7 bidirectional torus in-
terconnect in all the experiments. The write-cache size per CP for
ENWRICH was fixed at 1 MB. ENWRICH outperformed TC com-
fortably in all the cases (Table 1). ENWRICH performance was as
high as 28.1 MB/s (about 74.9% of peak disk throughput), and in
the worst case was 20.5 MB/s (57.6% of peak disk throughput). In
contrast, the best performance of TC was only 13.8 MB/s (36.8%
of peak disk throughput). There were no directory flushes with EN-
WRICH, like those we experienced for certain 8-byte patterns in
synthetic experiments. The average request size was small (a few
hundred bytes), which seemed to hurt TC performance much more
than ENWRICH performance. The request sizes were not so small
as to cause excessive metadata overhead in ENWRICH.

1 2 4 8 16 32

Number of CPs

0

5

10

15

20

25

30

35

T
hr

ou
gh

pu
t (

M
B

/s
)

ENWRICH wbb
ENWRICH wcc
ENWRICH wrnbbn
ENWRICH wrbccb
ENWRICH wpnncc
TC wbb
TC wcc
TC wrnbbn
TC wrbccb
TC wpnncc

Figure 7: Graph showing performance variations of ENWRICH and TC with a changing number of CPs for some patterns. The
number of IOPs and disks were kept at 16. All experiments used contiguous disk layout, 8192-byte records, and 64 MB files.
Per-CP cache size for ENWRICH experiments was fixed at 1 MB.

Trace TC ENWRICH
name throughput throughput

in MB/s in MB/s
cmmd 13.8 28.1
cmf1 10.5 20.5
cmf2 9.6 22.3
cmf3 8.0 21.6

Table 1: Table showing performance of ENWRICH and TC driven
by traces of some CMMD and CMF jobs that ran on a CM-5.

6 Conclusions and Future Work

Writes to checkpoint files, output files and intermediate result files
are common and important activities in a multiprocessor file-system
workload. We propose a compute-processor write-caching tech-
nique that essentially collects a large number of writes and flushes
them to the disk intermittently using the high-performance disk-
directed I/O technique. Qualitatively, our design allows disk-
directed I/O to be used with any interface for writes. Quantita-
tively, it provides an opportunity for disk-directed I/O to optimize
disk-write operations not only over one large request but over many
requests from one or more jobs. Also, as positive side-effects,
our design dramatically reduces per-write latency compared to a
traditional-caching system, and overlaps coherency checking with
useful work that eliminates extra disk I/O.

A smart disk scheduler could improve TC performance, but it
is still unlikely to match ENWRICH because the scheduler could
only make optimization decisions over a few blocks. Disk-directed
I/O increases the I/O processor’s knowledge about the sequence of
blocks involved in one collective request, and ENWRICH goes fur-
ther by increasing the knowledge of the IOP to span many requests.
In ENWRICH, once the compute-processor (CP) caches accumu-
late a lot of data and decide to do a flush, the “disk-directed” I/O

processors (IOPs) form a distributed disk scheduler. ENWRICH is
also scalable, in that it avoids pulling all the data over to the IOPs
until it is needed, which is critical if IOP memories are smaller than
the total CP cache, a likely scenario in systems with many CPs.

Our experiments show that, overall, ENWRICH yields high per-
formance. In many cases it yielded two to three times the through-
put of TC and in one case it yielded 13 times as much. It was sub-
stantially slower than TC only in one pattern when using the con-
tiguous layout (wnn). ENWRICH did, however, suffer from meta-
data overhead for some 8-byte patterns that brought its performance
down to the level of TC. A more tuned implementation of EN-
WRICH with dynamically partitioned caches, however, should im-
prove ENWRICH performance for such small writes. It is also note-
worthy that writes so small are rare in representative workloads, and
when they do exist they usually transfer a small overall fraction of
the data, unlike our experiments where they transferred all the data.
Our trace-driven experiments, although derived from only a portion
of the workload, do indicate that ENWRICH can sustain high per-
formance under a realistic workload with a mix of files and jobs.

Here we have designed and evaluated only a first-generation
system. We need more thorough evaluation that can simulate big-
ger systems to ascertain the scalability issue. Currently we can only
simulate 32-CP systems, due to memory limitations. Implemen-
tation of ENWRICH on a real machine and evaluation of its per-
formance under real applications are important future goals. The
design of ENWRICH is certainly optimizable in many ways that
include dynamic distribution of per-CP cache space between data
and metadata, allowing other concurrent activities at the CP dur-
ing a flush, and processing received directories at the IOP while
waiting for outstanding directories. Integration of ENWRICH with
read caches is also necessary for its use in production systems.
Gather/scatter message passing, by reducing the number of network
messages, might help ENWRICH to adapt to cluster file systems
with slower interconnects.

1 2 4 8 16

Number of IOPs

0

5

10

15

20

25

30

35

T
hr

ou
gh

pu
t (

M
B

/s
)

#

#

#

#

#

#

#

#

#
#

ENWRICH wnc
ENWRICH wbb
ENWRICH wcc
ENWRICH wrnbbn
ENWRICH wrbccb
ENWRICH wpnncc

TC wnc
TC wbb
TC wcc
TC wrnbbn
TC wrbccb
TC wpnncc

Figure 8: Graph showing performance variations of ENWRICH and TC with changing number of IOPs for some patterns. The
number of CPs and disks were kept at 16. All experiments used a contiguous disk layout, 8192-byte records, and 64 MB files.
Per-CP cache size for ENWRICH experiments was fixed at 1 MB.

Acknowledgments

Many thanks to Sid Chatterjee at UNC for allowing the use of their
DEC 5000 compute server; to Jeff Chase at Duke for allowing us to
test the early versions of our simulator on his lab machine; to Song
Bac Toh and Sriram Radhakrishnan at Dartmouth for implementing
and validating the disk model; to Gershon Kedem, Tom Alexander,
and Surendar Chandra at Duke for many helpful discussions; and to
our shepherd Denise Ecklund for guiding the paper through its final
stages.

References

[1] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson,
D. S. Roselli, and R. Y. Wang. Serverless network file sys-
tems. In Proceedings of 15th ACM Symposium on Operating
Systems Principles, pages 109–126. Association for Comput-
ing Machinery SIGOPS, December 1995.

[2] Mary Baker, Satoshi Asami, Etienne Deprit, John Ousterhout,
and Margo Seltzer. Non-Volatile memory for fast, reliable
file systems. In Proceedings of the 5th International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, pages 10–22, 1992.

[3] Michael L. Best, Adam Greenberg, Craig Stanfill, and
Lewis W. Tucker. CMMD I/O: A parallel Unix I/O. In
Proceedings of the Seventh International Parallel Processing
Symposium, pages 489–495, 1993.

[4] Prabuddha Biswas, K.K. Ramakrishnan, and Don Towsley.
Trace driven analysis of write caching policies for disks. In
Proceedings of the ACM SIGMETRICS, pages 13–23, 1993.

[5] Rajesh Bordawekar, Alok Choudhary, and Juan Miguel Del
Rosario. An experimental performance evaluation of Touch-
stone Delta Concurrent File System. In Proceedings of the

7th ACM International Conference on Supercomputing, pages
367–376, 1993.

[6] Eric A. Brewer, Chrysanthos N. Dellarocas, Adrian Colbrook,
and William E. Weihl. Proteus: A high-performance parallel-
architecture simulator. Technical Report MIT/LCS/TR-516,
MIT, September 1991.

[7] Peter Corbett, Dror Feitelson, Sam Fineberg, Yarsun Hsu, Bill
Nitzberg, Jean-Pierre Prost, Marc Snir, Bernard Traversat, and
Parkson Wong. Overview of the MPI-IO parallel I/O inter-
face. In IPPS ’95 Workshop on Input/Output in Parallel and
Distributed Systems, pages 1–15, April 1995.

[8] Peter F. Corbett, Dror G. Feitelson, Jean-Pierre Prost, and San-
dra Johnson Baylor. Parallel access to files in the Vesta file sys-
tem. In Proceedings of Supercomputing ’93, pages 472–481,
1993.

[9] Thomas H. Cormen and David Kotz. Integrating theory
and practice in parallel file systems. In Proceedings of the
1993 DAGS/PC Symposium, pages 64–74, Hanover, NH, June
1993. Dartmouth Institute for Advanced Graduate Studies.
Revised from Dartmouth PCS-TR93-188.

[10] Juan Miguel del Rosario, Rajesh Bordawekar, and Alok
Choudhary. Improved parallel I/O via a two-phase run-time
access strategy. In IPPS ’93 Workshop on Input/Output in Par-
allel Computer Systems, pages 56–70, 1993. Also published
in Computer Architecture News 21(5), December 1993, pages
31–38.

[11] R. Floyd. Short-term file reference patterns in a UNIX envi-
ronment. Technical Report 177, Dept. of Computer Science,
Univ. of Rochester, March 1986.

[12] N. Galbreath, W. Gropp, and D. Levine. Applications-driven
parallel I/O. In Proceedings of Supercomputing ’93, pages
462–471, 1993.

8 16 24 32 40

Number of disks

0

5

10

15

20

25

30

35

40

45

50

T
hr

ou
gh

pu
t (

M
B

/s
)

ENWRICH wbb
ENWRICH wcc
ENWRICH wrnbbn
ENWRICH wrbccb
ENWRICH wpnncc
TC wbb
TC wcc
TC wrnbbn
TC wrbccb
TC wpnncc

Figure 9: Graph showing performance variations of ENWRICH and TC for some patterns, varying the number of disks and using
a contiguous layout. There were 16 CPs and 8 IOPs in all the experiments. The ENWRICH cache size was fixed at 1 MB per CP.

[13] Garth A. Gibson, Daniel Stodolsky, Pay W. Chang, William V.
Courtwright II, Chris G. Demetriou, Eka Ginting, Mark Hol-
land, Qingming Ma, LeAnn Neal, R. Hugo Patterson, Jiawen
Su, Rachad Youssef, and Jim Zelenka. The Scotch parallel
storage systems. In Proceedings of 40th IEEE Computer So-
ciety International Conference (COMPCON 95), pages 403–
410, San Francisco, Spring 1995.

[14] John H. Hartman and John K. Ousterhout. The Zebra striped
network file system. In Proceedings of the Fourteenth ACM
Symposium on Operating Systems Principles, pages 29–43,
1993.

[15] High Performance Fortran Forum. High Performance Fortran
Language Specification, 1.0 edition, May 1993.

[16] Jay Huber, Christopher L. Elford, Daniel A. Reed, Andrew A.
Chien, and David S. Blumenthal. PPFS: A high performance
portable parallel file system. In Proceedings of the 9th ACM
International Conference on Supercomputing, pages 385–394,
Barcelona, July 1995.

[17] Concurrent I/O application examples. Intel Corporation Back-
ground Information, 1989.

[18] David Kotz. Multiprocessor file system interfaces. In Pro-
ceedings of the Second International Conference on Parallel
and Distributed Information Systems, pages 194–201, 1993.

[19] David Kotz. Disk-directed I/O for MIMD multiprocessors.
In Proceedings of the 1994 Symposium on Operating Systems
Design and Implementation, pages 61–74, November 1994.
Updated as Dartmouth TR PCS-TR94-226 on November 8,
1994.

[20] David Kotz. Disk-directed I/O for an out-of-core computa-
tion. In Proceedings of the Fourth IEEE International Sym-
posium on High Performance Distributed Computing, pages
159–166, August 1995.

[21] David Kotz. Expanding the potential for disk-directed I/O.
In Proceedings of the 1995 IEEE Symposium on Parallel and
Distributed Processing, pages 490–495, October 1995.

[22] David Kotz. Interfaces for disk-directed I/O. Technical Re-
port PCS-TR95-270, Dept. of Computer Science, Dartmouth
College, September 1995.

[23] David Kotz and Carla Schlatter Ellis. Caching and writeback
policies in parallel file systems. Journal of Parallel and Dis-
tributed Computing, 17(1–2):140–145, January and February
1993.

[24] David Kotz and Nils Nieuwejaar. Dynamic file-access charac-
teristics of a production parallel scientific workload. In Pro-
ceedings of Supercomputing ’94, pages 640–649, Nov 1994.

[25] David Kotz, Song Bac Toh, and Sriram Radhakrishnan. A de-
tailed simulation model of the HP 97560 disk drive. Techni-
cal Report PCS-TR94-220, Dept. of Computer Science, Dart-
mouth College, July 1994.

[26] Nils Nieuwejaar and David Kotz. Low-level interfaces for
high-level parallel I/O. In IPPS ’95 Workshop on Input/Output
in Parallel and Distributed Systems, pages 47–62, April 1995.

[27] Nils Nieuwejaar, David Kotz, Apratim Purakayastha,
Carla Schlatter Ellis, and Michael Best. File-access charac-
teristics of parallel scientific workloads. Technical Report
PCS-TR95-263, Dept. of Computer Science, Dartmouth
College, August 1995. Submitted to IEEE TPDS.

8 16 24 32 40

Number of disks

0

5

10

15

20

T
hr

ou
gh

pu
t (

M
B

/s
)

ENWRICH wbb
ENWRICH wcc
ENWRICH wrnbbn
ENWRICH wrbccb
ENWRICH wpnncc
TC wbb
TC wcc
TC wrnbbn
TC wrbccb
TC wpnncc

Figure 10: Graph showing performance variations of ENWRICH and TC for some patterns, varying the number of disks and using
a random-blocks layout. There were 16 CPs and 8 IOPs in all the experiments. The ENWRICH cache size was fixed at 1 MB
per CP.

[28] Bill Nitzberg. Performance of the iPSC/860 Concurrent File
System. Technical Report RND-92-020, NAS Systems Divi-
sion, NASA Ames, December 1992.

[29] J. Ousterhout, H. DaCosta, D. Harrison, J. Kunze, M. Kupfer,
and J. Thompson. A trace driven analysis of the UNIX 4.2
BSD file system. In Proceedings of 10th Symposium on Op-
erating System Principles, pages 15–24, December 1985.

[30] James Pool. Preliminary survey of I/O intensive applications.
Technical Report CCSF-38, Caltech Concurrent Supercom-
puting Facilities, January 1994.

[31] A. Purakayastha, Carla S. Ellis, David Kotz, Nils Nieuwejaar,
and Michael Best. Characterizing parallel file-access patterns
on a large-scale multiprocessor. In Proceedings of the Interna-
tional Parallel Processing Symposium, pages 165–172, April
1995.

[32] Mendel Rosenblum and John K. Ousterhout. The design and
implementation of a log-structured file system. ACM Trans-
actions on Computer Systems, 10(1):26–52, February 1992.

[33] Chris Ruemmler and John Wilkes. An introduction to disk
drive modeling. IEEE Computer, 27(3):17–28, March 1994.

