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Abstract

Determining whether a client station should trust an access point is a known problem in wireless
security. Traditional approaches to solving this problem resort to cryptography. But cryptographic
exchange protocols are complex and therefore induce potential vulnerabilities in themselves. We
show that measurement of clock skews of access points in an 802.11 network can be useful in this
regard, since it provides fingerprints of the devices. Such fingerprints can be used to establish the
first point of trust for client stations wishing to connect to an access point. Fingerprinting can also
be used in the detection of fake access points.

We demonstrate deficiencies of previously studied methods that measure clock skews in 802.11
networks by means of an attack that spoofs clock skews. We then provide means to overcome those
deficiencies, thereby improving the reliability of fingerprinting. Finally, we show how to perform the
clock-skew arithmetic that enables network providers to publish clock skews of their access points
for use by clients.

1 Introduction

Clock skews are the inherent tiny drifts in the clocks of hardware devices due to variations in the man-
ufacturing process. The use of clock skews of devices on a network for the purpose of fingerprinting
those devices was first studied by Kohno, Broido, and Claffy [15]. They showed that it was possible to
remotely measure the microscopic skews of devices, and that their fingerprinting method could identify
individual devices despite errors inherent in remote measurements. Such fingerprinting has innumerable
applications. For instance it is useful from the point of view of network forensics for identification pur-
poses. It is also useful in penetration testing to identify network systems to know their weaknesses (e.g.,
the method of Kohno et al. can be used to identify virtual hosts served by the same physical device).

The study of Kohno et al. focused on the measurement of skews in wide-area networks by observing
timestamps in TCP and ICMP packets. On the wireless side, Jana and Kasera [14] studied the approach
of Kohno et al. at the MAC layer of 802.11 networks. They observed that, due to the essentially zero
latency and the availability of a high frequency stream of high precision beacon timestamps, the process
of measuring clock skews became more accurate and effective in these networks. They also showed
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that the clock skews of wireless devices remain consistent over time and changing external factors like
temperature, and that the skews vary across devices.

In the past, research on security of wireless networks centered around securing access points (APs)
from unauthorized malicious clients, since APs were deemed vulnerable, exposed entities. But advances
in wireless security using authentication have mitigated the threat of unauthorized access. Because APs
are managed by the network provider, their security could be managed centrally, and care can be taken
to ensure known vulnerabilities do not remain. There has since been a shift in the focus of attention
towards protecting clients in wireless networks. An important threat in this respect is from faked APs.

The main application considered by Jana and Kasera [14] was that of detecting fake APs. Today,
tools like rglueap and rfakeap [2] are readily available that make it easy for an attacker to set-up
an AP that fakes a real one. Identifying fields in 802.11 frames like MAC address, BSSID, and SSID
can be easily set to values desired by the attacker. A client attempting to associate with the real AP
can be diverted to the fake AP, thus becoming vulnerable to various kinds of attacks. As pointed out
before [13, 14], the attacker may also attempt to avoid detection of the fake AP by either operating on a
channel different from the real AP, or by providing a higher signal strength to the client.

Our contributions

In this work we show how previous methods for measuring clock skews are inadequate for fingerprinting
and provide a means to overcome the problems that arise. Our work provides new insights into the
implementation of the 802.11 standard in commodity hardware. In particular, we present

• a new method to measure clock skew, rather, a more precise clock to measure it against;

• an attack that spoofs the clock skew of a fake AP to mimic that of a real one, thereby rendering
the two indistinguishable by the methods proposed previously;

• additional parameters to measure the authenticity of the skew, enabling the detection and mitiga-
tion of spoofing attempts;

• clock skew arithmetic, that enables a network provider to publish skews of APs in the network
independent of client stations.

2 The Role of Fingerprinting in Securing Wireless Infrastructure

Initially, 802.11 link layer security measures concentrated on preventing access of unauthorized clients
to the network’s APs. The entire concept of 802.11 authentication, association, and in particular the
design of the 802.11 client state machine, proceeded from the apparent assumption that the primary goal
of the security mechanisms was to protect the infrastructure of the network from rogue clients that would
seek to obtain access to the infrastructure. The APs were apparently thought of as the “perimeter” of the
network, vested with the role of protecting it against rogue clients.

However, subsequent experience showed that the threat model underlying this design was inherently
flawed. Clients (with their stored representations of trust relationships) turned to be a much more impor-
tant piece of the holistic security puzzle than previously thought. In fact, they emerged as the weakest
link in the so-called perimeter.

In ISO Layer 3, attacking clients of a network and through them gaining access to the presumably
well-protected internal network resources (by exploiting existing trust relationships between these re-
sources and the clients) has emerged as an efficient attack strategy. In fact, exploiting clients by tricking
them into establishing connections to rogue services became a leading strategy for both exploitation and

2



penetration testing as evidenced by an entire BlackHat 2009 track (e.g., [18]) devoted to client exploita-
tion functionality in the popular Metasploit penetration testing tool [3].

It did not take long till the same attack approach was realized in 802.11 Layer 2: trusted clients
were tricked into interaction with fake access points, pretending to be a part of the trusted infras-
tructure. The trend towards exploiting the clients was amplified by the complex nature of the 802.11
link establishment. Empirically, vulnerabilities are associated with complexity of processing diversely
structured inputs. 802.11 link layer driver code is exemplary of just such complexity. In particular,
even beacon and probe response frames—to be processed by clients before any trust in the sender can
be established—contain many variable-length optional Information Element structures, some of which
are also vendor-specific. It is hardly surprising that crafting malformed inputs in these fields quickly
emerged as an extremely efficient attack methodology in [9]. This methodology yielded such achieve-
ments as “hijacking a Macbook in 60 seconds” [8] (by way of a crafted probe response leading to attack
code execution within the ring zero driver kernel context) and the subsequent automation and refine-
ment of this technique that revealed other 802.11 driver vulnerabilities— the so-called “Month of kernel
bugs” (see, e.g., [7]). As we explained above, wireless clients became a prominent part of the network’s
attacked perimeter even before they attempted to establish association with a trusted infrastructure! We
remark that potential vulnerabilities in processing of complex data structures required for cryptographic
authentication of the access points by the client are still largely unexplored and might provide another
efficient attack vector.

In the light of the clients becoming the forefront of network exploitation, identifying the tools of such
exploitation—fake access points— delivering crafted link layer inputs to the clients becomes very impor-
tant. Rogue access points have long been seen as security threats; for example, non-security-minded em-
ployees may introduce unauthorized access points into organizations’ networks for convenience and thus
create a weak link in the network perimeter, or attackers may set up fake (or the so-called “evil-twin”)
access points to capture communications and conduct man-in-the-middle attacks between the unwitting
client and the user. Popular exploitation tools, such as Karma [20], were developed to meet penetration
testers’ demand. Such early attacks were described by wireless security researchers in [13, 19]. How-
ever, all of these traditional fake AP scenarios assume successful establishment and maintenance of a
layer 3 connection, whereas a new class of attacks is based on compromising the client at a much earlier
point: either during scanning for available networks or during authentication or association attempts. As
such, strong cryptographic schemes for authenticating access points, such as WPA2-Enterprise, cannot
mitigate this threat. Fake access points thus become a tool of delivering link layer exploits.

Thus the problem of protecting 802.11 clients at their most vulnerable— in the early stages of es-
tablishing authentication/association —becomes paramount to the new client-centric view of network
security. We note that at these stages the clients are most susceptible to deception, because they must
make their decision to join a network based on easily fakeable data, such as the AP’s MAC address,
ESSID, and various Information Elements in the beacon and probe response frames, as well as physical
layer characteristics, such as signal strength. (Creating superior signal strength is generally not a hard
problem for an attacker.) Detecting such deceptions thus becomes important for both clients (where it
needs to be easily and quickly accomplished as a pre-authentication step) and wireless intrusion detec-
tion systems (WIDS).

As we have seen, establishing trust for an AP can be a tricky issue for a client attempting to as-
sociate with it. Traditional approaches to such trust-relationship problems most often find solutions in
cryptographic exchange protocols. With respect to wireless security, the 802.11i RSNA (Robust Secu-
rity Network Association) provides such a functionality. Importantly however, such protocols that are
dependent on cryptography are complex and therefore induce potential vulnerabilities in themselves.
These protocols must be implemented with great care. Before involving in complex cryptographic ex-
change protocols with an untrusted entity, we propose using clock-skew fingerprinting as a means of
providing a first point of trust for clients. Once the fingerprint of the AP is verified, the clients can
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proceed with such protocols to reaffirm their trust. As such, we propose our methods as a complement
to the existing authentication methods.

Unlike Jana and Kasera’s proposal [14], where the fake AP detection procedure was meant to be
implemented in a WIDS node, in our work we even enable the measurements to be done on wireless
clients themselves. To allow for this, we need to make use of clock skew arithmetic as described in
Section 6.

In the following sections we describe our contributions in detail. The remainder of the paper is
organized as follows. In Section 3 we outline the synchronization methods specified by the 802.11
protocol standard, and also some details on how these methods are implemented by commodity hardware
and device drivers. We also present our methodology for measuring clock skews of APs in this section.
Then, in Section 4 we present our attack that spoofs the clock skew of APs. We then present the two
methods to detect attempts at clock skew spoofing in Section 5. In Section 6 we show how to do
arithmetic with clock skews. Finally, we discuss related work in Section 7, and conclude in Section 8.

3 Measurement of Clock Skews

We first give an overview of the timing and synchronization processes in wireless networks as specified
in the IEEE 802.11 standard [1]. These processes provide the timing information required to compute
the clock skews of APs.

In an 802.11 network operating in infrastructure mode, every station maintains a timer. This timer
is synchronized with the timer in the AP the station is associated with via a Timer Synchronization
Function (TSF). The synchronization is achieved through the beacon frames transmitted by the AP at
periodic intervals. The most common setting for the beacon interval is 100 milliseconds, so that beacons
are commonly transmitted at the rate of 10 beacons/second. The beacon frames contain the TSF timer
timestamp of the AP “at the time that the data symbol of the first bit of the timestamp is transmitted to the
wireless medium,” adjusting for hardware transmission delays. The timer is of microsecond resolution
and is maintained as a 64-bit counter. Client stations set their local TSF timers to the values observed
from beacon frames, again, adjusting for hardware delays. This means that the beacon timestamps
provide a high-precision mechanism to measure the skew in the TSF timer of APs.

Clock skews

We now define the notion of clock skew as given by Moon, Skelly, and Towsley [17], and later used
by Kohno et al. [15] and Jana and Kasera [14]. To measure the clock skew of an AP, we passively
monitor the wireless interface of the measuring device for beacon frames from the AP. For beacon frame
i we record the time ti when it was received and the timestamp Ti in the beacon frame. In this manner
we obtain a set of n measurements (ti, Ti), 1 ≤ i ≤ n. The parameter n provides a tradeoff between
the quality of measuring the skew and the time required to measure the skew. We found that sampling
n = 100 beacons was sufficient in our experiments (as was also observed in [14]). This corresponds
to an overhead of 10 seconds for measuring the clock skew with the common beacon interval of 100
milliseconds. We denote by xi the elapsed time since the first beacon was observed, i.e., xi = ti − t1.
Similarly, if we let wi = Ti − T1, then the quantity yi = wi − xi is called the clock offset of the ith
measurement. In this way we get a set of n points (xi, yi) representing the clock offsets. Ideally, there
should be no relative skew between the measurer’s clock and the beacon timestamps representing the
AP’s clock. In this case we would have that wi = xi for all measurements so that all points would lie on
the X-axis. In reality we observe that the clock offset points lie on an approximately linear pattern that
has some non-zero slope. By approximating the slope of this linear pattern, we obtain the clock skew of
the AP. Skews observed in practice are tiny, but consistent, and are reported in parts per million (ppm).
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There are two methods used in practice to approximate the slope of the clock offset points, and both
involve fitting a line y = s · x + c to the points and reporting the resulting slope s as the clock skew.
The first one is the Linear Programming Method (LPM) [17, 15, 14]. This method produces a line that
upper-bounds the set of clock offset points, while minimizing the sum of the distances of the points from
the line. In other words, we have the optimization problem with constraints

s · xi + c ≥ yi, 1 ≤ i ≤ n,

and objective function
n∑

i=1

(s · xi + c− yi)

that needs to be minimized. This method chooses an upper bound that captures the effects of outliers
due to network delays. This linear programming problem can be solved by standard LP-solvers, but the
special 2-variable version we consider has a linear time solution [10, 16].

LPM is useful when the set of clock offset points contains many outliers, as is the case when the
available measurements are not very accurate (e.g., when network delays play a role in the measure-
ments). However, it was shown by Jana and Kasera [14] that since measurements of clock skews from
beacon timestamps are very precise and do not suffer from these effects, a simple linear least square fit
(LSF) suffices. LSF is a simple statistical regression method that fits a line y = s · x + c to the set of
clock offset points (yi, xi) by minimizing the least square error

n∑
i=1

(yi − (s · xi + c))2.

LSF was successfully applied in measuring clock skews from beacon timestamps [14]. The re-
searchers also point out that for the specific application of measuring clock skews, the use of LPM may
actually be undesirable because the attacker may be able to affect the outcome of the measurements,
and spoof the clock skew of the real AP, by injecting a small number of beacons with carefully chosen
timestamps that would appear as outliers. LSF also has the advantage that it can be implemented with
low overhead—all that is required to fit the line are the sums

∑
xi,

∑
x2

i ,
∑
yi, and

∑
xiyi, all of which

can be computed in an online fashion with about 7 arithmetic operations per beacon. So it may even be
feasible to implement clock-skew fingerprinting with LSF in hardware.

Monitor mode synchronization

The timestamps in the beacon frames form one half of the required information for estimating clock
skews. The measurement of the arrival time of the beacon frame is an important problem, since its
accuracy impacts the accuracy of estimation. There were several clocks considered in [14] to report
the beacon arrival time. It was observed that the timestamps reported by the pcap packet capture
library were not accurate enough for measurement. Another clock considered was the jiffies counter
maintained in the Linux kernel and reported in the Prism header of the frames. But this counter had a low
(a few millisecond) resolution that was not sufficient. The researchers considered using the timestamp
reported in the Radiotap header in the pcap field radiotap.mactime. This timestamp is reported
by the driver from the TSF timer maintained by the wireless hardware. But the approach was abandoned
since the timer values were updated from the incoming beacon timestamps and hence did not serve as a
stable clock. The approach finally found to work was to use the time reported by the Linux kernel via
the function do gettimeofday().

However, this method too suffers from some drawbacks. The do gettimeofday function is im-
plemented using timer interrupts, and is adjusted in the kernel for anticipated delays. So it could be
expected to shift in accuracy, and is only as accurate as the underlying interrupt mechanism. Also, since
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Figure 1: Clock offsets with and without the measuring station syncing its TSF timer with Linksys 2.

the skew of the clock represented by the function depends on the implementation of the function and un-
derlying routines, we expect this skew to vary with the updates to the system. This would require clients
to recalibrate their skew measurements before fingerprinting APs again. We have observed significant
changes in the implementation of the do gettimeofday function between kernel releases.

We present a new method of measuring the arrival time of beacons that is more accurate than using
do gettimeofday. Since this measurement is critical to estimating the clock skew, our method leads
to more accurate measurements. Further the clock used in our method is implemented in the wireless
hardware, and hence its skew does not change with software updates. Our method depends on the
synchronization behavior of the Atheros chipset based cards that we use. We explain this behavior
now. In the course of our discussion we state some observations and verify them empirically. These
observations turn out to be crucial to our techniques described in later sections.

For the experiments in the rest of the paper we use two laptops as measurement stations. These
laptops run the Ubuntu 9.04 GNU/Linux distribution (with kernel 2.6.28-15) and are each equipped
with wireless card based on the Atheros 5212 chipset. Our choice of this chipset is dictated by the
availability of the open-source Madwifi driver. The Madwifi driver ath pci is used with these cards
for the measurements. In our experiments we also use two Linksys APs, henceforth referenced as
Linksys 1 and Linksys 2 respectively.

The monitoring typically performed to capture the beacon frames is done in the so-called monitor-
mode of the wireless interface. The TSF timer maintained in the wireless hardware is a high-accuracy
microsecond resolution timer, and it would serve best for our measurements of beacon arrival time, since
its value is provided directly to the driver by the hardware and is not affected by other processes in the
system. However, this timer was deemed as unusable in [14] because the timer was kept synchronized
to the incoming beacon timestamps even in monitor mode. We now give a method to use this timer. It
should be noted that in monitor mode, it is not necessary to synchronize the TSF timer with the incoming
beacon timestamps, since the card is completely passive in this mode. However, cards with the Atheros
chipset continue to synchronize with the beacon frames observed from the AP that the card was last
associated with.

This leads to an interesting possibility: what happens when the AP that the card was last associated
with becomes inactive and stops broadcasting beacon frames? In this case the timer on the card, not
being able to synchronize with the beacon timestamps, should begin to drift with its own skew. And
indeed, this is confirmed empirically with our experiments. We measured the skew of Linksys 1 and
Linksys 2 in monitor mode, by first associating the measuring laptop with Linksys 2 and then switching
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Clock Skew
Linksys 1, when synced with Linksys 2 14.37
Linksys 2, when synced with Linksys 2 -0.01

Linksys 1, when not synced 6.68
Linksys 2, when not synced -7.85

Table 1: Clock skew measurements with sample sizes of 100 beacon timestamps, with and without
synchronization with Linksys 2. Figures rounded to the nearest hundredth.

the laptop to monitor mode. We then turned Linksys 2 off and again measured the skew of Linksys 1.
Figure 1 shows the clock offsets points measured in the different cases, and Table 1 reports the measured
clock skews. Observe that the estimated skew of Linksys 1 varied significantly before and after Linksys 2
was turned off. Also, the estimated skew of Linksys 2 was negligible. Note that to similarly measure the
skew of Linksys 2 when the associated AP was turned off, we had to first associate with Linksys 1 and
repeat the process. This leads us to the following observations.

Observation 1. Given a wireless card in Station mode and associated with an AP A, when the card is
switched to Monitor mode, it continues to update its TSF timer register with the beacon timestamps from
AP A.

Observation 2. Given a wireless card in Station mode and associated with an AP A, when the card is
switched to Monitor mode, if AP A ceases to transmit beacons, then the TSF timer maintained in the
wireless card begins to drift with its own, actual skew.

The next two observations follow as a consequence of Observation 1.

Observation 3. Given a wireless card in Station mode and associated with an AP A, when the card is
switched to Monitor mode, the clock skew of AP A as measured by the card is zero (imperceptible).

Observation 3 suggests that the skew of the measuring card becomes equal to the skew of the AP it
is synchronized with. From Table 1 it may further be observed that the skew of Linksys 1 when mea-
sured by the card synchronized with Linksys 2 is approximately equal to the difference of the skews of
Linksys 1 and Linksys 2 when there is no synchronization. We have observed this behavior consistently
with different APs; we omit the data for the sake of brevity. This indicates that it is possible to compute
the skew of a wireless device as measured by another, by passively measuring the skews of the two
devices. This brings us to our next observation.

Observation 4. Given a wireless card in Station mode and associated with an AP A, when the card is
switched to Monitor mode, the clock skew of another AP B as measured by the card is equal the skew of
AP B as would be measured by AP A.

The issue of performing arithmetic to determine the skew between a pair of wireless devices is
covered in more detail in Section 6.

Our measurement technique

The observations listed earlier give us a new method of measuring beacon arrival times—using the TSF
timer to do it. For the experiments in the rest of the paper that use the TSF timer, we use the timer by
first associating with an AP and then switching off power to the AP. On a client station the same effect
can be achieved by either removing and re-inserting the wireless card, or even entirely through software
by removing and reloading the driver modules. It may even be possible to power-cycle the card and flush
the state through the driver interface, but we have not verified this.
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Mean Variance
TSF Timer 6.7011 0.0001245

do gettimeofday -28.1347 0.0659

Table 2: Mean and variance of 10 clock skew measurements (ppm) using LSF with the two clocks.
Beacon timestamp sample size is 100.

Figure 2: Variance in clock skew measurements using LSF as a function of the beacon timestamp sample
size.

Our next experiments show that using the TSF timer yields much higher accuracy than using do gettimeofday.
To compare the two methods we collected 10 sets of beacon traces with each method. As in [14] we
disable NTP to avoid its effect on the do gettimeofday method. For each set of traces we measured
the clock skew of Linksys 1 using sample sizes ranging from 100 beacons to 600 beacons. Note that at
the standard beacon interval of 100ms, it takes 1 minute to observe 600 beacons. Then for each set of
traces, and each sample size we computed the mean clock skew and the variance of the clock skew. Our
observations are presented in Table 2 and Figure 2 (using LSF), and in Table 3 (using LPM). Observe
that the variance of the clock skew when using the TSF timer is consistently several orders of magni-
tude smaller that the variance when using the do gettimeofday function to report the beacon arrival
times. This points to the superior stability and accuracy of the TSF timer method.

#beacons tsf-Mean tsf-Var gtod-Mean gtod-Var
100 6.70 4.62e-04 -36.70 1000
200 6.70 1.92e-04 -27.22 249.41
300 6.70 7.92e-05 -28.07 6.24
400 6.70 7.04e-05 -26.01 3.18
500 6.70 7.10e-05 -27.88 0.35
600 6.70 5.74e-05 -28.05 0.19

Table 3: Mean and variance of 10 clock skew measurements using LPM with the two clocks, for different
timestamp sample sizes. do gettimeofday is abbreviated as gtod.
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Real skew Real intercept Fake skew Fake intercept
16.79 0.53 16.78 -2.13
16.82 0.51 16.69 1.43
16.80 -0.02 16.74 -1.34
16.81 0.17 16.78 -1.10

Table 4: Clock skews and line intercepts from real and fake AP, rounded to the nearest hundredth.

4 Vulnerability of previous measurement methods

In this section we present a spoofing attack that is able to fool the method of [14] that relied only on the
clock skew measurement to detect spoofing. Our technique finds its basis in two key points:

1. Observations 3 and 4 show that a measurement device measures different clock skews depending
on whether its TSF timer is synchronized with the beacon timestamps from an AP, because that
timer, being synchronized, acquires the skew of the AP.

2. The Madwifi driver allows the multiple creation of virtual interfaces (VAPs) for a single physical
device. These virtual interfaces may be in different modes—station, master, or monitor—and
in particular, one station VAP is allowed to exist along with several AP VAPs. These virtual
interfaces can then be brought “up” to begin operation.

These points suggest that we might be able to have an AP VAP and a station VAP, with the station VAP
associated with the real AP, and the AP VAP configured as the fake AP. Since the two interfaces would
share the same hardware TSF timer, the timer would acquire the skew of the real AP due to the station
VAP associating with it. This skew would be reflected in the timestamps in the beacons emitted by the
AP VAP, thereby spoofing the clock skew of the real AP.

However, carrying out the above attack required some modification of the Madwifi driver. The
hardware device can be put into only one of the operating modes at a time—either station or AP—and
in the case when a station VAP and an AP VAP are created, the driver puts the card into AP mode and
simulates the operation of the station VAP in software. Since the updating of the hardware TSF timer
upon receipt of beacons is done by the hardware logic, the station VAP does not update that timer when
the card is in AP operating mode.

The interface provided to the driver does not allow for setting of the TSF timer directly. However, it
does allow for getting the timer value. The code for getting the timer reveals the address of the hardware
register maintaining the TSF timer. We modify the driver to write the beacon timestamp to that register
whenever the station VAP receives a beacon frame from the real AP. This leads to another problem: the
timers in the beacon scheduling queue for the AP VAP are disrupted by our register updates and the AP
VAP stops broadcasting beacons. To continue to transmit beacons we use the ath send beacon()
function in the driver that is used to send out beacon frames. We force beacon transmission each time
we update the hardware timer register by calling this function. We then find that beacons are transmitted
as required, and we compare the clock skews of the real AP and the fake AP. Table 4 shows the skews
from four measurements. It can be seen that it is not possible to detect the fake AP by comparing the
clock skew alone, with a reasonable degree of certainty. Figure 3 shows the clock offset points from the
two APs. The synchronization behavior produces periodic dips in the plot. In Section 5 we show how to
capture this behavior to measure of the reliability of the clock skew.

The authors of [14] present several arguments showing why the skews of APs cannot be fabricated.
We briefly discuss the reasons why their arguments do not hold in our case. The failing assumption
made in their arguments is that the attacker, on knowing the clock skew of the the real AP, would need
to perform arithmetic with his local timer values to compensate for his own skew. In our attack this

9



Figure 3: Clock offsets with 100 beacon timestamps from the real AP and the fake AP.

Figure 4: Overlapping channels in 802.11bg networks.

is not the case. We do not measure the skew of the real AP in advance and try to compensate for it.
Rather we continuously use the timestamps in the beacon frames from the real AP to update the TSF
timer. The first argument in [14] shows the failure of trying to compensate for the attacker’s local skew
when injecting beacons frames using the raw packet injection mode allowed by the driver. This is not
the approach we take so we do not suffer from the transmission delays that affect the ability to spoof
the clock skew. The other approach considered was that of setting the wireless hardware timer directly
through software. The authors argue that such an attempt at spoofing might be detected by measuring the
medium contention time for the AP. Since the attacker would need to perform floating point operations
in the wireless hardware to select the right offset and mimic the clock skew of the real AP, the overhead
would have an observable effect on the medium contention time. As we note above, we use the beacons
timestamps from the real AP continuously and do not need to do any arithmetic, so we avoid this problem
altogether.

Extending the scope of the attack

We now show how the scope of the attack can be extended by using a “bridge” AP. The function of the
bridge AP is to allow the attacker to move the fake AP to cover a wider range (perhaps in order to be
out of range of the real AP), or to operate in a different channel, all while still spoofing its clock skew.
The bridge AP synchronizes its TSF timer with that of the real AP as described earlier, and the fake AP
synchronizes its timer with that of the bridge AP. To operate on a different channel we take advantage
of the fact that frequency ranges of adjacent channels as prescribed by the 802.11 standards overlap (see
Figure 4).
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Real skew Real intercept Fake skew Fake intercept
17.35 -0.78 16.29 71.49
17.29 0.70 17.58 -10.63
17.26 -0.46 17.54 -10.49
17.25 -0.19 16.49 -19.53

Table 5: Clock skews and line intercepts from the real and bridged fake AP, rounded to the nearest
hundredth.

Figure 5: Clock offsets with 100 beacon timestamps from the real AP and the bridged fake AP.

In our experiment we have the real AP operating on channel 11, the bridge AP on channel 10, and
the fake AP on channel 9. Our results from four traces are shown in Table 5 and Figure 5. As it may be
expected, the quality of spoofing degrades due to the bridging, but the clock skew of the fake AP is still
fairly close to that of the real AP.
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Beacon interval c-Real c-Fake % change γ-Real γ-Fake % change
25 0.20 2.13 965 0.50 3.1 520
50 0.58 1.23 112 0.84 3.34 298
100 0.31 1.50 384 1.71 3.11 82
200 0.40 1.68 320 3.43 3.88 13

Table 6: Variation in parameters c and γ with different values of the beacon interval.

5 Improving the Reliability of Fingerprinting

We now present techniques to mitigate the risks of attacks like those presented in the last section, by
gauging the reliability of the measured clock skews.

5.1 Line-fitting error

The most straightforward approach is to measure the error in line fitting. We observed that the spoofing
attack in the previous section introduced an artifact—the dips in the plots of clock offset points in
Figures 3 and 5. There are several ways to measure these fluctuations. We could measure the (least
square) error of line fitting, i.e., the sum of the distance of the clock offset points from the line fitted
to them. However, this approach requires first fitting the line using LSF and then using the clock offset
points again to compute the fitting error. Since that would involve more computational overhead, and
also require storing the clock offset points, we avoid the approach. Instead we use two metrics that do
not require this overhead.

First, we consider the y-intercept c of the fitted line y = s · x+ c. Since we assume that, in the ideal
case, the line passes through the origin, the absolute value of the intercept serves as one parameter to
measure the fitting error. Tables 4–5 show the values of the parameter c with our proposed attacks. The
absolute value of c is higher for the fake AP when compared to that of the real AP.

We also consider the jitter of the beacon timestamps as a means to measure reliability of the clock
skew. Given a set of clock offset points, the jitter γ is computed as

γ =
1

n− 1

n−1∑
i=1

|yi+1 − yi|

and provides a measure of the temporal variations in the beacon timestamps. We defer the measurements
of jitter in our attacks to the next section, where we analyze the effect of the beacon interval on our
attacks.

5.2 Analysis of beacon-interval on skew measurements

The value of the beacon interval of the AP affects the ability of the attacker to spoof its clock skew
with our attack. When the beacon interval is set to smaller values, the attacker needs to present a finer-
grained clock via the beacon timestamps. At lower beacon intervals the fluctuations in the synchronized
clock of the attacker become more prominent since the various processing delays play a relatively larger
role. As the beacon interval is increased, the behavior of the fake AP tends towards presenting a beacon
timestamp from the real AP in the beacon timestamp of the fake AP with minimal effect of those delays.

To validate this hypothesis we perform our attack with different settings of the beacon interval pa-
rameter, and measure the parameters c and γ described earlier for testing the reliability of clock skew
measurements. The clock offset points for this experiment are shown in Figure 6 (note the out-of-order
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(a) Beacon interval = 25ms (b) Beacon interval = 50ms

(c) Beacon interval = 100ms (d) Beacon interval = 200ms

Figure 6: Clock offsets of the real AP and fake AP at different beacon intervals

Figure 7: Variation in parameters c and γ with different values of the beacon interval.
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Figure 8: Measuring skews between a pair of access points using skew arithmetic.

numbering). We observe that the dips in the plots increase in magnitude as the beacon interval is re-
duced. To be sure that this is not an artifact of the different scale in the plots, in Table 6 and Figure 7 we
show the variation of the parameters c and γ in terms of the relative change of their average values over
four measurements. We observe that the changing magnitude of the dips seen in Figure 6 is captured
very well by the jitter parameter γ, and to a good extent also by the intercept c.

Thus, to avoid clock skew spoofing attempts it is advisable to use a beacon interval that is as small
as permissible, and use the parameters c and γ to gauge the reliability of clock skew measurements.

6 Skew arithmetic

In this section we show how to perform arithmetic with clock skews. For example, if we know the clock
skew sAB of AP B as would be measured by AP A, then we can compute the skew sBA, i.e., the clock
skew of AP A as would be measured by AP B. While measuring clock skews, we assume that the clock
offsets lie on a line passing through the origin. If ∆A and ∆B denote the time elapsed since the start of an
experiment as reported by the clocks of AP A and AP B respectively, then the clock offset (x, y) is given
by x = ∆A, y = ∆B −∆A. By our assumption we have that y = sABx, so that ∆B = (1 + sAB)∆A.
By a symmetric argument we get that ∆A = (1 + sBA)∆B . Solving these two equations for sBA we
find that

sBA = −sAB/(1 + sAB). (1)

We can also compute the clock skew sBC of AP C as measured by AP B, when given the clock
skews sAB and sAC (see Figure 8).

Using notation as before, we have,

∆B = (1 + sAB) ·∆A,

∆C = (1 + sAC) ·∆A, and

∆C = (1 + sBC) ·∆B.

Solving these for sBC , we get

sBC = (sAC − sAB)/(1 + sAB). (2)

In Equations 1 and 2, the term in the denominator is of the form (1 + s), where s is a clock skew. Since
s � 1 (of the order of parts per million), we can safely ignore the denominator so long as we are not
performing several such arithmetic operations that affect each other. Then we get that,

sBA = −sAB, and (3)

sBC = sAC − sAB. (4)
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We present empirical results to validate the above equations. In our experiment we use Linksys 1 as AP
C, and the two laptops as AP A and AP B. Switching AP B into monitor mode allows us to estimate the
clock skew sBC . We take four sets of measurements to determine each skew and take the mean. The
mean skews sBC , sAC , and sAB are observed as 6.3767, 16.7719, and 10.4801. The skew sBC when
estimated using Equation 2 is 6.29173 resulting in an error of 1.332% when compared with the value
estimated directly. When using Equation 4 the skew is estimated as 6.2918 resulting in 1.331% error.
Thus we see that the approximation in Equation 4 does not affect the result of the arithmetic.

The ability to perform this kind of skew arithmetic is essential to our goal of allowing clients to
fingerprint APs. To determine whether to trust an AP by measuring its clock skew, the client must know
the skew of the real AP beforehand. Since the clock used by the client has a skew of its own, it would
be necessary for the client to have measured the skew of the real AP using its own clock beforehand.
However, the ability to perform skew arithmetic eliminates this requirement. Network providers can
publish the skews of the APs in their network as measured against a high-precision clock of negligible
skew. Then to measure the skew of an AP using skew arithmetic, the client only needs to know the skew
of its own clock against a similar high-precision clock. The process is simplified further if network card
vendors measure and publish the skews of the cards they produce at the time of testing.

7 Related work

Existing methods of passive L2 fingerprinting of 802.11 client stations aimed to improve client iden-
tification for defensive or forensic purposes by verifying facts about the client. In particular, Franklin
et al. [12] fingerprinted clients based on the clients’ driver-specific probing behavior, and in the tour de
force [11] Ellch fingerprinted clients based solely on statistical distributions of the 2-byte NAV field in
established client connections (e.g., by watching several minutes worth of web traffic).

A passive method that a client could use for detecting the presence of fake APs was presented by
Bahl et al. [4]. In particular, they used the anomaly in successive sequence numbers seen in beacon
frames from the real and fake APs to detect the fake AP. Because of mixing of frames from the two
sources, the sequence numbers do not form an increasing sequence. Their method is effective only when
both APs are active at the same time. For the case when this does not hold, location-based detection was
suggested. Still, it was observed [14] that even such methods are not very reliable, and fail to work if
the attacker is able to position his AP carefully.

Bratus et al. pointed out [5] the importance of protecting clients from access points in the early
stages of connection before cryptography-based trust in the AP could be established, and proposed an
active fingerprinting scheme that tested certain properties of the AP before accepting any complex data
from it. The related BlackHat 2008 talk [6] also mentioned results in fingerprinting access points by the
skew of their timestamps transmitted in their beacon frames, and pointed out that such fingerprinting
might serve the same purpose of client protection.

8 Summary

In this work we consider the reliability of previously proposed approaches to measure clock skews of
wireless devices. By means of a spoofing attack that mimics the clock skew of an AP, we demonstrate the
fallibility of those methods, when used in isolation. We provide a method that uses a more accurate clock
to measure clock skews. Further, we propose new parameters—the fitted line intercept, c, and the jitter
γ—to gauge the reliability of measured skews. We show that spoofing attempts might be detected by
checking the values of these parameters. Our work also provides new insights into the implementation
of wireless standards by commodity hardware.

Fingerprinting using clock skews is useful in establishing trust for an AP by a client. We provide
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methods to perform clock-skew arithmetic that allow a client to verify the clock skew of an AP without
itself having to measure the real clock skew in advance.
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