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Abstract

We consider the problem ofintrusion analysisand
present theKerf Toolkit, whose purpose is to provide an
efficient and flexible infrastructure for the analysis of at-
tacks. The Kerf Toolkit includes a mechanism for se-
curely recording host and network logging information for
a network of workstations, a domain-specific language for
querying this stored data, and an interface for viewing the
results of such a query, providing feedback on these re-
sults, and generating new queries in an iterative fashion.
We describe the architecture of Kerf, present examples to
demonstrate the power of our query language, and discuss
the performance of our implementation of this system.

1 Introduction

Network-based intrusions have become a significant se-
curity concern for system administrators everywhere. Ex-
isting intrusion-detection systems (IDS), whether based
on signatures or statistics, give too many false positives,
miss intrusion incidents, and are difficult to keep current
with all known attack signatures. Although high-level cor-
relation tools have recently been developed, and they im-
prove the quality of the alerts given to system administra-
tors [HRTT03], they have a limited success rate, they tend
to detect only known types of attacks, and ultimately they
result only in an alert message to a human administrator.
Human experts are still necessary to analyze the alert (and
related data) to determine the nature of the attack. Human
experts are also the key tool for identifying, tracking, and
disabling new forms of attack. Often this involves experts
from many organizations working together to share their
observations, hypotheses, and attack signatures. Unfortu-
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nately, today these experts have few tools that help them
to automate this process.

The goal of theKerf project1 is to provide an integrated
set of tools that aid system administrators in analyzing the
nature and extent of an attack and in communicating the
results to other administrators or law-enforcement agen-
cies. The premise of Kerf is the recognition that human
experts do, and will, play a critical role in the process
of identifying, tracking and disabling computer attacks.
We also recognize that an important part of the discovery,
analysis, and defense against new distributed attacks is
the cooperation that occurs between experts across differ-
ent organizations. Thus, we are building semi-automated
tools that help system administrators to (1) identify the
characteristics of an attack given data from network and
host-based sensors, (2) develop a hypothesis about the na-
ture and origin of the attack, (3) share that hypothesis with
security managers from other sites, (4) test that hypothe-
sis at those other sites and coordinate the results of testing,
and (5) archive the data necessary for use as evidence. In
this report we lay out the vision for the Kerf project, de-
scribe the system architecture, and present the prototype
of tools supporting this vision.

1.1 Kerf: Vision

Imagine the typical system administrator, responsible
for a collection of hosts on one or a few subnets within
an organization. Each host logs its activity, using the
Unix syslog facility or Windows’ Event Logging service.
An intrusion detection system (IDS) monitors some or all
hosts, and possibly the network, generating and logging
alerts about potential attackers. An attack discovered by
a system administrator (whether alerted by the IDS, by a
security bulletin posted on the web, or as a hunch), must
be investigated.

Kerf is intended to assist in this investigation, thein-
trusion analysis, after the attack has been detected. We

1A “kerf” is the slit made by a saw as it cuts through a log.
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assume that correct and complete host and network logs
are available, up to a point, because Kerf uses a secure
off-host logging facility. The analyst’s goal, then, is to
reconstruct the evidence of the attack from records of in-
dividual events in the available logs.

The analysis process is inherentlyinteractive: the
sysadmin begins with a vague mentalhypothesisabout
what happened, and uses Kerf tools to test and revise that
hypothesis. The process is also inherentlyiterative: each
new piece of information allows the sysadmin to revise
the hypothesis and to explore further. The hypothesis is
alternatelyrefinedas information that partially confirms
the hypothesis is discovered, andexpandedas the sysad-
min tries new avenues that broaden the investigation. The
result is a specific hypothesis about the source and nature
of the attack, with specific evidence to support it.

Our goal is to aid the process of intrusion analysis, by
allowing the sysadmin to express, refine, and expand hy-
potheses, and to collect the evidence to support them. We
also provide tools toarchive the hypothesis and the evi-
dence for later study or presentation to law enforcement.
Furthermore, many attacks originate outside the current
administrative domain, and some attackers proceed to use
local computers to launch further attacks outside the cur-
rent domain. Thus, tools are needed toextrapolatethe
hypothesis, that is, to produce a hypothesis about what
might be seen in the logs at other sites, and to easily com-
municate that hypothesis to the sysadmins at those other
sites. Finally, since the same attack may be underway at
other sites, or may occur at another time or at another host
within the current site, the sysadmin needs tools togener-
alizethe hypothesis into an attack signature.

The current approach to intrusion analysis is shown in
Figure 1. Using traditional tools, such asgrep , awk,
and more , or their equivalent, the sysadmin browses
each log file on each host and examines the resulting
text output. This approach is difficult, because it requires
(1) constructing complex regular expressions or scripts for
searching the logs, (2) manually correlating events from
different logs or different hosts, and (3) systematically
recording actions and the results for later study or action
by law enforcement. Because this process is difficult and
tedious, most sysadmins can not fully explore and under-
stand an attack or document it for study by others.

The Kerf approach contributes five key components to
the process, as shown in Figure2. We introduce and mo-
tivate each piece here, and describe them in more detail
in the following section. First, Kerf’s logging facility se-
curely records log entries away from the client hosts that
may be attacked. Second, the logs are stored in an indexed
database for quick and sophisticated retrieval. Third, we
designed a query language, called SawQL, for intrusion
analysis; it allows the sysadmin to express analysis hy-
potheses to the Kerf tools. Fourth, the graphical user inter-
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Figure 1: Hypothesis refinement: Today’s typical process
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Figure 2: Hypothesis refinement: The Kerf approach

face includes data organization modules that help to dis-
play the results in a compact, meaningful view. Finally,
the hypothesis enginehelps to automate the process of
generating, refining, expanding, extrapolating, and gen-
eralizing hypotheses.

Secure logging. Most hackers who have successfully
compromised a system proceed to remove traces of their
intrusion from the system’s logs. Thus, it is important to
securely store host and network logging information off-
host. There are many approaches and existing software
for secure real-time transfer of log data from a collection
of hosts to a secure log server. Kerf can take advantage
of any such mechanism. For the purposes of our proto-
type we implemented a secure logging host that can re-
ceive, decode and store logging information from multiple
sources.

Our approach is similar to that used by the HoneyNet
project [Spi03]. The key difference is that while the Hon-
eyNet system captures more data, using kernel modifica-
tions, the Kerf system captures only event logs and needs
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only a user-level forwarding daemon. Also, obfuscation
of both the origin and the character of their logging traffic
is essential to the HoneyNet approach, whereas we en-
crypt and do not disguise our traffic. Kerf’s logging host
receives encrypted UDP datagrams from its networked
clients, but the logging host itself does not have an IP
address. Thus, the logging host is relatively secure from
conventional Internet attacks. The current implementation
accepts Unix syslogs and Windows Event Logs.2 It is pos-
sible to add support for httpd logs, IDS events in IDMEF
format, and network logs [MV02], or adapt our logging
host to accept log data from other secure remote-logging
tools.

Database. Many intrusions involve multiple hosts, and
the evidence for many intrusions may be seen in multiple
types of logs. To support fast retrieval of relevant records,
the logging host stores incoming log records in a database,
indexing on important fields (such as host, facility, any IP
address mentioned in the record, and any user name men-
tioned in the record). This approach also serves to isolate
the log collection mechanism from the analysis mecha-
nism, and to limit the amount of parsing, indexing, and
searching that must be done within our analysis tool. The
current implementation uses MySQL.

Domain-specific query language (Section2.2). Given
the database of log records, the analyst could use SQL
queries to search for relevant records. SawQL (pro-
nounced SAW-quill) is our extension to SQL designed
specifically to express a sysadmin’s hypothesis about an
attack with maximum flexibility, abstracting the schema
and join semantics of the underlying database. SawQL
is oriented towards extractingsequencesof logged event
records correlated either temporally or on variables corre-
sponding to common record fields such as hostnames, IP
addresses, ports and user names.

By building these features into the language of Kerf
we hope to speed the discovery of interesting links in the
data and avoid the problems inherent in using traditional
tools. These traditional tools offer little help with orga-
nizing search results, correlating results, suggesting new
queries that organize or refine the data set, and thus make
relatively simple analysis tasks error-prone and time con-
suming.

Data organization and presentation (Sections2.3–2.4).
The centerpiece of the Kerf toolset is theLanding3 appli-

2Although we have tested the Windows version of the Kerf transpon-
der and an EventLog to syslog format conversion utility, we have not
yet experimented with Windows logs, due to the lack of an appropriate
corpus of examples.

3A “landing” is the place where logs are gathered for sorting, loading,
and redistribution.

cation, which provides a graphical interface to the sysad-
min. Landing allows the user to enter SawQL queries,
displays the results of the queries, and allows the user to
provide feedback to the hypothesis engine.

Given the amount of log data collected from an organi-
zation’s hosts, many queries will retrieve a large number
of matching sequences. It is critical to help the sysadmin
to organize and visualize these sequences. Our current im-
plementation presents the set of sequences as a set of trees,
and uses semantic compression to reduce the matching se-
quences to a set of patterns that describe those sequences.
We intend to explore other approaches.

Hypothesis engine. Given a SawQL query from the
sysadmin, Kerf extracts and displays the matching se-
quences. The GUI allows the sysadmin to mark each se-
quence “suspicious” or “innocuous”, and to indicate the
interesting elements of each suspicious sequence. Us-
ing any feedback provided (not all sequences need be
marked), the engine uses algorithms drawn from the
machine-learning community to suggest new queries that
better fit the suspicious data, aiding with hypothesis re-
finement.

This component is under development, and the details
are beyond the scope of this report. When complete, the
hypothesis engine will also support extrapolation and gen-
eralization.

Contributions. The Kerf project makes three spe-
cific contributions: the domain-specific query language
SawQL, the query engine that supports correlation of
records by time and by feature (using variables), and a
compression-based approach for data organization. Per-
haps the most significant contribution, however, is that
Kerf provides an integrated front end and powerful cor-
relation and data-representation tools to aid the analyst,
all in one package.

In the remainder of this report we describe the architec-
ture of the Kerf system, present some examples of the use
of Kerf for intrusion analysis, discuss the performance of
our initial prototype, and compare our work with related
research.

2 Architecture

In this section we describe in detail the Kerf modules
introduced above.

2.1 Secure Logging

After an attack, the logs on a compromised host can
not be trusted. Any modern rootkit modifies some com-
ponents of a compromised system to exclude logging of
intrusion-related events while maintaining logging of nor-
mal activities. Some kits also include log editors and
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Figure 3: Kerf’s secure logging architecture

”cleaners”. Most attention is given to removing traces of
the initial penetration, which are the most valuable source
of information for intrusion analysis.

For credible intrusion analysis, then, we must preserve
the log records of the attacked host, at least until the
point when the intruder achieved full control over the host.
In this section we describe a remote logging system, in
which a sysadmin configures all hosts to log all events
directly to a secure central host. We take an approach
similar to that used by the HoneyNet project [Spi03], al-
though they capture more data, using kernel modifica-
tions, whereas we capture only event logs and need only a
user-level forwarding daemon. Also, obfuscation of both
the origin and the character of their logging traffic is es-
ssential to their approach, whereas we encrypt and do not
disguise our traffic.

We configure each monitored client with a logging dae-
mon, as shown in Figure3. The logging daemon encrypts
and forwards each log message as a UDP packet. The
logging host sniffs the network for packets, extracts and
decrypts the log data, and stores them in its database.

While it is possible to configure many standard logging
tools, such as syslog, for remote logging, unencrypted
logging traffic would be an invaluable source of infor-
mation for any attacker capable of sniffing the network.
Encrypted traffic is harder to intercept and more difficult
to fake. In our Linux implementation, we configure each
client’s syslogd to forward log records to a named pipe.
At the other end of the named pipe is a perl program that
reads records from the pipe, encrypts them, and then sends
the data onto the local network as UDP packets destined
for the logging host. While other systems push log data
through secure tunnels, we are unaware of any that en-
crypt each packet individually.

Although we assign an IP address to the logging host,
for use in the UDP packets, the logging host is configured
with no IP address. At boot time, the client installs a static
ARP entry that maps the bogus IP address to the MAC ad-
dress of the logging host. When there is a router or switch

between the client and the logging host, we insert a man-
ual route so that the log packets get forwarded properly
onto the network segment where the logging host resides.
We also configure intervening firewalls so that they do not
block UDP traffic on port 514 (syslog).

Attacks on the logging host. The central logging host
is a natural target for an attack. Our approach is to dedi-
cate a host entirely to the logging task, to run no applica-
tions or other services on that host, and to configure the
host without an IP address.

An attacker may compromise a client and discover the
MAC and IP addresses of the logging host, but these are
not useful for any conventional attack on the logging host.
Since the logging host does not respond to that IP ad-
dress, no conventional attack can succeed. The logging
host discards any frames that do not contain an encrypted
log message. The only service is the logging service, so
the only attack is through the logging service.

Since the logging service only accepts encrypted log
entries, it is difficult to attack the logic of the logging dae-
mon with carefully crafted messages, or to insert bogus
log entries [PN98]. An attacker must first compromise
one of the logger’s clients, or otherwise obtain the encryp-
tion key.

It is possible to overwhelm the logging host by flood-
ing it with frames. With proper configuration of border
routers or firewalls, all external traffic destined for the log-
ging host is discarded, so these attacks must come from
an internal host. Unless the frames contain a properly en-
crypted log message, however, they will be quickly dis-
carded. Such attacks are likely to raise alarms on a regular
network IDS.

It is also possible to overwhelm the logging host by
flooding it with log messages. For example, an attacker
could compromise clientA and use it to rapidly generate
log messages, then use this “smoke screen” to compro-
mise clientB. If logging packets fromB are dropped
by the network or by the logging host, or the disk on the
logging host fills, the smoke screen succeeds. While it is
not possible to avoid a smoke screen, its effects can be re-
duced by using a fast logging host with a large disk, or by
using multiple logging hosts to distribute the load.

Our secure logging architecture was developed to meet
the needs of our prototype implementation, at a time when
no pre-packaged secure logging solutions were available.
While this architecture was adequate for our testing pur-
poses, an actual deployment of Kerf can be based on a
different central logging solution, such as those surveyed
in 6.

2.2 The SawQL Language

We designed and implemented a domain-specific query
language calledSawQL. SawQL, an extension of SQL,
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combines the power of relational data representation with
the expressive power of a domain-specific syntax and se-
mantics. In this section we describe the language and its
implementation based on a standard SQL engine, and we
devote Section3 to examples of SawQL queries matching
diverse attack traces in real system logs.

SawQL provides four critical extensions to SQL.

• SawQL includes keywords to describe common fea-
tures of log records, such as hostnames, IP addresses,
and user names. In our implementation, the logging
host parses each incoming log record to extract these
fields for the database record, so later queries can
quickly extract matching records.

• SawQL provides special syntax to express and re-
trievesequencesof logged events, which in raw SQL
would require unwieldy join constructs to describe.
This improvement is essential, since most attacks
involve a sequence of actions that are visible as a
sequence of records in one or more log files. The
goal of intrusion analysis is to piece together this se-
quence of actions.

• SawQL can express connections between records
in a sequence, using variable names. The query
execution engine correlates log records into se-
quences with consistent variable bindings. For
example, service ’adduser’ AND user
%newuser and service ’login’ AND
user %newuser match two records that refer to
the same user.

• SawQL can also express the temporal relation-
ship between records in a sequence; for example,
RELTIME +/- 5 minutes . In some attacks, the
temporal proximity of two events is a critical feature
in identifying the attack. This feature also serves to
constrain the search.

In contrast, when using traditional tools (such asgrep )
an analyst must take the results of one search, extract in-
teresting elements (such as time, user name, or an IP ad-
dress), and run new searches on each one of them. Manual
use of the command line, or writing ad-hoc scripts, can be
error prone, time consuming, and difficult to manage. We
expect that significant gains in analysts’ productivity will
come from alleviating these problems.

Temporal correlation is particularly important for ana-
lyzing modern network attacks, in which a sophisticated
attacker is likely to conduct reconnaissance, penetration,
and control (removal of penetration traces, installation of
backdoors, etc.) stages from different hosts. Any hypoth-
esis about such an attack necessarily involves an expres-
sion of the temporal proximity of these events and thus
temporal correlation of the relevant log records. More-
over, in a distributed system with many components, a

certain amount of clock skew is inevitable, and conceptu-
ally simultaneous events will have slightly varying times-
tamps.4 With SawQL, the user can conveniently mask a
known small clock skew in his logs by using the REL-
TIME clause with a longer time interval to account for
the skew.

2.2.1 SawQL syntax overview

SawQL queries. A SawQLqueryis a sequence of one
or moresubqueries. The sequence of subqueries describes
the desired sequence of log records; a sequence of records
matches the whole query if each record matches the corre-
sponding subquery in the query, and the specified tempo-
ral relationships between matching records are satisfied.

Each subquery is an expression, with the following syn-
tax:

• An expression is enclosed in parentheses.

• Parentheses can be used to set the precedence of ex-
pression evaluation and to resolve ambiguity.

• Parentheses can be used to nest expressions to any
depth.

• Atomic expressions have the form

(keyword parameter).

• Expressions can be logically combined using AND
and OR.

SawQL keywords. Within a subquery, each keyword
describes one feature of the log record (such as a host-
name or an IP address), and requires one or more param-
eters. Each parameter can be a word or phrase (in sin-
gle quotes), a regular expression, a variable name, or a
comma-separated list5 of allowed parameter values (e.g.,
a list of hostnames, services, PID’s, users or IP addresses).
Keywords are not case sensitive.

HOSTS: source host of the record

SERVICE: such as ftp, kernel, ssh.

PID: process id.

LOGMSG: Regular expression search for any word or
phrase in the text message part of log entries.

IPADDRESS: An IP address (in dotted quads).

ABSTIME: an absolute time range; for example,

ABSTIME ’2002-12-20 00:00:00’
’2003-01-05 00:00:00’

4Under high system load, context switches between logging pro-
cesses on a single machine can also cause small differences between
timestamps of events that we would expect to occur “almost simultane-
ously.”

5 Lists will be supported in the near future; the OR operator can be
used to achieve the same effect currently.
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SawQL sequences. In queries with more than one sub-
query, the RELTIME operator separates subqueries, ex-
pressing the required temporal correlation of the records
in a sequence. The parameter may be preceded by

• a + to indicate forward in time,

• a – to indicate backward in time, or

• a +/– to indicate backward and forward in time6.

For example,

(HOSTS ’atlantic’ AND SERVICE ’ftp’)
RELTIME ’+1 day’ ’-5 hours’

(HOSTS ’pacific’ AND SERVICE ’ftp’)

describes all pairs of log records from the ftp service
on host ’atlantic’ and on host ’pacific’, where atlantic’s
record occurs up to 1 day prior, or 5 hours after, the record
on pacific.

A special variant, ANYTIME,7 can be used in place of
the RELTIME operator to indicate that no temporal corre-
lation is desired.

SawQL variables. Variables may be used in place of
any parameter, with a name denoted by percent sign (%).
The type of the variable is defined by the keyword that
precedes it (e.g.,IPADDRESS %addr). Variables ex-
press correlation between subquery expressions. For ex-
ample, when looking for all FTP accesses on any hosts
that were accessed from thesameremote IP address,

(HOSTS ’.*’
AND SERVICE ’ftp’
AND IPADDRESS %addr)

RELTIME ’+/- 3 hours’
(HOSTS ’.*’

AND SERVICE ’ftp’
AND IPADDRESS %addr);

2.2.2 SawQL Parser

The Kerf parser converts statements in the SawQL
language into a set of SQL queries to run against the
database. Kerf uses a Java parser class; the parser
source code is generated using Bison and Flex and then
run through an interpreter that translates any C code into
Java. It takes as input a multiline SawQL query and parses
it into a structure we refer to as a “CommandList,” in
which each Command represents one subquery. The life
cycle of a query, from parsing to actual database opera-
tions, including correlation, is illustrated in Figure4, and
explained in implementation-level detail below.

A Command contains the following elements:

6The current parser requires time and date ranges in SQL’s verbose
format; we plan to extend the parser to translate more readable time
ranges (such as “5 minutes”) as shown in the examples in this paper.

7The current parser accepts RELTIME ’*’ but will soon accept ANY-
TIME.

• String SawQLquery
• String SQLquery
• String SQLqueryWithVariables
• ArrayList variables
• long plusTime
• long minusTime

The first element, SawQLquery, is an exact reconstruc-
tion of the original subquery. This provides the user in-
terface with a copy of the original query for display to the
user. The second element, SQLquery, is the SawQL sub-
query parsed into an SQL equivalent with all references
to SawQL variables removed. This SQL is used to query
the log database before time and variable correlation are
performed. The third element, SQLqueryWithVariables,
is the SawQL subquery parsed into an SQL equivalent
with the SawQL variables left intact. This form preserves
precedence order during variable correlation on the query
results from SQLquery.

The next element is an array that contains all the vari-
ables used in the subquery. For each variable we create a
list of all its unique values seen in the query results.

The plusTime and minusTime elements contain the
RELTIME part of the subquery, converted into a number
of seconds, which is used for time correlation between
two subqueries.

Each assembled CommandList is processed by the Kerf
query engine. Each Command’s SQLquery produces in-
termediate results that are combined and correlated to ob-
tain the final results of the whole query.

The parser also includes error handling code for excep-
tions if a parse is incomplete or an error occurs.

2.2.3 SawQL correlation engine

SawQL allows the user to correlate log entries by time
(using RELTIME) or by keyword values.

Temporal correlation occurs whenever a query con-
tains multiple subqueries. The RELTIME operator sep-
arates subqueries, expressing the maximum time between
records in the sequence.

Variable correlation occurs whenever the query con-
tains a variable name in place of a parameter’s value. The
variable name begins with a percent sign (%), and the type
of the variable is defined by the keyword that precedes it
(e.g., IPADDRESS %addr). Variables express correla-
tion between subquery expressions. For example, when
looking for all FTP accesses on any hosts that were ac-
cessed from thesameremote IP address,

(HOSTS ’.*’
AND SERVICE ’ftp’
AND IPADDRESS %addr)

RELTIME ’+/- 3 hours’
(HOSTS ’.*’

AND SERVICE ’ftp’
AND IPADDRESS %addr);

6



Kerf implements both forms of correlation in the same
manner, as shown in the flow chart in Figure4, ultimately
realizing them asinner joinson temporary tables holding
intermediate results.

Kerf begins the correlation process by executing each
SQL statement, and stores the results of each statement as
a temporary table in the database. We call these result sets
theintermediate results, prior to the correlation step. Kerf
then traverses the CommandList to determine what time
and variable correlations need to be performed. For each
needed correlation Kerf executes an SQL statement using
an INNER JOIN8.

For example, a typical variable correlation is performed
by the following SQL statement:

SELECT DISTINCT
resultdata4.rserial,resultdata3.rserial
FROM
resultdata4 INNER JOIN resultdata3
USING (variable1) WHERE
resultdata4.variable1 IS NOT NULL;

If the SawQL query implies that the results of a cor-
relation are used later on, intermediate results are stored,
substitutions of correlated results are made, and the pro-
cess of executing SQL joins continues.

When the correlations complete, the results are dis-
played in the form of acorrelation treewith extracted log
records as nodes, their placement in the tree showing their
position in the correlated sequences. The first level of the
tree corresponds to initial events of extracted sequences,
the second and deeper levels are made up by their respec-
tive correlated following events. The display tree and our
plans to augment it are discussed in Section2.3.

2.3 The Landing App

We implemented the Kerf user interface, calledLand-
ing, as a stand-alone Java/Swing application. Currently
Landing allows the following functionality, depicted in
Figure5:

• Entry of SawQL queries.
• Control of execution of the query on the database.
• Display of result sets in tree fashion with branch

node labels showing the correlation and leaf nodes
showing actual log lines.

8 This INNER JOIN approach is a refinement of our original ap-
proach. Our initial performance testing showed a more than linear
growth in search time as the database size increased. Where the SE-
LECT DISTINCT example has a JOIN that returns distinct serial num-
bers to refer to each line, our original approach returns the actual val-
ues for each element in the log line. Some investigations revealed that
one source of the slow performance was the DISTINCT keyword, which
caused the database to take a long time to calculate unique elements of
the message field itself. The INNER JOIN approach, in contrast, just re-
turns the serial number of the log line and then looks up all the elements
of the log line. The new approach is faster and this portion of processing
time now grows linearly with database size.

Figure 4: SawQL query flow

• Multi-threaded operation to allow the [future] auto-
mated hypothesis engine to operate independently in
the background while the user works.
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Figure 5: Landing screenshot

Figure 6: Search results in Landing

• User feedback input, to help drive the automated hy-
pothesis engine.

• Toggle controls to view the automated query or its
results.

• Browser-style history list of previously tried queries.

• Cut, copy, paste of SawQL queries.

• Text output of result set.

When Landing executes queries, it stores all of its in-
termediate results as tables in the database. The database
can join tables quickly, which we use extensively for cor-
relation of results (see Section2.2.3).

After executing a query, Landing displays the results as
a tree, with expansion buttons similar to those in many
file browsers (Figure6). The current implementation of
the tree display builds a branch node for each correla-
tion. Nodes are labeled using pieces of the user’s original
query.

We are currently developing an intelligent mechanism
for displaying large result sets with repeating patterns of
records, based on semantic compression. The results of
compression will help the human user recognize patterns
and anomalies in the data, as well as give the hypothesis
engine more data to evolve its own queries by letting the
user work with larger sets. Our approach is described in
Section2.4.

Within the tree display, we embed the user interface el-
ements needed for relevance feedback on a particular log
line. Each tree node can optionally be markedrelevant
(suspicious) ornot relevant(not suspicious), indicated by

Figure 7: Feedback panel in Landing

Figure 8: History in Landing

a check or anX. If the user marks a line relevant, we fol-
low up by displaying a tokenized list of all the elements
of the log line so that they might also indicate what in-
formation makes the line relevant. We expect that most
result lines would be left in the neutral (unchecked) state
in normal usage.

The feedback is optional, but if the user chooses to give
it, it is used as an input for the hypothesis engine. The
hypothesis engine is under development.

All previous SawQL queries are stored in the database
for future use (Figure8). In the future, we plan to expand
this functionality by adding query templates and grouping
queries in the history according to the investigation.

2.4 Data Organization and Presentation

Since the typical data set used with Kerf will be large,
some queries may return extremely large sets of matching
record sequences. When the result set of a user query is
too large, the next step in formulating a more restrictive
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refined query is via anomalies in the current result set, by
cutting away the bulk of “normal” events and their corre-
lates. Spotting such anomalies is hard without additional
tools for analyzing distributions of various record param-
eters across the result set.

To fulfill the need for organizing and managing the
large number of records retrieved in response to a query,
we developed algorithms to automatically structure the
data display, by analyzing distributions of record parame-
ters in a result set. For a large result set, we use a recur-
sive entropy-based algorithm to split the set’s records or
record sequences into groups either directly (using values
of their fields such as IP address or user group) or indi-
rectly (using features computed from these fields, such as
the likely IP segment of origin). This structure is super-
imposed on the existing Landing “correlation tree.” The
resulting tree has non-uniform depth and branching factor,
and it reflects the original correlations. The goal of the al-
gorithm is to achieve a low maximum branching factor at
each level of the refined tree. The latter should simplify
the following tasks, familiar to any analyst faced with a
large result set:

• discovering the actual composition of the result set,

• understanding the distribution and ranges of selected
field values in event records, finding subsets of
anomalous records,

• navigating to the subsets of interest, and

• extracting the subsets of interest for use with another
query.

An important side effect of the grouping algorithm is
that it is likely to separate the main bulk of results (“nor-
mal” events) from the statistically anomalous rest of the
distribution, which is where leads for intrusion hypothe-
sis refinement are often found.

The user may add additional levels of grouping, either
by choosing from a list of standard features or by defin-
ing custom ones, or directly specify how the tree should
be rearranged from the top down, bypassing the group-
ing algorithm. The tree is rebuilt incrementally without
re-running the query, by a module separate from the Kerf
query engine. Figure9 illustrates the intended architec-
ture of the viewing modules.

We record all of the user’s grouping and feature
choices, and save them as a classification template that
can be applied to other result sets, instantiating grouping
nodes to refine them for easier handling. This recording
is transparent to the user, although he may choose to view
the templates and edit them. The template language re-
sembles XSLT and has features of both decision lists and
classification trees.

In the following sections we describe user operations
on the classification tree representation of the result set

Figure 9: Visualization modules

and the corresponding XML-based template language and
its programmatic extensions.

The users of our prototype will notice that the simplest
operations on the group nodes of the tree (i.e., subsets
of the result set) have effects similar to those of “grep
... | sort | uniq -c | sort -n ” or “ select
distinct ... order by ” statements of shell and
SQL environments respectively, but give the user much
more flexibility in defining and connecting the filters and
in keeping all the records within a common classification
framework.

2.4.1 Operations for tree refinement

Starting with the original Landing tree, the user or the
splitting algorithm can, for any chosen non-leaf node (in-
cluding the root)

• split the descendant records of the node into groups
based on the distinct values of a feature (a field in the
the record, a tuple of fields or a more complicated
expression). This replaces the current node with a
so-calleddistribution node, which has as many chil-
dren as there are distinct values of the feature on the
current set of descendants, each child node marked
with the corresponding value. These child nodes can
be sorted by their weight (the total number of event
records under them), by their feature value, or by an-
other expression of user’s choice. For viewing con-
venience, the distribution node itself can be hidden
from view.

These nodes play the role of “sort | uniq
-c | sort -n ” or “ select distinct ...
order by ” statements of shell and SQL environ-
ments respectively, but give the user a lot more flex-
ibility in defining and connecting her filters together
and keeping all the records within a common classi-
fication framework.

• set a test expression on the node and rebuild the node,
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including as children only those former leaves (event
records) that pass the test.

Then redistribute the excluded records among the
current node’s siblings (which may also have their
own tests), and if any records are rejected by all sib-
ling tests, a special default catch-all sibling node is
created to collect them as their new parent. Several
sibling nodes with tests can be used to build if-then-
else structures.

Nodes with tests play the same role asgrep and
grep -v filters. We take special care to preserve
the complement of any test for inspection and, possi-
bly, further distribution analysis, since failure to in-
spect the complement of a set of interest (i.e., the
records rejected by a filter) is how clues are often
lost.

• insert a new grouping node with an arbitrary label as
the only child of the current node, and transfer all the
children of the current node to the new node. This
operation is merely decorative by itself, but is useful
when combined with one or both of the above.

These operations can be used to construct complicated
trees and reusable tree templates. In particular, the user
may choose a library template for routine viewing of her
logs, altogether skipping the initial algorithm, if she has
a good idea which features are likely to produce the best
separation of events into normal and anomalous. Using
a fixed template from the start could make generation of
a tree somewhat similar to instantiation of an XSLT tem-
plate, with records one by one traversing the tree built so
far and causing new nodes to be instantiated before they
reach a leaf position.

2.4.2 A simple example

Here is an example of reducing a flat list of records
(from a simple query without correlation, on an actual
Unix system log) to a manageable tree. The user was a
system administrator concerned with logins from a cer-
tain ISP’s network and wanted a brief summary of failed
and successful logins. A query for login events from
*.isp.net returned some 600 login records. It turned
out that all the logins were from two legitimate users who
happened to inhabit distinct dynamic IP ranges, one of
whom was prone to typos. The feature pair(user,
host) was found by the entropy-based organization al-
gorithm to give the best split. The user was thus presented
with a 12 line summarization of the 600 line result set.
It also became clear that most logins came from one of
these users, and his login records were further grouped by
month for better presentation (Figure10).

2.4.3 Template language and tree generation

The templates have three types of nodes: leaves (they
become actual log records), list nodes, which serve for
classification and grouping, and distribution (or hash9)
nodes, each with its own feature function. Feature func-
tions compute an integer or string value from one or more
record fields. Distribution nodes expand in the view tree
into as many nodes as there are distinct values of the fea-
ture function10 on the subset of result set records reaching
that node in the process of the tree generating described
below.

View tree generation is similar to generation of a re-
sult tree from an XSLT template. Starting at a root node
(the first one instantiated), each record from the result set
traverses the tree built so far, and may cause new nodes
to be instantiated. The existing tree thus functions as a
dynamically growing decision tree with tests specified by
the template nodes. A template node looks as follows:11

<node name="id" <!-- ID -->
test="exp" <!-- optional -->
hashkey="exp" <!-- for distribution

nodes only -->
label="exp"
sortkey="exp" <!-- optional -->
next="idrefs" <!-- IDREFS -->

/>

The meaning of the attributes is as follows.Nameis a
unique ID of a template node.Test is an optional expres-
sion: if it is present, the template node is instantiated only
if this expression evaluates to true.Hashkey specifies
the classification feature function of a distribution node.
Label is a required expression which for leaf and list
nodes labels the entire node, while for distribution nodes
one label (and one node labeled with it) is instantiated per
each distinct value of the hashkey.Sortkey specifies the
order in which child nodes will be sorted under their par-
ent node in the view. The user is expected to often change
sorting order while looking at the data. Ifsortkey is ab-
sent, records and nodes are sorted on time. Finally,next
is a comma-separated list of templates to be recursively
applied to create child nodes of this node.

2.4.4 Building trees from templates

A program for the tree builder module is a flat list of
nodes, contained in the root node, which only has anext
attribute, and from which the tree is built. Expressions
in attributes marked above withexp contains macros for
record fields (e.g. %ip or %date). An expression can be
evaluated in two ways: by straightforward substitution of

9The implementation is based on a hashtable, the value of the node’s
feature function being used as a hash key.

10Most often the feature function is chosen to be the value of one
selected field, or an ordered pair of values of two fields, but it can be
more domain-specific, such as an application of a fixed netmask to an IP
field. Users can define arbitrary feature functions.

11Attributes’ DTD types are given as comments.
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Figure 10: Tree view, some nodes expanded

a field value instead of a macro, or by evaluating the result
of such substitution according to perl-like syntax (simple
string operation and regular expression operations).

The tree is built as follows. The root node is instan-
tiated first, then each log record is tested against the test
attributes of itsnext nodes. If the test is passed, a node
is instantiated, or, if it already was instantiated by an ear-
lier record, it is entered. If it is a list node, this operation
proceeds recursively with itsnext attribute. If it is a leaf
node, the label is computed, if present, or the log record
itself becomes the leaf label by default, and the leaf is
added to the parent node whosenext attribute was fol-
lowed to invoke the leaf template. Thus list and leaf nodes
with non-empty tests, mutually exclusive for direct chil-
dren of each node, would represent a classical decision
tree. List nodes and non-default leaf nodes are expected
to be defined mostly by the user.

The main work is done by distribution templates, that
create an a-priory unknown number of child nodes of the
template’s parent node. The hashkey is evaluated for each
record, and a subnode previously created for the hashkey
value is entered, or a new subnode is created, if this value
was not observed earlier. If the final distribution turns
out to be trivial, the resulting nodes are pruned to sim-
plify the tree, and their children are reparented to the node
produced by the parent template of the distribution node.
This allows for complex stock templates to create simple
(or even entirely flat) trees and subtrees when applied to
small result sets.

Distribution nodes are expected to be produced both by
the initial splitting algorithm (their features chosen based
on entropy of the distributions of candidate features), or
by the user during Kerf interactions. Since the program to

the tree builder is essentially an XML tree internally (al-
though it may be represented more succinctly and appeal-
ingly by the GUI, not completely finalized at the time of
this writing), its manipulation (insertion of nodes, chang-
ing of attributes) is straightforward.

The initial succession of features for the first presen-
tation of the tree is chosen as follows. A set of candi-
date features is made from the fields in the resulting set
of records (e.g. values of single fields, pairs and pos-
sibly triples of fields, and special features such as class
mask based ones for IPs.) For each candidate feature,
the entropy of its distribution is computed during the pass
through the records in the set. Then either the non-trivial
distribution with the lowest entropy is chosen greedily, or
the distribution such that2H (where H is its entropy) is
closest to the threshold value of lines that we want to si-
multaneously see on the screen, i.e. the maximum desir-
able branching factor of a distribution node. The rationale
for the latter is that2H can be interpreted as a number of
distinct values in the distribution where its main weight is
concentrated.

3 Examples

In this section we provide several examples that demon-
strate the expressive power of the SawQL query language.

3.1 An intrusion step by step

The following example shows how a system adminis-
trator can start with a suspicious event and in several steps
interactively derive a query that describes the traces of an
intrusion and that can be run against logs on other sites or
hosts.
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Consider the syslog fromwww.counterpane.com/log-
hacked.html. This log corresponds to a real intrusion,
posted without analysis. Although this example is very
simple, it illustrates how the details observed in the result
set lead to the next step (“expansion” of the record set of
interest).

1. This syslog contains records of activities by a non-
root user with uid 0, a sign of trouble. A log-
watching component of an IDS can raise an alert
about them. This role could be played on our systems
by a periodically scheduled set of SawQL queries
that includes the following one.
(HOSTS ’www’ AND service ’PAM_pwdb’ AND user

’.*/0’ AND NOT user ’root/0’);

This query will flag two matching records:
Sep 23 17:55:34 www PAM_pwdb[28610]: password for

(jogja/506) changed by ((null)/0)
Sep 23 18:02:48 www PAM_pwdb[30102]: password for

(D/507) changed by (jogja/0)

2. From these two records, the administrator would im-
mediately notice two suspicious users, jogja and D,
and check for their creation and activities, say, with
the following query:
(HOSTS ’www’ AND (user ’D’ OR user ’jogja’));

which would return over 50 lines:
Sep 23 17:52:38 www useradd[28609]: new user:

name=jogja, uid=506, gid=10, home=/etc/jogja,
shell=/bin/bash

Sep 23 17:55:34 www PAM_pwdb[28610]: password for
(jogja/506) changed by ((null)/0)

Sep 23 17:58:11 www PAM_pwdb[28612]:
authentication failure; (uid=0) -> jogja for
login service

Sep 23 17:58:12 www login[28612]: FAILED LOGIN 2
FROM 202.155.35.132 FOR jogja, Authentication
failure

Sep 23 17:58:16 www PAM_pwdb[28612]: (login)
session opened for user jogja by (uid=0)

Sep 23 18:00:05 www login[28632]: FAILED LOGIN 1
FROM 202.155.35.132 FOR D, User not known to the
underlying authentication module

Sep 23 18:00:12 www PAM_pwdb[28632]: (login)
session opened for user jogja by (uid=0)

Sep 23 18:02:32 www adduser[30101]: new user:
name=D, uid=507, gid=507, home=/home/D,
shell=/bin/bash

Sep 23 18:02:48 www PAM_pwdb[30102]: password for
(D/507) changed by (jogja/0)

...

3. The administrator can choose to match connections
from, say, a class B network corresponding to the IPs
in the above log (class C patterns happen to yield no
matches):
(HOSTS ’www’ service ’useradd’ AND LOGMSG

’new user’ AND user ’jogja’)
RELTIME ’-1 hour’

(HOSTS ’www’ IPADDRESS ’203\.55\..*\..*’);

Alternatively, the administrator, having been advised
of a recentftp vulnerability, can tryftp messages
within, say, an hour before the first suspicious user
creation:

(HOSTS ’www’ service ’useradd’ AND LOGMSG
’new user’ AND user ’jogja’)

RELTIME ’-1 hour’
(HOSTS ’www’ service ’ftpd’);

Either one of these queries will find the following
records:
Sep 23 17:33:20 www ftpd[28594]: FTP LOGIN REFUSED

(ftp in /etc/ftpusers) FROM 203.55.23.150
[203.55.23.150], ftp

Sep 23 17:33:47 www ftpd[28595]: FTP LOGIN REFUSED
(ftp in /etc/ftpusers) FROM 203.55.23.150
[203.55.23.150], ftp

which likely give the IP address of the machine used
in penetration.

Notice that the administrator may want to pursue one
line of queries for a while, and then return to an ear-
lier query and extend it differently. Keeping several
branches of investigation open at the same time is an
important requirement for the GUI.

At this point the administrator can already write a
query describing the attack:
(HOSTS ’www’ service ’ftpd’ AND LOGMSG

’FTP LOGIN REFUSED’)
RELTIME ’+1 hour’

(HOSTS ’www’ service ’useradd’ AND LOGMSG
’new user’ AND USER %newuser)

RELTIME ’+10 minutes’
(HOSTS ’www’ service ’PAM_pwdb’ AND LOGMSG

’password for .* changed by’ AND USER
’(null)’);

4. The administrator might want to check if any users
from this machine had connected to other machines
while it was compromised, that is starting from the
first ftpd attack and lasting 3 days.
(HOSTS ’www’ service ’ftpd’ AND LOGMSG

’FTP LOGIN REFUSED’)
RELTIME ’+1 hour’

(HOSTS ’www’ service ’useradd’ AND LOGMSG
’new user’ AND USER %newuser)

RELTIME ’+3 days’
(HOSTS ’*’ service ’login’ AND LOGMSG

’FROM www’);

3.2 More examples of attack queries

We have collected a number of real intrusion logs
posted on the web or sent to security mailing lists by
system administrators, and wrote SawQL queries that
matched the traces left by the intruders (see Table1). To-
gether these queries illustrate most features of the SawQL
query language. They are also, in a sense, “intrusion de-
scriptions” that, once formulated, can be applied to other
logs on same or sufficiently similar architecture machines
across the organization.

4 Performance

We investigated the scalability of Kerf’s performance
for log-message reception and processing and log line re-
trieval when doing correlation.

.
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Kind of attack Description Final SawQL query
URL: http://www.counterpane.com/log-hacked.html

Attack onftpd Failed login of
one user followed
by a login of
another, non-root
user and addition
of the first user

(HOSTS ’www’ service ’PAM_pwdb’ AND LOGMSG ’FAILED LOGIN’ AND
user %newuser)

RELTIME ’+5 minutes’
(HOSTS ’www’ service ’PAM_pwdb’ AND LOGMSG ’login’ AND user

%olduser AND NOT user ’root’)
RELTIME ’+5 minutes’

(HOSTS ’www’ service ’adduser’ AND LOGMSG ’new user’ AND user
%newuser);

URL: http://project.honeynet.org/challenge/results/submissions/peter/files/messages

Attack on get-
hostbyname

Useradd shortly
after a get-
hostbyname
error

(HOSTS ’www’ service ’rpc.statd’ AND LOGMSG
’gethostbyname error for’)

RELTIME ’+1 hour’
(HOSTS ’www’ service ’useradd’ AND LOGMSG ’new (user|group)’);

URL: http://cert.uni-stuttgart.de/archive/bugtraq/2000/05/msg00142.html

Attack onsshd Failed login in-
stantly followed
by a successful
login

(HOSTS ’pigpen’ service ’PAM_pwdb’ AND LOGMSG
’authentication failure’ AND user %someuser)

RELTIME ’+5 seconds’
(HOSTS ’pigpen’ service ’PAM_pwdb’ AND LOGMSG ’session opened’

AND user %someuser);

URL: http://cert.uni-stuttgart.de/archive/incidents/2000/01/msg00056.html

Buffer overflow
attack onamd

Amd requested
mount instantly
followed by root
logout and soon
followed by a
password change

(HOSTS ’zenith’,’happy’ service ’amd’ AND LOGMSG
’amq requested mount’)

RELTIME ’+5 seconds’
(HOSTS ’zenith’,’happy’ service ’PAM_pwdb’ AND LOGMSG

’session closed’ AND user ’root’)
RELTIME ’+10 minutes’

(HOSTS ’zenith’,’happy’ service ’PAM_pwdb’ AND LOGMSG
’password for .* changed’);

URL: http://cert.uni-stuttgart.de/archive/incidents/2000/04/msg00100.html

Attack unknown Opened session
and instant su
to another user,
followed by start
of named and
logout

(HOSTS ’192.168.1.254’ service ’PAM_pwdb’ AND LOGMSG
’(login) session opened’ AND user %someuser)

RELTIME ’+5 seconds’
(HOSTS ’192.168.1.254’ service ’PAM_pwdb’ AND LOGMSG

’(su) session opened’ AND user %anotheruser)
RELTIME ’+5 minutes’

(HOSTS ’192.168.1.254’ service ’named’ AND LOGMSG ’starting.’)
RELTIME ’+5 minutes’

(HOSTS ’192.168.1.254’ service ’named’ AND LOGMSG
’Ready to answer queries.’)

RELTIME ’+1 minute’
(HOSTS ’192.168.1.254’ service ’PAM_pwdb’ AND LOGMSG

’(login) session closed’ AND user %someuser);

Table 1: Sample SawQL queries

4.1 Load scalability of log message processing

We measured the performance of the log-collection
component of Kerf (which is comprised of the syslog-
receiving application and the MySQL database) to dis-
cover the maximum amount of message traffic our sys-
tem can handle. A computing cluster with eleven clus-

ter nodes12 acted as clients sending syslog data to the
log host. The nodes were connected via gigabit Ether-
net through a switch to a gateway machine13 which linked
them to our 100Mbps building LAN.

12Dual AMD Athlon XP 2000+ (1.67GHz) CPU’s, 1GB RAM, 40GB
7200RPM IDE disks, running RedHat Linux 2.4.18-mosix

13 Dual AMD Athlon CP 2000+ (1.67GHz) CPU’s, 4GB RAM, 36GB
15K RPM U160 SCSI disk running RedHat Linux 2.4.18-mosix
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URL: http://cert.uni-stuttgart.de/archive/incidents/2000/03/threads.html#00296

Attack on
telnetd

Scan of running
services followed
by a telnet login
from the same IP

(HOSTS ’7of9’ service ’in.ftpd’ AND LOGMSG ’refused connect’
AND IPADDRESS %someip)

RELTIME ’+/-5 seconds’
(HOSTS ’7of9’ service ’in.telnetd’ AND LOGMSG

’refused connect’ AND IPADDRESS %someip)
RELTIME ’+/-5 seconds’

(HOSTS ’7of9’ service ’in.fingerd’ AND LOGMSG
’refused connect’ AND IPADDRESS %someip)

RELTIME ’+/-5 seconds’
(HOSTS ’7of9’ service ’sshd’ AND LOGMSG ’refused connect’

AND IPADDRESS %someip)
RELTIME ’+5 minutes’

(HOSTS ’7of9’ service ’in.telnetd’ AND LOGMSG ’connect from’
AND IPADDRESS %someip)

RELTIME ’+1 minute’
(HOSTS ’7of9’ service ’login’ AND LOGMSG ’LOGIN ON’ AND

IPADDRESS %someip);

URL: http://www.cnns.net/samples/samples.asp?samplesid=8

Attack on sshd Repeated at-
tempts to connect
through ssh
followed by
adduser

(HOSTS ’dnscache’ service ’sshd’ AND LOGMSG ’Connection from’
AND IPADDRESS %someip)

RELTIME ’+30 seconds’
(HOSTS ’dnscache’ service ’sshd’ AND LOGMSG ’Connection from’

AND IPADDRESS %someip)
RELTIME ’+5 minutes’

(HOSTS ’dnscache’ service ’adduser’ AND LOGMSG ’new user’);

URL: http://terakoya.hp.infoseek.co.jp/linux/secure.html

Attack unknown Creation of a
user, the user’s
login and deletion
within a short
period of time

(HOSTS ’pc6’ service ’adduser’ AND LOGMSG ’new user’ AND USER
%newuser)

RELTIME ’+/-5 minutes’
(HOSTS ’pc6’ service ’login’ AND LOGMSG ’LOGIN ON’ AND USER

%newuser)
RELTIME ’+/-1 hour’

(HOSTS ’pc6’ service ’userdel’ AND LOGMSG ’delete user’ AND
USER %newuser);

URL: http://lists.insecure.org/lists/incidents/2000/Oct/att-0115/01-redbull.generic.notes

Most likely,
attack through
ftpd buffer
overflow

Sniffer run
by a (recently
password-
changed) user

(HOSTS ’host1’ service ’PAM_pwdb’ AND LOGMSG ’session opened’)
RELTIME ’+/-1 minute’

(HOSTS ’host1’ service ’kernel’ AND LOGMSG
’device .* entered promiscuous mode’)

RELTIME ’+/-1 minute’
(HOSTS ’host1’ service ’kernel’ AND LOGMSG

’device .* left promiscuous mode’);

Table 2: Sample SawQL queries, continued

The LAN path to our log host goes through two colo-
cated 100Mbps switches, thus there is a fairly direct route
from the cluster to the log host, although the log host does
see some of the broadcast traffic on the building LAN.
We chose an IBM Netfinity eServer14 (representative of a
small computer typically used as a server in e-commerce)
for use as a log host.

We wrote a Java application that reads syslog entries
from a file and sends out encrypted log messages via UDP
datagrams to the log host at a user selectable rate. We used
real logs from a user’s personal Linux workstation. The
average size of a log message was 74 bytes. We ran the

14Dual Intel 1GHz PIII CPU’s, 512MB RAM, 18GB 15K RPM Ul-
tra160 SCSI disk running RedHat Linux 2.4.3-6enterprise

Java application on 1–11 cluster nodes and adjusted the
message sending rate until we discovered the maximum
message rate the log host could handle. This also led to
a better understanding of the system’s sensitivity to CPU,
network bandwidth, and disk utilization.

Figure11shows the average percent idle CPU usage on
the log host as a function of message rate. We plot the av-
erage CPU usage, computed over the duration of the test
and across both CPU’s (the two CPU’s had almost iden-
tical average usage levels in all cases). The plot labeled
“baseline” was computed using a starting database size of
zero, with database index entries built and written to disk
as each message arrived.

At 539,352 messages/hour a plateau was reached in
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the amount of CPU utilization, indicating a performance
limit. There was still about 48% idle CPU (for both
CPU’s) hence the log host was not CPU bound. Measure-
ments of network bandwidth utilization averaged about
80,000 bytes per second, which corresponds to 1/100th of
the total network bandwidth available, thus network band-
width was not the limiting factor.

Figure12 shows the rate of disk writes in blocks per
second. The “baseline” plot reached a peak at 539,352
messages/hour after which a plateau appears. Thus we see
that overall log host performance was limited by disk I/O.
While this rate corresponds to a relatively low throughput
to the disk, a study of the design of MySQL shows that it
is likely that disk seek time is the cause of the limitation.

Returning to Figure11, the “270MB Start Size” plot
shows the effect of starting from a larger database, 270MB
rather than zero. The peak log message rate that can
be supported is reduced from 539,352 message/hour to
179,784 messages/hour. In Figure12, the “270MB Start
Size” plot shows that again, disk I/O is the limiting factor
in performance.

The “Index Cached” plot in Figure11 shows the effect
of allowing MySQL to cache new index entries in memory
rather than writing them to disk. In practical use, MySQL
would flush the index to disk during a period of low ac-
tivity. We ran this test with a starting database size of
270MB. It shows an improvement in performance from
179,784 messages/hour to 539,352 message/hour when
compared to the “270MB Start Size” plot. Again, Fig-
ure12shows that disk I/O is the reason for the difference.
The fact that the 0MB plot with index caching off and
the 270MB plot with index caching on are about identi-
cal tells us that almost all of our performance loss with a
larger database size is due to index writes to disk, which is
a typical limiting factor in database performance in many
applications.

Thus the current implementation of the Kerf system has
a peak performance of around half a million log messages
per hour, with an average log message size of 74 bytes,
while using very little network bandwidth and a little more
than half of the log host’s CPU resources. While more
tests would be needed to adequately map the performance
of a larger range of message sizes and log host PC config-
urations, it can be seen that with a server of the size and
capabilities we have chosen that a fairly large collection
of client machines could be supported by a single log host
doing log collection.

4.2 SawQL parser performance

We studied the performance of SawQL by measuring
the time for the SawQL language parser to parse a mid-
sized query. To measure the performance of the SawQL
language parser the following query was run through it
3000 times:

(HOSTS ’agent1’ service ’portmap’ OR ipaddress
%Address AND user %person AND ABSTIME
’07/10/96 4:5 PM, PDT’
’01/04/02 3:16 PM, PDT’)

RELTIME ’+/-1 hour’
(HOSTS ’solitaire’ service ’portmap’ AND

(ipaddress %Address OR user %person))
RELTIME ’+1 hour’ ’-3 hours’

(HOSTS ’oddjob’ service %Service AND ipaddress
%Address AND user %person)

RELTIME ’-1 hour’ ’+5 hours’
(HOSTS ’oddjob’ service %Service AND ipaddress

%Address AND user %person)
RELTIME ’*’

(HOSTS ’shasta’ pid ’1234’ AND logmsg ’serious’
AND (user ’fred’ OR ABSTIME
’07/10/96 4:5 PM’ ’01/04/02 3:16 PM’));

The average time to parse this query was 3.7 millisec-
onds, which means that we can examine about 300 queries
of similar complexity per second, or more for simpler
queries.

This result gives a sense of the user-interface delays the
parser will contribute to Kerf’s overall performance when
we use the parser to measure the complexity of candidate
queries suggested by the hypothesis engine, currently un-
der development.

4.2.1 Query scalability

When the Landing application is used to input SawQL,
each atomic SawQL statement generates a single SQL
query. Each SQL query returns some result set of the
actual log lines matching those parameters. When time
or variable correlation is included as part of the SawQL
statement it is necessary to store these “intermediate re-
sult sets” as temporary database tables and perform what
is normally an inner join to get the final results.

We set out to explore the aspects of Kerf’s database per-
formance that would cause Kerf to become unusable, that
is, where an analyst might wait an unreasonable amount
of time for what would seem to be a reasonable query to
complete.

There are many elements that might cause a given
query to complete in an “unreasonable” amount of time.
Database size affects the speed of SawQL query resolu-
tion in the same manner it would for a standard SQL query
as shown in Figure13.

We studied SawQL queries involving variable correla-
tion. In the variable correlation case, the number of found
results that then need to be correlated on is the most im-
portant factor in determining how long a query will take
to resolve; we call this number the “intermediate result set
size.” The intermediate result set size is the number of re-
sults returned by the previous, non-joining, SQL queries.

For the following form of query
(HOSTS ’tahoe’ service ’ftpd’ AND ipaddress=%ipaddress
AND ABSTIME ’11/10/02 04:00 AM, EDT’,
’11/30/02 06:33 AM, EDT’)

RELTIME ’+/-0 days 1:00:00’
(HOSTS ’tahoe’ service sshd’ AND ipaddress=%ipaddress
AND ABSTIME ’11/10/02 04:00 AM, EDT’,
’11/30/02 06:33 AM, EDT’);

15
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Figure 12: Average disk write rate

Figure14 plots the total query time as intermediate re-
sult set size grows, as well as two key components of the
total query time: the time spent correlating records based
on one variable, and the time spent correlating the results

on time. While the time for a query does grow in a super-
linear fashion, we believe it grows in a limited enough
fashion to show Kerf being useful on large log databases
even when the analyst wants to perform the most demand-
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Figure 13: Correlation Time vs. Database Size (size of
database marked in megabytes)

Figure 14: Intermediate Result Set Size vs. Time for
Queries Involving Correlation

ing task of variable correlation on items that appear fre-
quently in the database. The spike in the lower curve
(time correlation) at the far right of Figure14 is due to
filling real memory and forcing the kernel to swap out to
disk. We may alert the user that their query will use more
than the available physical memory in future versions of
the application.

With tuning, we believe we can reduce the total query
time and flatten the curves of the preceding figures. Sev-
eral improvements are possible in the code that manages
the correlation process Figure15. We also plan to use a
newly released feature of MySQL, which allows for subs-
elects. Subselects should allow us to remove the code for
managing the storage of intermediate result set tables and
reduce much of the associated interprocess communica-
tion time. We may also use a “RAIDb” configuration, in

Figure 15: Time Breakdown of a Query Involving Time
and Variable Correlation

which the database query can be spread across multiple
database engines, hosts, and disks.

Our goal is to support open-ended queries on databases
that may contain many matching instances, because an an-
alyst’s initial hypothesis (query) may be quite broad. To
support our goal we are working to increase the perfor-
mance of the system and provide more support in the user
interface to allow an analyst to pre-judge a query’s effec-
tiveness and time to complete.

4.3 Statistics from a deployment

As a part of an ongoing experimental deployment of
Kerf, we have installed transponders on 31 Linux desk-
top machines in our lab, used primarily by the students,
a general ssh/login server used by both students and fac-
ulty and a firewall–sensor machine protecting a separate
subnet and open to the external traffic. The statistics in
Table3 have been observed during a week of normal use.

The highest peak rate of messages from the user ma-
chines was observed to be approximately100 messages
per second.

Notice that the firewall–sensor machine is the most ac-
tive source of messages. The iptables firewall we used was
set up with a number of user chains to classify the allowed
kinds of traffic, and to produce log messages for packets
falling off of these chains, i.e. not matching our intended
classification. Thus the high number of messages from
the firewall was to be expected. Also, the granularity of
these events is much lower, most of these being caused by
single packets.

This non-uniformity of message sources raises a ques-
tion of whether packets from some sources must be given
a lower priority as compared to others, or directed to a
different logger on a separate network segment, to avoid
situations when the attacker may try to hide a penetration
attempt by conducting an obviously harmless but noisy
scan, eliciting enough messages from the sensor to cause
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Messages/day Messages/hour Messages/sec
Type of host min max avg min max avg min max avg

workstations, combined 625 29165 4656 17 2581 208 1 94 3.5
server 440 4440 2409 28 542 123 1 98 2.3

firewall–sensor 1000 42620 28573 19 6566 1281 1 60 4.7

Table 3: Syslog message rates

a network DOS condition and loss of more valuable log
messages from the real target. Limiting the sensor output
rate is an obvious remedy, but only a partial one. We are
currently measuring the quantitative side of such attacks.

5 Possible vulnerabilities

The Kerf tools are only useful to an analyst if log
data can be reliably collected and stored for later use.
Thus, our presentation would not be complete without dis-
cussing the weaknesses of Kerf. Most of these are charac-
teristic of any remote logging scheme.

There are several possible approaches to attacking a
Kerf installation. An attacker can try to prevent log mes-
sages from reaching the central logger by creating a DOS
condition on the network; in particular, he can try to cause
another machine with a Kerf transponder to emit a lot
of messages, with which the message relevant to ongo-
ing penetration of the current target will have to contend,
with the hope that the important trace message will be
dropped (and then deleted from the local log when pene-
tration succeeds). Additionally, once user-level privileges
on a Unix machine with standard syslogd are achieved,
the attacker can forge messages from any daemon.15 The
above two methods are “deletion” and “insertion” in the
IDS terminology, and can be used respectively to deny the
analyst vital information for analysis and to confuse him
with false intrusion traces.16 The prospective user of Kerf
should be aware of these issues, and take into account the
possibility that messages from a compromised machine
may not only be masked, but also forged, and watch out
for high levels of noise.

Theoretically, the attacker can also try to seize control
over the Kerf logger machine, by exploiting some vulnera-
bility in the libpcaplibrary (which the logger uses to sniff
log messages off the wire), or by exploiting some flaw
in Landing’s interface to MySQL or in Kerf’s message
parser. Considering that the logger is IP-less, establish-
ing a control channel would be hard, but not altogether
impossible.

15Using the logger(1) utility or syslog(3), for example.
16For theSnortIDS, thestickandsnottools implement this approach.

6 Related work

6.1 Kerf and Intrusion Detection Systems

Kerf supports incident analysis and recovery, rather
than intrusion detection. As a result, our work is com-
plementary to Intrusion Detection Systems (IDSs). Our
project uses output of intrusion-detection systems, such as
SRI’sEmerald17 and UCSB’sSTAT18, in two ways: (1) as
a provider of events that will start an analysis; and (2) as
data to be used in the analysis process. In many cases,
an IDS provides the first alert that spawns a “backward”
analysis aimed at identifying the sequence of actions (and
associated evidence) that brought the system to the cur-
rent state. During the incident analysis, IDS alerts will
be used as supporting evidence, along with data from host
and network logs.

The key difference between Kerf and Intrusion Detec-
tion Systems is that an IDS is expected to detect and re-
port attacks in real time, so that an appropriate reaction
can be taken by the administrators. An IDS is neither
designed for nor expected to recognize all traces of an
attack: a timely warning is considered more important
than a “full picture”. Accordingly, while IDS alerts are
very valuable for reconstructing a successful intrusion, an
IDS by itself cannot replace analysis tools. While a lot
of research went into designing better IDSs (e.g. research
systems and prototypes [VK99, Pax98, CCD+99, LS98,
Sma88, Lun90, Roe99, CDE+96, SBD+91, PN97], and
surveys [ACF+00, BM01, MHL94, Axe00, MM01] and
many others), comparatively little effort has been focused
on intusion analysis tools.

The IDWG19 of IETF is standardizing an alert format
(IDMEF) and an associated transfer protocol (IDXP). We
plan to extend Kerf to understand IDMEF and interoper-
ate with IDXP. Kerf is not closely related toMIT’s Lin-
coln Labs IDS evaluation effort20. The goal of the LL
project, a three-year effort funded by DARPA, was to pro-
vide a means to evaluate IDSs, especially those funded
by DARPA. For the Kerf project we may use the test and
training data produced as a byproduct of the LL project,

17http://www.sdl.sri.com/projects/emerald/
18http://www.cs.ucsb.edu/˜rsg/STAT/
19http://www.ietf.org/html.charters/idwg-charter.html
20http://www.ll.mit.edu/IST/ideval/
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to generate test cases for our analysis tools. Although the
1998 and 1999 data will be helpful, the data from the 2000
LL evaluation will be the most valuable because it con-
tains data pertinent to multi-step attacks.

NIST’s Computer Security Resource Center21 has an
intrusion–detection system based on mobile-agent tech-
nology. We do plan to use mobile code and possibly mo-
bile agents to aid in distributed data collection, but not in-
trusion detection. Thehttp://niap.nist.gov/cc-scheme/22 is
another security-tools evaluation and certification project,
but to the best of our knowledge they have not devel-
oped any tools like ours. TheFederal Computer Incident
Response Center23 (FedCIRC), hosted at NIST, suggests
tools for intrusion detection and is a forum for reporting
attacks. This web site allows limited human-to-human
collaboration about attacks, but to our knowledge there
is no specific software for forming, communicating, and
automatic testing of hypotheses about attacks.

At CERT, theAirCERT24 project is another attempt to
collect alerts from many sites around the country and to
organize them into a knowledge base for broader analy-
sis. AirCERT aims to collect intrusion information in real
time, and to organize the information for CERT and oth-
ers to analyze the data. AirCERT focuses on attacks that
are known, or at least detectable by existing IDS technol-
ogy. CERT’s Analysis Console for Intrusion Databases
(ACID25) is a tool to analyze a database of alerts, log data,
and packet data. This tool is perhaps closest to our project
of any that we have seen, as it is a tool for exploring and
analyzing intrusion data, and it can export information to
email for informal collaboration. It does not, however,
have any capability for hypothesis generation, refinement,
or sharing, which are the core of our project.

6.2 Kerf and other research projects

While Kerf’s planned functionality in hypothesis gen-
eration, hypothesis sharing for human collaboration, and
compact data display intersects with that of several other
projects that incorporate or are related to intrusion anal-
ysis, the focus and methods of these efforts are sub-
stantially different. At MITRE, a prototype system for
automated diagnosis for computer forensics [ET01] au-
tomatically generates attack hypotheses, but it does so
based on a detailed up-to-date description of the pro-
tected system (not assumed by Kerf) and uses AI ab-
ductive reasoning methods. Also, it is not intended to
serve as an interactive analysis tool with user feedback.
USC’s prototype PAID [GFV01] and the analysis com-
ponents of SRI’s EMERALD system also base their hy-

21http://csrc.nist.gov/focusareas.html
22NIST Common Criteria Evaluation Scheme
23http://www.fedcirc.gov/
24http://www.cert.org/kb/aircert/
25http://www.cert.org/kb/acid/

pothesis generation on a different method, Bayesian net-
works, and are not interactive and iterative. The Coop-
erative Intrusion Traceback and Response Architecture
(CITRA) [SHR+01] (a DARPA-funded effort at Boeing,
NAI Labs and UC Davis) aims to develop an infrastruc-
ture for sharing intrusion alerts and the results of intrusion
analysis between sites (as well as their response policy de-
cisions for coordinated reaction to an attack). However,
its focus lies mainly in developing a secure authenticated
communication infrastructure and languages for model-
ing, policy description and implementation across hetero-
geneous network environments, not in interactive intru-
sion analysis or hypothesis generation tools. TheWil-
low project26 (sponsored by DARPA and Rome Labora-
tory, and developed at the University of Colorado Boul-
der) aims to develop a similar communication infrastruc-
ture and policies for automatic reconfiguration in response
to intrusions.

Another related project is titled Plan Recognition in In-
trusion Detection Systems, funded under the DARPA Cy-
ber Panel program, located at Honeywell Labs. This work
proposes a system using the AI techniques of plan recog-
nition with IDS alert data. The project differs from Kerf
significantly in that it tries to actively predict the inten-
tions of an attacker, while Kerf would be used to deter-
mine the details of an attack. Some degree of human-
supervised correlation is needed for their effort, and in
that respect the proposed system would have to make
Kerf-style correlations to do its work.

Several other related projects use correlation engines
for analysis. The AAFID project [BGFI+98a, SZ00] has
a goal similar to ours in the area of log collection and
processing. AAFID implements more of the logic at the
monitor end. They mention correlation only in passing,
indicating that some component of the architecture will do
it. The Simple Event Correlator project27’s goal is to de-
velop tools for network management, logfile monitoring,
security management, and other tasks which involve event
correlation. Their correlation engine is different than ours
in that it seeks to identify different reactions to events in
the stream based on ”state”, defined by observed history
within a specified time window. The MACE project28, the
Meta-Alert Correlation Engine, builds upon the CLIPS
expert system, creating a distributed application that is ca-
pable of automatically filtering and correlating Intrusion
Detection alerts into Meta-alerts from multiple sources.
Correlation is used in the sense of cross-connecting signa-
tures and vulnerability descriptions from different sources
with each other and with the system/network services de-
scription. As a direct result, alerts about attacks against
absent services can be discarded, while attacks against

26http://www.cs.colorado.edu/serl/willow/
27http://simple-evcorr.sourceforge.net/
28http://mace-project.sourceforge.net/
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known services can be ranked and highlighted. The AW-
Stats project29, the Advanced Web Statistics (AWStats)
is a free web server logfile analyzer that shows you all
your Web (but also FTP or Mail) statistics including visits,
unique visitors, pages, hits, hours, search engines, key-
words, robots, etc. Correlation is used in the sense of ag-
gregating logged events into sessions and groups.

We also draw from previous work in lan-
guages [Gro00]. There are other domain-
specific languages for intrusion detection (such as
STATL [EVK00, GK02, NCR02, MMDD02]), but none
to our knowledge focus on intrusion analysis. Analyst
console tools do not usually provide a language that
could be used to export and share a description of an
attack. Although we believe our SawQL is novel and
useful, we are hardly the first to suggest domain-specific
languages. For us, SawQL is an integrated part of the
hypothesis generation, refinement, and export model,
because it provides a convenient, compact way to express
a hypothesis as a query.

6.3 Commercial products

The Internet Scannerproduct fromInternet Security
Systems30 has Security Fusionand SiteProtectormod-
ules that “provides superior threat prioritization through
automated correlation of large amounts of security data,”
although it is not clear that they use the term “correla-
tion” as we do. Their approach is somewhat similar to
Kerf’s approach, storing events of all kinds into a database
in a common format and then running analyses on the
database. The user cannot type in a query, nor can they
search for complex sequences of events They can click
on an event and get a menu that has questions like: What
are the details? What are the target objects of this event?
What sensors detected this event? What are the sources
of this event? What hosts have this vulnerability? Who
attacked this target? What attacks come from this tar-
get? What events were against this target? What are the
vulnerabilities on this target? There is little information
available on their web site, but there is no indication that
this product has anything like our hypothesis generation,
refinement, extrapolation, or sharing.

There are other indications that industry is beginning to
develop tools that help with intrusion analysis. In a recent
IDG article31 there is an interesting line: “Engle declined
to identify the software Lehman is using, but vendors of
such products includeNetForensics32 Inc. in Edison, N.J.,
ArcSight Inc.33 in Sunnyvale, Calif., andIntellitactics

29http://sourceforge.net/projects/awstats/
30http://www.iss.net
31http://www.idg.net/ic132252097201-5072.html
32http://www.netforensics.com
33http://www.arcsight.com

Inc.34 in Bethesda, Md.” None of those projects make
any mention of technology like our hypothesis generation
and refinement, or about the sort of variable correlation
supported by Kerf.

6.4 Secure remote logging

We also draw from previous work in remote log-
ging [Rom00, Pre99, SK98]. Although we have no inten-
tion of a contribution to the technology of remote logging,
any Kerf-like system requires a secure, efficient remote-
logging facility. Efforts to protect remote logging mecha-
nisms from a sophisticated attacker have been applied in
three different directions: encrypting transmitted informa-
tion, making the central log host harder to attack by oper-
ating it in sniffing-only mode without an IP address, and
concealing the very existence of the logging mechanism.

Several free software and commercial tools offer some
form of automation for analysis of system logs from mul-
tiple sources; Tina Bird compiled an excellent survey of
these, together with a collection of links to remote logging
tutorials and system-specific information [Bir02]. The
practical issues of log processing and database storage
have also been discussed in many technical publications
[All02, Chu02].

The Unix syslog facility has long had the capability
to send log records to other hosts for processing or stor-
age [Rom00], but provided no built-in mechanism for
securing this data. Adding security to remote logging
proved to be a non-trivial engineering problem in the real
world, even with IPSec and SSH available for construct-
ing secure tunnels [Pre99].

A detailed tutorial on using SSL to deliver syslog events
to a central host running Snort is provided by Hines [Hin].
This approach requires the logging host to have an IP ad-
dress, however. We are not the first to suggest the use of an
IP-less host for remote logging; indeed, Bauer presented
the details at DefCon [Bau02]. Mnemosyne uses a similar
technique to send control messages to an IP-less network
monitor [MV02]. The Honeynet project combines remote
logging, with encrypted packets, with an IP-less gateway
host much as in Kerf, but their implementation modifies
the Linux kernel, and stresses obfuscation of the very ex-
istence of a logging mechanism [Spi03].

6.5 Other sources

There is some work involving the application of visu-
alization techniques to intrusion detection [ES02, She02].
However, these visualization tools do not, as far as we
know, support automated generation of intrusion hypothe-
ses, nor provide for sharing them.

Finally, we build on existing work that uses AI tech-
niques for intrusion detection such as [Fra94, BGFI+98b,

34http://www.intellitactics.com
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SCCC+96]. The key difference between these previous
projects and our work is that we do not use machine learn-
ing on captured history data to learn about normal system
behavior and intrusion anomalies. Instead, we use ma-
chine learning for post-hoc data analysis; we aim to auto-
mate the process of defining hypotheses for what might
have happened, and then to interactively obtain human
user feedback to aid in refining those hypotheses.

6.6 Kerf and commonly used toolkits

On one level, the architecture of Kerf reflects the basic
necessities of log processing: parsing event records for
useful features, and storing these, along with the original
form of the record, in such a way that efficient searches
are possible. However, Kerf, while making the choices
discussed below, adds another level of abstraction to save
the analysts’ time and effort.

Kerf attempts to automate the process of loading logs
in a syslog-like unknown custom format as much as pos-
sible. The difficulties of parsing a significant number of
log records are often overlooked, whereas in practice this
can be, and generally is, an arduous task. Indeed, most
log messages come from applications, and follow what-
ever format discipline can be enforced on their develop-
ers (almost none in the case of the standard Unix log-
ging, and only a little better in the Windows world). A
parser may be preloaded with the sets of rules for pars-
ing messages from popular applications (e.g., Microsoft’s
LogParser35and various web server reporting tools), but
our experience suggests that support for importing logs
in a custom format36 is crucial. To this end, Kerf pro-
vides a tool for guessing patterns in batches of syslog-like
records, and an interface for user-supplied parser plug-
ins for binary formats, following the example of Snort,37

Ethereal,38 and other tools.
While storage solutions other than the relational

database have been tried (e.g., ASAX [HCMM92] is op-
timized to operate on sequential log files, suitably re-
formatted, in one pass), it is still the simplest choice for
implementations, and almost immediately puts the power
of SQL at the users’ disposal. In this Kerf is not different
from various other log processing tools (e.g., ACID39 and
other tools surveyed by Bird [Bir02]).

What separates Kerf from other tools using relational
databases and SQL as a back-end is its approach to ex-
pressing correlations between events. The main point

35http://www.microsoft.com/windows2000/downloads/tools/logparser/
36Sorenson in his tutorial http://www.securityfocus.com/infocus/1679

discusses a number of tools that output system information in text for-
mat. Although his focus is primarily on obtaining the data in a forensi-
cally clean way, we can also think of this data as input to an intrusion
analysis tool, for correlation or statistical analysis.

37http://www.snort.org
38http://www.ethereal.com
39http://acidlab.sourceforge.net

of its query language design is to allow describing a se-
quence of events, correlated on time or use of a par-
ticular system or network resource, in the most natural
and concise form. In other words, SawQL is targeted to
describeprocesses, not signatures. This is significantly
different from the design principles of pattern matching
languages targeting intrusion signatures (e.g., Snort and
ASAX [HCMM92])40 and is closer to the approach taken
by STATL [EVK00] (which provides more limited sup-
port for time correlations).

Additionally, Kerf attempts to provide a single frame-
work for handling log data. With Kerf, an initial invest-
ment into defining the features of log records will help to
save the effort that is spent on continually re-formatting
data during analysis with Unix command line tools. Fur-
thermore, Kerf offers a more flexible environment for
statistical analysis41 of query results than the standard
sortable table displays of Ethereal and SQL-based tools
(e.g., ACID, LogParser).

7 Summary

Kerf is a tool that aids system administrators in intru-
sion analysis. We constructed Kerf with the realization
that intrusion analysis is inherently an iterative, interac-
tive process. Kerf allows the sysadmin to express her hy-
pothesis about the attack as a query that can be run against
the set of logs collected from the network of client hosts,
and stored in a central SQL database. We designed the
SawQL query language, an extension of SQL, to allow a
domain-specific description of sequences of log records,
with correlation on time or on key fields. Our current im-
plementation has reasonable performance, but needs tun-
ing.

This paper demonstrates three significant contributions:

• a new domain-specific query language that can ex-
press sequences of log records,

• a query engine that can correlate records according
to time or common features, using variables, and

• compressed presentation of results for easier visual-
ization.

Perhaps the most significant contribution, however, is
that Kerf provides an integrated front end and powerful

40 It is worth noting that pattern matching languages tend to expose
their underlying matching mechanisms of doing correlation, a variant
of a finite-state machine, whereas SawQL hides the complexity of its
own mechanism, leaving space for back-end optimization of resulting
multiple joins in the underlying SQL queries.

41 Burnett gives an excellent tutorial of using sta-
tistical heuristics to look for traces of an intrusion in
http://www.securityfocus.com/infocus/1712, and Barish also men-
tions them in http://www.securityfocus.com/infocus/1653,1672. The
Kerf data presentation is meant to automate such analysis steps and
make them as effortless as possible.
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correlation and data-representation tools to aid the ana-
lyst, all in one package.

8 Future work

In the near term, we plan to extend our system to han-
dle other kinds of logs, in particular kernel logs of the
kind produced by Sun’sSolaris BSM42 and Linux syscall
loggers such asSnare43 or Syscalltrack.44

In the long term, a major goal of the Kerf project is
to provide semi-automated tools to aid the analyst in hy-
pothesis generation, refinement, archival, generalization,
and extrapolation. To this end we are currently develop-
ing a hypothesis engine. The hypothesis engine consists
of three components: (1) a hypothesis generation module,
(2) a hypothesis refinement module, and (3) a hypothesis
sharing module.

The hypothesis generationmodule assists the user in
formulating the initial hypothesis. For example, one pos-
sible form of this module would consist of a catego-
rized database of known attack signatures (and their cor-
responding SawQL queries) which the user could browse
to find (or help formulate) an initial query. Given a set
of keywords or a small number of suspicious records, the
module could also return and rank a collection of candi-
date initial hypotheses from its database using standard
query retrieval techniques. We propose to explore such
assistive technologies, though for most “new” attacks, we
would expect that the user would probably formulate an
initial hypothesis as a SawQL query from the alert data or
known attack result.

The hypothesis refinementmodule assists the user in
modifying the initial hypothesis to better target suspicious
behavior. Given an initial hypothesis, the user can en-
ter the corresponding SawQL query and obtain a set of
matching log records from the database. While the initial
query might filter the log data to some degree, it is almost
certainly the case that the initial hypothesis will need to be
refined to better target suspicious behavior and ascertain
the nature and extent of the attack. It is the purpose of the
hypothesis refinement module to assist in the iterative and
interactive refinement of hypotheses. Hypothesis refine-
ment consists of a feedback loop: In each iteration, the
user is presented with records matching the current query;
these records can be marked by the user as suspicious,
normal, or left unmarked; and a learning module then gen-
erates a new candidate query (or queries) which can be
used in the next iteration. We are currently developing a
learning module based on theminimum description length
principlewhich is widely used and studied in the machine
learning community. In effect, we attempt to find a “suc-

42http://wwws.sun.com/software/security/audit/
43http://www.intersectalliance.com/projects/Snare/
44http://syscalltrack.sourceforge.net/

cinct” hypothesis (as described by a SawQL query) which
describes the given data “well” (i.e., effectively differen-
tiates suspicious and normal data, as defined by the user).
Simple hypotheses which effectively describe given data
are known to generalize well to unseen (in our case, “un-
marked”) data, and we expect this phenomenon to hold in
our setting as well.

Finally, thehypothesis sharingmodule assists the user
in taking the final hypothesis and archiving it for later use,
extrapolating it for other specific users and domains, and
generalizing it for wider applicability.

We expect our new algorithms and tools for auto-
mated hypothesis generation, refinement, and sharing to
be a unique contribution to the current state of intrusion-
analysis tools.
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