
Copyright 1999 Springer-Verlag. In "Intelligent Information Agents", ISBN: 3-540-65112-8.�
THIS COPY IS THE AUTHORS’ PRE-PUBLICATION VERSION;�
it may differ slightly from the official published version.�

Mobile agents in distributed information retrieval

Brian Brewington� Robert Gray� Katsuhiro Moizumi�
David Kotz� George Cybenko and Daniela Rus

Thayer School of Engineering � Department of Computer Science
Dartmouth College

Hanover� New Hampshire �����

�rstname�lastname�dartmouth�edu

Abstract

Amobile agent is an executing program that can migrate during execution from machine to machine in
a heterogeneous network� On each machine� the agent interacts with stationary service agents and other
resources to accomplish its task� Mobile agents are particularly attractive in distributed information�
retrieval applications� By moving to the location of an information resource� the agent can search the
resource locally� eliminating the transfer of intermediate results across the network and reducing end�to�
end latency� In this chapter� we �rst discuss the strengths of mobile agents� and argue that although
none of these strengths are unique to mobile agents� no competing technique shares all of them� Next�
after surveying several representative mobile�agent systems� we examine one speci�c information�retrieval
application� searching distributed collections of technical reports� and consider how mobile agents can
be used to implement this application e�ciently and easily� Then we spend the bulk of the chapter
describing two planning services that allow mobile agents to deal with dynamic network environments and
information resources� ��� planning algorithms that let an agent choose the best migration path through
the network� given its current task and the current network conditions� and �	� planning algorithms that
tell an agent how to observe a changing set of documents in a way that detects changes as soon as possible
while minimizing overhead� Finally� we consider the types of errors that can occur when information
from multiple sources is merged and �ltered� and argue that the structure of a mobile�agent application
determines the extent to which these errors a
ect the �nal result�

� Introduction

A mobile agent is an executing program that can migrate during execution from machine to machine in a
heterogeneous network� In other words� the agent can suspend its execution� migrate to another machine�
and then resume execution on the new machine from the point at which it left o�� On each machine� the
agent interacts with stationary agents and other resources to accomplish its task�

Mobile agents have several advantages in distributed information�retrieval applications� By migrating to an
information resource� an agent can invoke resource operations locally� eliminating the network transfer of
intermediate data� By migrating to the other side of an unreliable network link� an agent can continue exe�
cuting even if the network link goes down� making mobile agents particularly attractive in mobile�computing
environments� Most importantly� an agent can choose di�erent migration strategies depending on its task
and the current network conditions� and then change its strategies as network conditions change� Complex�
e�cient and robust behaviors can be realized with surprisingly little code�

Although each of these advantages is a reasonable argument for mobile agents� none of them are unique to
mobile agents� and� in fact� any speci�c application can be implemented just as e�ciently and robustly with
more traditional techniques� Di�erent applications require di�erent traditional techniques� however� and

�

many applications require a combination of techniques� In short� the true strength of mobile agents is not
that they make new distributed applications possible� but rather that they allow a wide range of distributed
applications to be implemented e�ciently� robustly and easily within a single� general framework�

In this chapter� we �rst motivate mobile agents in detail� comparingmobile agents with traditional client�server
techniques and other mobile�code systems� and survey several existing mobile�agent systems� Then we con�
sider a speci�c information�retrieval application� searching distributed collections of technical reports� and
how this application can be implemented easily using our own mobile�agent system� D�Agents� Our mobile�
agent implementation performs better than 	or as well as
 a more traditional RPC implementation when the
query is complex or network conditions are poor� but worse when the query is simple and network conditions
are good� Complex queries and slow networks allow ine�ciencies in the core D�Agents and other mobile�
agent systems to be amortized over a longer execution or data�transfer time� These ine�ciencies� which are
intrinsic to the early stages of mobile�agent development� primarily cause large migration and communication
overheads�� Fortunately� solutions to many of the ine�ciencies already exist in high�performance servers and
recent mobile�agent work� Once these solutions are integrated into existing mobile�agent systems� mobile
agents will perform competitively in a much wider range of network environments�

Improving the performance of the core system does not address all of an agent�s needs� In particular� an
e�ective mobile agent is one that can choose dynamically all aspects of its behavior� i�e�� how many agents
to send out� where to send them� whether those agents should migrate or remain stationary� whether those
agents should send out children� and so on� The agent must have access to a wealth of network� machine
and resource information� and a corresponding toolbox of planning algorithms� so that it can choose the
most e�ective migration strategy for its task and the current network conditions� Therefore� a mobile�agent
system must provide an extensive sensing and planning infrastructure�

In this chapter� we describe several simple directory and network�sensing services in the context of the
technical�report application� Then we present initial work on two more complex planning services� 	�
 a
set of planning algorithms that allow an agent or a small group of cooperating agents to identify the best
migration path through a network� and 	�
 a set of planning algorithms that tell an agent how to observe a
changing set of documents 	speci�cally the pages available on the World Wide Web
 in a way that detects
changes as soon as possible while minimizing overhead� In the second case� the current planning algorithms
are oriented towards a stationary agent that has moved to some attractive proxy site and is now observing
the documents from across the network� We consider� however� how the algorithms can be extended to an
agent that migrates continuously or sends out child agents�

Section � explores the motivation behind mobile agents in more detail� Section
 surveys nine representative
mobile�agent systems� and brie�y mentions other mobile�agent systems� Section � describes the technical�
report application and analyzes its performance� Finally� Section � discusses the two planning services�

� Motivation

Mobile agents have several strengths� First� by migrating to the location of a needed resource� an agent can
interact with the resource without transmitting intermediate data across the network� conserving bandwidth
and reducing latencies� Similarly� by migrating to the location of a user� an agent can respond to user
actions rapidly� In either case� the agent can continue its interaction with the resource or user even if
network connections go down temporarily� These features make mobile agents particularly attractive in
mobile�computing applications� which often must deal with low�bandwidth� high�latency� and unreliable
network links�

Second� mobile agents allow traditional clients and servers to o�oad work to each other� and to change who
o�oads to whom according to the capabilities and current loads of the client� server and network� Similarly�
mobile agents allow an application to dynamically deploy its components to arbitrary network sites� and to

�Migration overhead is the time on the source machine to pack up an agent�s current state and send the state to the
target machine� plus the time on the target machine to authenticate the incoming agent� start up an appropriate execution
environment� and restore the state�

�

re�deploy those components in response to changing network conditions�

Finally� most distributed applications �t naturally into the mobile�agent model� since a mobile agent can
migrate sequentially through a set of machines� send out a wave of child agents to visit machines in par�
allel� remain stationary and interact with resources remotely� or any combination of these three extremes�
Complex� e�cient and robust behaviors can be realized with surprisingly little code� In addition� our own
experience with undergraduate programmers at Dartmouth suggests that mobile agents are easier to under�
stand than many other distributed�computing paradigms�

Although each of these strengths is a reasonable argument for mobile agents� it is important to realize that
none of these strengths are unique to mobile agents �CGH����� Any speci�c application can be implemented
just as e�ciently with other techniques� These other techniques include message passing� remote procedure
calls 	RPC
 �BN���� remote object�method invocation 	as in Java RMI �WRW��� or CORBA �BN���
� queued
RPC �JdT���� 	in which RPC calls are queued for later invocation if the network connection is down
� remote
evaluation �Fal��� SG��� Sto��� 	which extends RPC by allowing the client to send the procedure code to
the server� rather than just the parameters for an existing procedure
� process migration �DO��� LS����
stored procedures 	such as �BP���� where SQL procedures can be uploaded into a relational database for
later invocation
� Java applets �CW��� and servlets �Cha��� 	which respectively are Java programs that are
downloaded by a Web browser or uploaded into a Web server
� automatic installation facilities� application�
speci�c query languages� and application�speci�c proxies within the permanent network� None of these other
techniques� however� share all of the strengths of mobile agents�

Messaging passing and remote invocation� In contrast to message passing and remote invocation�
mobile code 	including mobile agents
 allows an application to conserve bandwidth and reduce latency even
if an information resource provides low�level operations� simply because the mobile code can be sent to
the network location of the resource� The mobile code can invoke as many low�level server operations as
needed to perform its task without transferring any intermediate data across the network� Moreover� the
mobile code can continue its task even if the network link between the client and server machines goes down�
The code has been sent to the other side of the link� and will not need the link again until it is ready to
send back a ��nal� result� The resource provider can implement a single high�level operation that performs
each client�s desired task in its entirety� Implementing these high�level operations� however� becomes an
intractable programming task as the number of distinct clients increases� In addition� it discourages modern
software engineering� since the server becomes a collection of complex� specialized routines� rather than
simple� general primitives�

Process migration� Typically� process�migration systems do not allow the processes to choose when and
where they migrate� Instead� most are designed to transparently move processes from one machine to another
to balance load� In addition� although some process�migration systems allow the processes to migrate across
heterogeneous machines �BVW���� these facilities still are intended for �closed� environments� where security
is less of a concern� Mobile agents� on the other hand� can move when and where they want� according to
their own application�speci�c criteria� For example� although mobile agents can move solely to obtain CPU
cycles� most mobile agents will move to colocate themselves with speci�c information resources� In addition�
nearly all mobile�agent systems have been designed from the ground up to be both platform�independent
and secure in open environments�

Remote evaluation� stored procedures� applets and servlets� Mobile agents are much more �exible
than these other forms of mobile code� First� a mobile agent can move from a client to server or from a
server to client� Most other forms of mobile code allow code transfer in a single direction only� Second�
a mobile agent can move at times of its own choosing� Java applets� in particular� are downloaded onto a
client machine only when a human user visits an associated Web page� Third� a mobile agent can move as
many times as desired� For example� if a server is implemented as a mobile agent� it can continuously move
from one network location to another to minimize the average latency between itself and its current clients
�RASS���� Conversely� a client agent can migrate sequentially through some set of machines� accessing some
resource on each� For example� if a client agent needs to query one database to determine which query it
should run against a second database� it can migrate to the �rst database� run the �rst query� analyze the
query results to determine the second query� throw out the analysis code to make itself smaller� migrate
directly to the second database� run the second query� and carry just the �nal result back to its home

machine� Most implementations of remote evaluation and stored procedures� along with all Web browsers
and servers that support applets and servlets� do not allow the mobile code to spawn additional mobile code
onto di�erent machines� making any form of sequential migration impossible� Instead� the client machine
must interact with each resource in turn�

Finally� a mobile agent can spawn o� child agents no matter where it is in the network� For example� a
mobile agent can move to a dynamically selected proxy site� send out child agents to search some distributed
data collection in parallel� and then merge and �lter the search results on the proxy site before carrying
just the �nal result back to the client� As with sequential migration� most implementations of the other
mobile�code techniques do not support such behavior�

Application�speci�c solutions� Finally� in contrast to application�speci�c solutions� such as specialized
query languages and dedicated proxies pre�installed at speci�c network locations� mobile agents are distin�
guished by both their �exibility and their ease of implementation� An application can send its own proxy
to an arbitrarily selected network location� and can move that proxy as network conditions change� In ad�
dition� a server simply can make its operations visible to visiting mobile agents� rather than implementing
higher�level operations or some application�speci�c language to minimize network tra�c�

Summary� In short� an application must use one or more of these other techniques to realize the same
behavior that mobile agents allow� and di�erent applications must use di�erent techniques� The true strength
of mobile agents is that a wide range of distributed applications can be implemented e�ciently� easily and
robustly within the same� general framework� and these applications can exhibit extremely �exible behavior
in the face of changing network conditions� As we show in Section �� mobile�agent systems are not e�cient
enough yet to be competitive with the other techniques in every situation� However� the potential for mobile
agents is clear� and mobile�agent researchers now share a common� realizable goal� a mobile�agent system
in which 	�
 inter�agent communication is as fast as traditional RPC� 	�
 migration of code is only a small
factor slower than an RPC call that transfers an equivalent amount of data� 	

 computation�intensive
agents execute no more than twice as slowly as natively compiled code� and 	�
 a wide range of network�
status information is available to agents for use in their decision�making process� In such a system� migration
would be advantageous even if the task involved only a few operations at each information resource� and a
mobile agent could use its knowledge of the task� the needed information resources and the current network
conditions to decide whether to migrate or remain stationary� In other words� mobile agents would perform
no worse than equivalent solutions implemented with the other techniques� and would often perform much
better�

� Survey of mobile�agent systems

In this section� we examine nine representative mobile�agent systems� and then brie�y discuss their similar�
ities and di�erences�

��� Representative mobile�agent systems

����� Multiple�language systems

Ara� Ara� �PS��� Pei��� supports agents written in Tcl and C�C��� The C�C�� agents are compiled into
an e�cient interpreted bytecode called MACE� this bytecode� rather than the C�C�� code itself� is sent from
machine to machine� For both Tcl and MACE� Ara provides a go instruction� which automatically captures
the complete state of the agent� transfers the state to the target machine� and resumes agent execution at the
exact point of the go� Ara also allows the agent to checkpoint its current internal state at any time during
its execution� Unlike other multiple�language systems� the entire Ara system is multi�threaded� the agent
server and both the Tcl and MACE interpreters run inside a single Unix process� Although this approach
complicates the implementation� it has signi�cant performance advantages� since there is little interpreter

�http���www�uni�kl�de�AG�Nehmer�Ara�

�

startup or communication overhead� When a new agent arrives� it simply begins execution in a new thread�
and when one agent wants to communicate with another� it simply transfers the message structure to the
target agent� rather than having to use inter�process communication� Nearly all Java�only systems are also
multi�threaded� and see the same performance advantages�

At the time of this writing� the Ara group is adding support for Java agents� and �nishing implementation
work on their initial security mechanisms �Pei���� An agent�s code is cryptographically signed by its manu�
facturer 	programmer
� its arguments and its overall resource allowance are signed by its owner 	user
� Each
machine has one or more virtual places� which are created by agents and have agent�speci�ed admission
functions� A migrating agent must enter a particular place� When it enters the place� the admission function
rejects the agent or assigns it a set of allowances based on its cryptographic credentials� These allowances�
which include such things as �le�system access and total memory� are then enforced in simple wrappers
around resource�access functions�

D�Agents� D�Agents� �GKCR���� which was once known as Agent Tcl� supports agents written in Tcl�
Java and Scheme� as well as stationary agents written in C and C��� Like Ara� D�Agents provides a go

instruction 	Tcl and Java only
� and automatically captures and restores the complete state of a migrating
agent� Unlike Ara� only the D�Agent server is multi�threaded� each agent is executed in a separate process�
which simpli�es the implementation considerably� but adds the overhead of inter�process communication�
The D�Agent server uses public�key cryptography to authenticate the identity of an incoming agent�s owner�
Stationary resource�manager agents assign access rights to the agent based on this authentication and
the administrator�s preferences� and language�speci�c enforcement modules enforce the access rights� either
preventing a violation from occurring 	e�g�� �le�system access
 or terminating the agent when a violation
occurs 	e�g�� total CPU time
� Each resource manager is associated with a speci�c resource such as the �le
system� The resources managers can be as complex as desired� but the default managers simply associate a
list of access rights with each owner� Unlike Ara� most resource managers are not consulted when the agent
arrives� but instead only when the agent 	�
 attempts to access the corresponding resource or 	�
 explicitly
requests a speci�c access right� At that point� however� the resource manager forwards all relevant access
rights to the enforcement module� and D�Agents behaves in the same way as Ara� enforcing the access rights
with short wrapper functions around the resource access functions�

Current work on D�Agents falls into four broad categories� 	�
 scalability� 	�
 network�sensing and planning
services� which allow an agent to choose the best migration strategy given the current network conditions�
	

 market�based resource control� where agents are given a �nite supply of currency from their owner�s
own �nite supply and must spend the currency to access needed resources �BKR���� and 	�
 support for
mobile�computing environments� where applications must deal with low�bandwidth� high�latency and unre�
liable network links �KGN����� Some scalability issues are discussed in the next section� where we analyze
the performance of a distributed retrieval application running on top of the D�Agents system� Network�
sensing and planning is discussed in section �� where we examine some services necessary for a distributed
information�retrieval to make e�cient use of available network resources�

D�Agents has been used in several information�retrieval applications� including the technical�report searcher
that is discussed in the next section� as well as
DBase �CBC���� a system for retrieving three�dimensional
drawings 	CAD drawings
 of mechanical parts based on their similarity to a query drawing�

Tacoma� Tacoma� �JSvR��a� JSvR��b� supports agents written in C� C��� ML� Perl� Python� Scheme
and Visual Basic� Unlike Ara and D�Agents� Tacoma does not provide automatic state�capture facilities�
Instead� when an agent wants to migrate to a new machine� it creates a folder into which it packs its code and
any desired state information� The folder is sent to the new machine� which starts up the necessary execution
environment and then calls a known entry point within the agent�s code to resume agent execution� Although
this approach places the burden of state capture squarely onto the agent programmer� it also allows the rapid
integration of new languages into the Tacoma system� since existing interpreters and virtual machines can

�http���www�cs�dartmouth�edu��agent�
�http���www�tacoma�cs�uit�no������TACOMA�

�

be used without modi�cation� Tacoma is used most notably in StormCast� which is a distributed weather�
monitoring system� and the Tacoma Image Server� which is a retrieval system for satellite images �JSvR��b��

The public versions of Tacoma rely on the underlying operating system for security� but do provide hooks
for adding a cryptographic authentication subsystem so that agents from untrusted parties can be rejected
outright� In addition� the Tacoma group is exploring several interesting fault�tolerance and security mecha�
nisms� such as 	�
 using cooperating agents to search replicated databases in parallel and then securely vote
on a �nal result �MvRSS���� and 	�
 using security automata 	state machines
 to specify a machine�s security
policy and then directly using the automata and software fault isolation to enforce the policy �Sch����

����� Java�based systems

Aglets� Aglets� �LO��� LC��� was one of the �rst Java�based systems� Like all commercial systems�
including Concordia �WPW���� WPW���� Jumping Beans �AA���� and Voyager �OBJ���� Aglets does not
capture an agent�s thread 	or control
 state during migration� since thread capture requires modi�cations to
the standard Java virtual machine� In other words� thread capture means that the system could be used only
with one speci�c virtual machine� signi�cantly reducing market acceptance�� Thus� rather than providing
the go primitive of D�Agents and Ara� Aglets and the other commercial systems instead use variants of
the Tacoma model� where agent execution is restarted from a known entry point after each migration� In
particular� Aglets uses an event�driven model� When an agent wants to migrate� it calls the dispatch

method� The Aglets system calls the agent�s onDispatching method� which performs application�speci�c
cleanup� kills the agent�s threads� serializes the agent�s code and object state� and sends the code and object
state to the new machine� On the new machine� the system calls the agent�s onArrival method� which
performs application�speci�c initialization� and then calls the agent�s run method to restart agent execution�

Aglets includes a simple persistence facility� which allows an agent to write its code and object state to
secondary storage and temporarily �deactivate� itself� proxies� which act as representatives for Aglets� and
among other things� provide location transparency� a lookup service for �nding moving Aglets� and a range
of message�passing facilities for inter�agent communication� The Aglet security model is similar to both
the D�Agent and Ara security models� and to the security models for the other Java�based systems below�
An Aglet has both an owner and a manufacturer� When the agent enters a context 	i�e�� a virtual place

on a particular machine� the context assigns a set of permissions to the agent based on its authenticated
owner and manufacturer� These permissions are enforced with standard Java security mechanisms� such as
a customized security manager�

Concordia� Concordia� �WPW���� WPW��� is a Java�based mobile�agent system that has a strong focus
on security and reliability� Like most other mobile�Java agent systems� they move the agent objects code
and data� but not thread state� from one machine to another� Like many other systems� Concordia agents
are bundled with an itinerary of places to visit� which can be adjusted by the agent while en route�� Agents�
events� and messages can be queued� if the remote site is not currently reachable� Agents are carefully saved
to a persistent store� before departing a site and after arriving at a new site� to avoid agent loss in the event
of a machine crash� Agents are protected from tampering through encryption while they are in transmission
or stored on disk� agent hosts are protected from malicious agents through cryptographic authentication of
the agent�s owner� and access control lists that guard each resource�

Jumping Beans� Jumping Beans	 �AA��� is a Java�based framework for mobile agents� Computers
wishing to host mobile agents run a Jumping Beans agency� which is associated with some Jumping Beans

�http���www�trl�ibm�co�jp�aglets�
�D�Agents� which does use a modi�ed Java virtual machine to capture thread state� is a research system and is under no

such market constraints�
�http���www�concordia�mea�com�
�Aglets calls the same method at each stop on the itinerary� while Jumping Beans� Concordia� and Voyager all allow the

agent to specify a di�erent method for each stop�
�http���www�JumpingBeans�com�

�

domain� Each domain has a central server� which authenticates the agencies joining the domain� Mobile
agents move from agency to agency� and agents can send messages to other agents� both mechanisms are
implemented by passing through the server� Thus the server becomes a central point for tracking� managing�
and authenticating agents� It also becomes a central point of failure or a performance bottleneck� although
they intend to develop scalable servers to run on parallel machines� Another approach to scalability is to
create many small domains� each with its own server� In the current version� agents cannot migrate between
domains� but they intend to support that capability in future versions� Security and reliability appear to be
important concerns of their system� public�key cryptography is used to authenticate agencies to the server�
and vice versa� access�control lists are used to control an agent�s access to resources� based on the permissions
given to the agent�s owning user�

Although they claim to move all agent code� data� and state� it is not clear from their documentation whether
they actually move thread state� as in Agent Java� They require that the agent be a serializable object� so it
seems likely that they implement the weaker form of mobility common to other Java�based agent systems�

����� Other systems

Messengers� The Messenger�
 project uses mobile code to build �exible distributed systems� not specif�
ically mobile�agent systems �TDM���� DMTH��� Muh���� In their system� computers run a minimal Mes�
senger Operating System 	MOS
� which has just a few services� MOS can send and receive messengers�
which are small packets of data and code written in their programming language M�� MOS can interpret M�
programs� which may access one of their two bulletin�board services� the global dictionary� which allows data
exchange between messengers� and the service dictionary� which is a searchable listing of messengers that
o�er services to other messengers� Ultimately� most services� including all distributed services� are o�ered
by static and mobile messengers� In one case� they allow the messengers to carry native UNIX code� which
is installed and executed on MOS� system calls are re�ected back to the interpreted M� code� allowing fast
execution of critical routines� while maintaining the �exibility of mobile code �TMN����

Obliq� Obliq �Car��� BN��� is an interpreted� lexically scoped� object�oriented language� An Obliq object
is a collection of named �elds that contain methods� aliases� and values� An object can be created at a remote
site� cloned onto a remote site� or migrated with a combination of cloning and redirection� Implementing
mobile agents on top of these mobile objects is straightforward� An agent consists of a user�de�ned procedure
that takes a briefcase as its argument� the briefcase contains the Obliq objects that the procedure needs to
perform its task� The agent migrates by sending its procedure and current briefcase to the target machine�
which invokes the procedure to resume agent execution�

Visual Obliq�� �BC��� builds on top of Obliq�s migration capabilities� Visual Obliq is an interactive appli�
cation builder that includes 	�
 a visual programming environment for laying out graphical user interfaces�
and 	�
 an agent server that allows Visual Obliq applications to migrate from machine to machine� When
the application migrates� the state of its graphical interface is captured automatically� and recreated exactly
on the new machine� Obliq does not address security issues� Visual Obliq does provide access control�
namely� user�speci�ed access checks associated with all �dangerous� Obliq commands� but does not have
authentication or encryption mechanisms� Typically� therefore� the access checks will simply ask the user
whether the agent should be allowed to perform the given action�

Telescript� Telescript�� �Whi��b� Whi��a� Whi���� developed at General Magic� Inc�� was the �rst com�
mercial mobile�agent system� and the inspiration for many of the recent mobile�agent systems� In Telescript�
each network site runs a server that maintains one or more virtual places� An incoming agent speci�es which
of the places it wants to enter� The place authenticates the identity of the agent�s owner by examining the
agent�s cryptographic credentials� and then assigns a set of access rights or permits to the agent� One permit�

�	http���www�ics�uci�edu��bic�messengers�
��http���www�cc�gatech�edu�gvu�people�Phd�Krishna�VO�VOHome�html
��http���www�genmagic�com�technology�mobile agent�html

�

for example� might specify a maximum agent lifetime� while another might specify a maximum amount of
disk usage� An agent that attempts to violate its permits is terminated immediately �Whi��b�� In addition
to maintaining the places and enforcing the security constraints� the server continuously writes the internal
state of executing agents to non�volatile store� so that the agents can be restored after a node failure�

A Telescript agent is written in an imperative� object�oriented language� which is similar to both Java and
C��� and is compiled into bytecodes for a virtual machine that is part of each server� As in D�Agents
and Ara� a Telescript agent migrates with the go instruction� A Telescript agent can communicate with
other agents in two ways� 	�
 it can meet with an agent that is in the same place� the two agents receive
references to each other�s objects and then invoke each other�s methods� and 	�
 it can connect to an object
in a di�erent place� the two agents then pass objects along the connection� Despite the fact that Telescript
remains one of the most secure� fault�tolerant and e�cient mobile�agent systems� it has been withdrawn
from the market� largely because it was overwhelmed by the rapid spread of Java�

��� Similarities and di�erences

All mobile�agent systems have the same general architecture� a server on each machine accepts incoming
agents� and for each agent� starts up an appropriate execution environment� loads the agent�s state infor�
mation into the environment� and resumes agent execution� Some systems� such as the Java�only systems
above� have multi�threaded servers and run each agent in a thread of the server process itself� other systems
have multi�process servers and run each agent in a separate interpreter process� and the rest use some combi�
nation of these two extremes� D�Agents� for example� has a multi�threaded server to increase e�ciency� but
separate interpreter processes to simplify its implementation� Jumping Beans �AA��� is of particular note
since it uses a centralized server architecture 	in which agents must pass through a central server on their
way from one machine to another
� rather than a peer�to�peer server architecture 	in which agents move
directly from one machine to another
� Although this centralized server easily can become a performance
bottleneck� it greatly simpli�es security� tracking� administration and other issues� perhaps increasing initial
market acceptance�

Currently� for reasons of portability and security� nearly all mobile�agent systems either interpret their
languages directly� or compile their languages into bytecodes and then interpret the bytecodes� Java� which
is compiled into bytecodes for the Java virtual machine� is the most popular agent language� since 	�
 it is
portable but reasonably e�cient� 	�
 its existing security mechanisms allow the safe execution of untrusted
code� and 	

 it enjoys widespread market penetration� Java is used in all commercial systems and in several
research systems� Due to the recognition that agents must execute at near�native speed to be competitive
with traditional techniques in certain applications� however� several researchers are experimenting with �on�
the��y� compilation �LSW��� HMPP���� The agent initially is compiled into bytecodes� but compiled into
native code on each machine that it visits� either as soon as it arrives or while it is executing� The most
recent Java virtual machines use on�the��y compilation� and the Java�only mobile�agent systems� which are
not tied to a speci�c virtual machine� can take immediate advantage of the execution speedup�

Mobile�agent systems generally provide one of two kinds of migration� 	�
 go� which captures an agent�s
object state� code� and control state� allowing it to continue execution from the exact point at which it left
o�� and 	�
 entry point� which captures only the agent�s object state and code� and then calls a known entry
point inside its code to restart the agent on the new machine� The go model is more convenient for the
end programmer� but more work for the system developer since routines to capture control state must be
added to existing interpreters� All commercial Java�based systems use entry�point migration� since market
concerns demand that these systems run on top of unmodi�ed Java virtual machines� Research systems use
both both migration techniques�

Finally� existing mobile�agent systems focus on protecting an individual machine against malicious agents�
Aside from encrypting an agent in transit and allowing an agent to authenticate the destination machine
before migrating� most existing systems do not provide any protection for the agent or for a group of machines
that is not under single administrative control�

Other di�erences exist among the mobile�agent systems� such as the granularity of their communication

�

mechanisms� whether they are built on top of or can interact with CORBA� and whether they conform
to the emerging mobile�agent standards� Despite these di�erences� however� all of the systems discussed
above 	with the exception of Messengers� which is a lighter�weight mobile�agent system
 are intended for
the same applications� such as work�ow� network management� and automated software installation� All of
the systems are suitable for distributed information retrieval� and the decision of which one to use must be
based on the desired implementation language� the needed level of security� and the needed performance�

� Application� The technical�report searcher

Mobile agents are commonly used in distributed information�retrieval applications� By sending agents to
proxy sites and to the information sources themselves� the applications can avoid the transfer of intermediate
data� can continue with the retrieval task even if the network link with the client machine goes down� and can
merge and �lter the results from the individual document collections inside the network� rather than pulling
all the results back to the client machine� In addition� many retrieval tasks require the application to simply
invoke a sequence of server operations with only a modest amount of �glue� code to decide which server
operation should be invoked next� Since such tasks are bound by the execution time of the server operations�
rather than the execution time of the glue code� a mobile agent can perform well even when implemented
in one of the interpreted languages that are found in most existing mobile�agent systems� In this section�
we consider such a retrieval application� namely the retrieval of documents from a distributed collection
of technical reports� This application is representative of many other distributed locating� gathering and
organizing applications� and results from its study are applicable to other applications with similar structure�

��� Description

Figure � shows the structure of the technical�report application� which was implemented on top of our
mobile�agent system� D�Agents� The technical reports themselves come from the Department of Computer
Science at Dartmouth College� We distributed the reports across multiple Dartmouth machines� each of
which is running the D�Agents system and the Smart system� The Smart system is a successful statistical
information�retrieval system that uses the vector�space model to measure the textual similarity between
documents �Sal���� The Smart system on each machine is �wrapped� inside a stationary agent� which is
labeled as Smart IR agent in the �gure� This stationary agent provides a three�function interface to the
Smart system� 	�
 run a textual query and obtain a list of relevant documents� 	�
 obtain the full text of a
document� and 	

 obtain pair�wise similarity scores for every pair of documents in a list of documents� The
pair�wise similarity scores are used to construct di�erent graphical representations of the query results�

When each stationary Smart agent starts execution� it registers with a virtual yellow pages �RGK���� The
yellow pages are a simple� distributed� hierarchical directory service� When the Smart agent registers with
the yellow pages� it provides its location 	i�e�� its identi�er within the D�Agents namespace
 and a set of
keywords that describe its service 	i�e�� smart� technical�reports� text
� A client agent searches for a service
by sending a keyword query to the yellow pages� The yellow pages return the locations of all services whose
keyword lists match the keyword query 	more speci�cally� all services whose keyword lists are a superset
of the keyword query
� A forthcoming version of the yellow pages will allow the client agents to search by
interface de�nition as well �NCK����

The main application agent is a GUI that runs on the user�s machine� This GUI is shown at the top of Figure
�� The GUI �rst lets the user enter a free�text query and optionally select speci�c document collections from
a list of known document collections� Once the GUI has the query� it spawns a mobile agent onto the
local machine� This mobile agent �rst consults one or more local network�sensing agents �RGK��� Moi����
which keep track of the network connection between the user�s machine and the rest of the network� These
network�sensing agents know what type of network hardware is in the machine� the maximum bandwidth
of that hardware� an uptime�downtime history of the network link� and the current observed latency and
bandwidth of the network link� The uptime�downtime history is used to calculate an approximate reliability
factor� i�e�� the probability that the network connection will go down at some point in the next few minutes�

�

2 2

1

Stationary IR agent Stationary IR agent

3

Child Agent

Jump

Jump

smaller final result

Dynamically selected
proxy site where agent

to return only a much
merges partial results

on mobile device
Application front-end

Agent

Spawn child / get result Spawn child / get result

...

Muir

Messages

Child Agent

Tuolomne

Messages

Figure �� An example application� Here a mobile agent is searching a distributed collection of technical
reports� The agent �rst decides whether to move to a dynamically selected proxy site� Then it decides
whether to spawn child agents or simply interact with the individual document collections from across the
network� muir and tuolomne are two machines at Dartmouth� Note that the yellow pages� which the agent
uses to discover the locations of the document collection� are not shown in this �gure�

��

Our reliability factor is quite simple�it is just the percentage of time that the network connection has been
down during the past n hours�but is su�cient for our purposes�

After consulting the network�sensing agents� it makes its most important decision� If the network connection
between the user�s machine and the network is reliable and has high bandwidth� the agent stays on the user�s
machine� If the connection is unreliable or has low bandwidth� the agent jumps to a proxy site within the
permanent network� This proxy site is shown in the middle of Figure �� With our current reliability and
bandwidth thresholds� the agent typically will remain on the user�s machine if the machine is a workstation
with a �� Mbit�s Ethernet link or a laptop with a � Mbit�s wireless Ethernet link� The agent will jump to a
proxy site if the user�s machine is a laptop with a modem link� The proxy site is dynamically selected by the
agent� In the current system� the selection process is quite simple�there is a designated proxy site for each
laptop and for some subnetworks� The agent will go to the proxy associated with the subnetwork to which
the laptop is attached� or to the laptop�speci�c proxy if there is no known subnetwork proxy� Currently� the
proxy sites are hardcoded� but eventually� they will be listed in the yellow pages along with other services�
Then an agent can search for the closest proxy site 	to its current location or to the document collections
�
the closest proxy site owned by its owner�s Internet Service Provider 	ISP
� the fastest proxy site� etc�

Whether or not the agent migrates to a proxy site� it consults the yellow pages to determine the locations
of the document collections 	assuming that the user did not select speci�c document collections
� Once
the agent has the list of document collections� it must interact with the stationary agents that serve as an
interface between D�Agents and Smart� Here the agent makes its second decision� If the query requires only
a few operations per document collection� the agent simply makes RPC�like calls across the network 	using
the D�Agent communication mechanisms as described in �NCK���
� If the query requires several operations
per document collection� or if the operations involve large amounts of intermediate data� the agent sends
out child agents that travel to the document collections and perform the query operations locally� avoiding
the transfer of intermediate data� In our case� the number of operations per document collection depends
on whether the user wants to see a graphical representation of the query results 	one additional operation
per collection
� whether the user wants to retrieve the document texts immediately or at a later time 	one
additional operation per document
� and whether the user has speci�ed alternative queries to try if the main
query does not produce enough relevant documents 	one additional operation per alternative query
� The
size of the intermediate data depends on the average size of the documents in each collection and the average
number of relevant documents per query� Since the average document size and average number of relevant
documents per query is nearly the same for all of our document collections� our current agent makes its
decision based solely on the number and type of the required query operations� Later� once our yellow pages
accept interface descriptions� we will allow each Smart agent to annotate its interface description with the
expected result size for each operation 	and to update those annotations based on its observations of its own
behavior
�

When the main agent receives the results from each child agent� it merges and �lters those results� returns
to the user�s machine with just the �nal list of documents� and hands this list to the GUI� Although the
behavior exhibited by this agent is complex� it is actually quite easy to implement and involves only about
�� lines of Tcl code� In particular� the decisions whether to use a proxy site and create children� although
admittedly simplistic in our current implementation� involve little more than two if statements that check
the information returned from the network sensors and the yellow pages� It is hard to imagine any other
technique that would allow us to provide an equally �exible solution with the same small amount of work�
More importantly� once some ine�ciencies in the D�Agents implementation are addressed 	and as long as
the agent carefully chooses when and where to migrate
� its performance should be comparable to or better
than that of any other technique� regardless of the current network conditions and without any application�
speci�c support at the collection or proxy sites� Indeed� the collection owners merely had to provide an agent
wrapper that made the existing Smart operations visible to visiting agents� and the proxy site did not need to
do anything at all 	aside from running the agent system itself
� As we will see in the next section� the critical
ine�ciencies involve communication and migration overhead� Due to the communication overhead� the agent
performs worse than traditional client�server techniques if it chooses to remain stationary� Similarly� due to
the migration overhead� the agent is better o� migrating only when network conditions are poor� or when
each query requires a large number of operations per collection� Fortunately� techniques to reduce these

��

overheads already exist�

��� Analysis

A full performance analysis of the technical�report searcher is beyond the scope of the chapter� Here we con�
sider only the case where the user�s machine has a reliable� high�bandwidth network connection� speci�cally�
a wired �� Mb�s Ethernet link� Under these network conditions� the searcher will not use a proxy site� but
still must decide whether to make cross�network calls or send out child agents� To understand the searcher�s
performance under these conditions� we ran a series of experiments� some involving traditional RPC�based
clients and servers� others involving test agents� Each experiment was performed on the same two machines�
two ��� MHz Pentium II laptops��� which were connected with a dedicated �� Mb�s Ethernet link� The
traditional clients and servers were written in C�C��� and since the technical�report searcher was written
in Tcl� the test agents were written in Tcl also�

Base performance� First� we consider the base performance of the core D�Agents system� Figure �a shows
the results of three performance experiments� The �rst experiment� the results of which are shown as the
RPC line in Figure �a� measures the time needed for a client on one laptop to make a Sun RPC call into
a server on the second laptop� The total size of the arguments to the RPC call was ��� bytes� the result
size varied from ��� bytes to ���� bytes� The server did no work aside from immediately responding to the
client with a dummy result of the desired size� This �rst experiment does not involve the agent system in
any way� but instead is used to place the D�Agent performance numbers in context�

The second and third experiments do involve the agent system� In the second experiment� an agent on the
�rst laptop sent a request message to an agent on the second laptop� and the agent on the second laptop sent
back a response� The Agent �send�receive� line in Figure �a shows the total round trip time as a function
of response size� the request size was again ��� bytes� In addition� as in the RPC experiment� the �server�
agent did no work aside from immediately sending back a dummy response message� Finally� in the third
experiment� an agent on the �rst laptop sent a child agent to the second laptop� the child agent then sent
back a response message to its parent� The Agent �submit�receive� line in Figure � shows the total time from
agent submission to result reception� The size of the child agent was ��� bytes� and the child agent did no
work aside from immediately sending back a dummy result�

Unlike previous performance results for D�Agents �Gra���� these agent experiments were measured with the
new multi�threaded version of the D�Agents server� which eliminates signi�cant interprocess communication�
In addition� the new server maintains a pool of �hot� interpreters� it starts up a set of interpreter processes
at boot time� and then hands incoming agents o� to the �rst free interpreter in that set� In addition�
an interpreter process does not die when an agent �nishes� but instead stays alive to execute the next
incoming agent� Although this approach still runs each agent in a separate process� it eliminates nearly all
of the interpreter�startup overhead��� Also� the agent experiments were performed with encryption turned
o�� The agents would perform signi�cantly worse with encryption turned on� but so would an equivalently
secure version of RPC� Turning encryption o� is reasonable� since many document collections would not care
about the identity of the agent�s owner�

The base performance numbers illustrate two important points� 	�
 inter�agent communication involves
signi�cantly more overhead than RPC� and 	�
 migration involves even more overhead than inter�agent
communication� Fortunately� this overhead comes from several clear sources� First� the agents are written in
Tcl� which is a relatively slow scripting language� D�Agents� however� includes two faster languages� Java and
Scheme� In addition� the newest version of the Tcl interpreter� which has not been integrated into D�Agents
yet� uses on�the��y compilation 	into virtual machine bytecodes
 and is more than ten times faster than
previous Tcl interpreters� Second� even though the multi�threaded server uses a pool of hot interpreters�

��The laptops had ��� MHz Pentium II processors� �� MB of main memory� 	�
 MB of swap space� and 	�� GB of disk space�
The operating system on each laptop was Slackware Linux� kernel version ������� All C
C�� code used in the experiments
�including the D�Agent interpreters and server� was compiled with GNU gcc version ������� with an optimization level of ��

��It does not eliminate all of the overhead since each interpreter process is only allowed to handle a certain number of agents
before it is killed and replaced with a new process� In addition� even though the interpreter process remains active from one
agent to another� there is still some interpreter initialization and cleanup that must be done for each agent�

��

(a) (b)

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100

T
im

e
(m

ill
is

ec
on

ds
)

Number of documents

Sending an agent (20% of documents relevant)
Sending an agent (no relevant documents)

Downloading the documents

0

10

20

30

40

50

60

0 2000 4000 6000 8000

T
im

e
(m

ill
is

ec
on

ds
)

Response size (bytes)

Agent: submit/receive
Agent: send/receive

RPC

0

100

200

300

400

500

0 20 40 60 80 100

T
im

e
(m

ill
is

ec
on

ds
)

Number of queries

Migrating agent (messages)
RPC

Migrating agent (meetings)
Migrating agent (library)

(c)

Figure �� �a	 Base performance of D�Agents� �b	 Retrieval time as a function of the number of queries per
document collection� �c	 Retrieval time as a function of the number of relevant documents per query� Each
data point is the average of either ��� 	agent experiments
 or ���� 	RPC experiments
 trials� These graphs
are explained in the chapter text�

�

each Tcl interpreter must still execute several hundred lines of Tcl code to re�initialize itself before executing
an incoming agent� This re�initialization adds nearly ten milliseconds to the migration time� Some of the
re�initialization can be eliminated� and the rest can be made much faster� either by switching to the newest
Tcl interpreter or re�implementing the initialization code in C�

Finally� whereas the RPC client and server use UDP� every communication between machines in the agent
system involves a TCP connection� Thus� there is one TCP connection for the request message or migrating
agent� and a second connection for the response� In addition� all communication goes through the agent
servers� which� although necessary in the case of a migrating agent� is not necessary when one agent is
simply sending a message to another� Possible implementation changes include using UDP for some agent
communication� increasing the speed with which the agent server forwards incoming messages to the correct
interpreter processes� allowing the agent servers to hold open connections to machines with which they
are communicating heavily� and possibly even associating unique network addresses with stationary service
agents so that client agents can communicate with those service agents directly� Unfortunately� this last
change complicates the security implementation� since the agent server will no longer be the single point at
which the system needs to authenticate incoming messages�

Performance when the searcher must perform multiple queries� With the base performance results
in mind� it becomes straightforward to understand the results for the actual technical�report searcher� Fig�
ure �b considers the case where the searcher needs to perform multiple queries against a single document
collection� Perhaps� for example� the user has speci�ed several alternative queries that should be tried if
the main query does not retrieve the desired number of relevant documents� The RPC line shows the time
needed for a traditional client 	written in C
 to run the queries from across the network� The query size
was ��� bytes� and the result size for each query was ���� bytes� which is consistent with the data volumes
observed when we perform queries against our current document collections� In addition� the server did not
actually perform the query� but instead sent back a dummy result� This approach allows us to run more
iterations of each test� Moreover� it will not change the relative performances shown in the �gure since the
same query backend would be used in all four cases� In other words� we have removed exactly that portion
of the code that is identical in all four cases� namely� the shared C library that actually runs the queries
through the Smart system�

The remaining three cases shown in Figure �b involve agents rather than RPC� In each case� an agent was
sent to the location of the document collection� where it ran the queries locally to the collection and sent
back only the �nal document list� The size of each test agent was ���� � ��� � ���n bytes� where n is the
number of queries that will be performed� the ���� is approximately the size of the real agent�s code� the ���
the size of the main query� and the ��� the size of the additional code and data that is needed to represent
and perform the alternative queries� The �nal result size was ���� bytes� In the �rst agent case� Migrating
agent �messages�� the agent used D�Agent messages to communicate with the stationary Smart agent� In
the second case� Migrating agent �meetings�� the agent �rst established a direct inter�process connection��

or meeting with the stationary agent� the queries and results were sent across the meeting� Finally� in the
third case� the agent loaded the Smart library itself and simply invoked the query procedures directly�

The agent that loads the Smart library itself performs quite well� As can be seen� even though the agent
was written in Tcl� and the network link between the laptops was relatively fast� the agent performed better
than RPC when it needed to invoke more than a dozen queries� and performed much better as the number
of queries increases� Once the migration and communication overhead is reduced as discussed above� it
should be competitive for even just �ve queries� This suggests that a useful abstraction will be services that
appear to be stationary agents� but� in fact� are provided through libraries� D�Agents includes an RPC�like
mechanism� which allows agents to invoke each other�s procedures� This mechanism would provide a natural
way of making a library appear as a stationary agent� since the client agent could make the same procedure
invocations in both cases� only the hidden implementation of the stubs would be di�erent�

On the other hand� when the client agent had to communicate with an actual stationary agent� it did
worse than RPC unless it performed more than forty queries with meetings� and always did worse with

��In the current implementation� this connection is a Unix�domain Berkeley socket� which is not the most e�cient connection
possible� but is easy to port from one version of Unix to another�

��

messages� There are several reasons why the agent performed worse� all of which were considered above�
Most importantly� the overhead of inter�agent communication is large even when the agents are on the same
machine� When an agent sends a message to another local agent� the message �rst is sent to the server
process 	over a pipe
� and then sent to the interpreter process that is executing the recipient agent 	over
another pipe
� The response message follows the reverse path back to the sending agent� Thus� each message
is sent twice� from agent to server� and then from server to agent� The overhead of the double transmission is
larger than the overhead of making RPC calls across the good network link� This can be seen clearly in the
Migrating agent �messages� line of Figure �b� which has a larger slope than the RPC line� It also comes into
play� however� when the agents are using meetings� since establishing a meeting requires the exchange of two
messages� a meeting request and a meeting acceptance� One possible solution is to allow direct inter�process
communication between agents� even when the agents have not established a meeting� For example� each
interpreter process could have a Unix domain socket for accepting messages from other local agents� Since
the agents are local to each other� the security concerns are signi�cantly less than if each process has a
network socket for accepting messages from remote agents�

Performance when the searcher must examine the document texts� Figure �c shows a set of
experiments where the Smart search operations do not match the application�s needs exactly� Here the
application must perform a query to get a list of potentially relevant documents� and then examine the
text of each document to decide which documents are actually relevant� The Downloading the documents
line shows how long it takes for a client 	written in C
 to open a TCP connection to the document server
	also written in C
 and send the query� plus the time needed for the server to send back the full text of all
potentially relevant documents� The two Sending an agent lines shows how long it takes to send an agent
to the document collection� and then for that agent to perform the query locally� examine the text of the
documents� and send back all relevant documents� Each agent was ���� bytes� the query was ��� bytes� and
each document was ���� bytes� the agent performed the query by loading a library and directly invoking a
procedure 	i�e�� the fastest case considered in the previous set of experiments
� the query procedure returned
a dummy result of the appropriate size� the agent opened the document �les directly to examine their full
text��� and the agent decided that a document was relevant if its text contained a particular two�word
substring�

The di�erence between the two Sending an agent lines is that in the �rst case� twenty percent of the examined
documents are actually relevant� while in the second case� none of the documents are actually relevant� As
can be seen� when there are no relevant documents� the agent does slightly worse than the downloading
solution� and when twenty percent of the documents are relevant� the agent does signi�cantly worse� All
of the implementation issues considered above are in�uencing these results� Three factors� however� have
the most impact� First� the time to read the document �les from disk� which must be done in both the
client�server and agent cases� takes nearly half of the total time 	even though the document �les were in
the �le cache for all but the �rst run
� Second� Tcl is slow enough that it takes nearly as long to perform
the substring search with a Tcl agent as to send the entire document text across our good network link�
Third� and most importantly� the ine�ciencies in the inter�agent communication mechanisms hurt the overall
performance more and more as the number of relevant documents increases� In the worst case� �� kilobytes
of document text are sent inside an agent message� Clearly� it is necessary to implement a more e�cient
means of �streaming� data from an agent on one machine to an agent on another� At the same time� it is
worthwhile to note that if a separate network connection must be established for each downloaded document
	as with some Web servers
� the agent solution performs far better than the document�downloading solution
�RGK����

Summary� Taken together� these results mean that the technical�report searcher agent generally will take
longer to complete its query than the corresponding client�server solution� since 	�
 inter�agent communica�
tion across machines is slower than RPC� 	�
 inter�agent communication on the same machine is also slow�
making migration less useful� and 	

 the searcher and all its agents are written in Tcl� At the same time�
even with �� Mb�s links and slow Tcl agents� the searcher does outperform the client�server solution in sev�
eral cases� particularly when the document collections provide their search operations as a loadable library�

��It is reasonable to assume that the query procedure or agent would include the �lesystem location of the document �les in
the result list�

��

Moreover� as network bandwidth� reliability� latency or load become worse� the technical�report searcher will
have better and better performance relative to the client�server solution �Gra���� since it transmits less data
across the network and requires fewer network�communication steps�

In addition� the performance bottlenecks in the current D�Agents system are easy to identify� and several
solutions exist� In fact� in some mobile�agent systems� particularly the Java�based systems where each agent
executes in its own thread� some of the D�Agent bottlenecks have been eliminated already� For D�Agents
itself� a speedup of at least two can be realized with moderate implementation e�ort� without abandoning
Tcl as an agent language or resorting to multi�threaded interpreters� For the many applications where even
the newest version of the Tcl interpreter is not fast enough� D�Agents already includes two faster execution
environments� a Scheme interpreter and a Java virtual machine� Most other agent systems have similar� faster
environments� and securely executing agents less than twice as slowly as the corresponding natively�compiled
code 	through on�the��y compilation and other techniques
 is a realizable goal �LSW����

In short� although current mobile�agent implementations� such as D�Agents� do not o�er better performance
than competing solutions in as many cases as desired� these systems are far from their maximum possible
performance� As the implementations improve� mobile agents will become more and more attractive for
distributed information retrieval� Finally� it is important to note that all of the experiments above involved
dummy query operations� whereas the real Smart system does signi�cant work per query� The overhead of
the current D�Agents system becomes much more reasonable when considered against the Smart retrieval
times� For this and other retrieval tasks� the �exibility of D�Agents makes up for the performance penalties�

� Planning

��� Planning a route

In the example of the technical�report searcher� we launched a mobile information�retrieval agent to each
destination machine� and we assumed that each dispatched agent could de�nitely �nd the information it
was tasked to send� A more general class of information�retrieval problem anticipates the possibility that an
agent may not be able to �nd its desired information at a destination machine� Additionally� we may want
to use less network resources by sending fewer agents than the number of possible destination machines� In
this case� there is a need for planning that decides the best sequence 	itinerary
 of machines to be visited by
each agent so that the desired information can be found in minimum time� In this section� we will discuss
these planning problems� along with their solutions and some limited experimental results�

An itinerary determined by planning will be based on three things� a list of machines where an agent may be
able to �nd its desired information� the uncertainty in the quality of the data available on those machines�
and the current network conditions� The list of machines and document uncertainty are provided by a more
advanced yellow pages service than that used in the technical report searcher� The uncertainty degree is
de�ned to be the probability that an agent can successfully �nd information at each of those machines�
Last� the network conditions include information regarding connectivity of links� operability of machines in
the network� latency and available bandwidth of links� These statistics are collected by a network�sensing
module�

���� Architecture of the Mobile Agent Planning System

The architecture of our planning system for mobile agents is depicted in Figure
� The planning system
consists of three main components� a planning module� a network�sensing module and a yellow�pages module�
In our system� when a mobile agent is tasked with searching for information� it consults with the planning
module �rst� The planning module then asks a yellow�pages module for possible locations where the mobile
agent might �nd this desired information�

Although the current implementation of the yellow�page service does not have a function to measure this
probability of success� we assume that this probability is measurable� For example� the probability might

��

pages
YellowPlanning

module

Network-
sensing
module

Locations Network statistics

Query

Information

Query

Locations

infomation
Network

Mobile
Agent

User
inputs

Figure
� The architecture of the planning system

be as simple as the ratio of data cached at a proxy server to the full amount of data available at the actual
server�

After obtaining the list of machines and their corresponding probabilities of success� the planning module
passes the list to the network�sensing module� which returns the latencies and bandwidths between the
machines and their current CPU loads� The network�sensing module keeps track of these statistics by
probing the network at �xed intervals�

As soon as the network statistics are returned to the planning module� the sequence in which agents are
to visit machines 	to minimize total expected execution time
 is calculated from the network statistics and
probabilities of success� The calculation is done using the algorithms and theorems described in the following
subsection�

���� Traveling Agent Problems

The planning problem can formulated as deciding the sequence of machines to visit to minimize the total
expected time until the desired information is found� We name the planning problem the Traveling Agent
Problem 	TAP
 due to the analogy with the Traveling Salesman Problem �GJ���� Formally� the Traveling
Agent Problem is de�ned as follows�

The Traveling Agent Problem � There are n� � sites� si with � � i � n� Each site has a known
probability� � � pi � �� of being able to successfully complete the agent�s task� and a time
ti � �� required for the agent to attempt the task at si regardless of whether it is successful�
These probabilities are independent of each other� Travel times or latencies for the agent to move
between sites are also known and given by lij � � for moving between site i and site j� When
the agent�s task has been successfully completed at some site� the agent must return to the site
from which it started 	i�e�� site �
� For site �� p
 � t
 � �� The Traveling Agent Problem is to
minimize the expected time to successfully complete the task�

A solution to the Traveling Agent Problem consists of specifying the order in which to visit the sites� namely
a permutation � i�� i�� ���� in � of � through n� Such a permutation will be called a tour in keeping with the
tradition for such problems�

The expected time to complete the task or visit all sites in failure� for a tour T �� i�� i�� ���� in � is

CT � l
i� � ti� � pi� li�
 �

nX
k��

��
�	

j�k��Y
j��

	�� pij

��
� 	lik��ik � tik � pik lik

 �

nY
j��

	�� pj
ln
� 	�

This formula can be understood as follows� The �rst site� si� � on the tour is always visited and requires travel
time l
i� to be reached� Upon arrival� time ti� must be spent there regardless of success� With probability pi�

��

Case of agents Latency Probability Computation Time Complexity

� Single Variable Variable Variable NP �Complete
� Single Constant Variable Variable Sorting 	P

� Single Constant in the Variable Variable Dynamic

same subnetwork Programming
� Multiple Constant Variable Variable NP �Complete

 Multiple Constant Constant 	�
 Variable Partitioning 	PP

� Multiple Constant Constant 	� ���
 Variable Sorting 	P

 Multiple Constant Variable Constant Sorting 	P

Table �� Variation of Traveling Agent Problems

the task is successfully completed in which case the agent can return to site � with time cost li�
� However�
with probability 	��pi�
 there was failure and the agent proceeds to site i�� The contribution to the expected
time to moving from site i� to site i� and succeeding there is

	�� pi�
	li�i� � ti� � pi� li�

�

Here the factor 	� � pi�
 is the probability of failing at site i�� Similarly� the contribution to the expected
time due to moving from site i� to site i� and succeeding there is

	�� pi�
	�� pi�
	li�i� � ti� � pi� li�

�

Here the 	��pi�
	��pi�
 term is the probability of failing at both sites i� and i�� In general� the contribution
to the expected time due to site ik is

	probability of failure at the �rst k � � sites
� 	 expected time for success at site ik
�

Adding all these contributions together gives us the summation in 	�
� Finally� the last term in 	�
 arises
when failure occurs at all nodes and we must return to the originating site� We have used independence of
the various probabilities here� Not surprisingly� this problem is NP �complete �Moi����

���� Variation of Traveling Agent Problems

Because of its NP �complete complexity� some simplifying assumptions have to be employed so as to more
easily obtain optimal solutions for the Traveling Agent Problem� There are several variations of Traveling
Agent Problems depending upon the assumptions employed� These assumptions are made regarding the
four entities of Traveling Agent Problems� 	�
 the number of mobile agents� 	�
 the network latencies� 	

probabilities of success and 	�
 the task computation time at each machine� Table � shows the complexity
of each of the Traveling Agent Problems when these assumptions are employed�

We present only the single�agent cases in this section� Please see �Moi��� for a thorough discussion of the
multiple�agent cases�

The complexity of the single Traveling Agent Problem can be reduced when latencies between nodes are
assumed to be equal� For example� if the processing time at each node is extremely large 	compared to
the latency between the nodes
� di�erences among the latencies could be ignored� or even taken to be
zero� Alternately� if no information about internodal latencies is known� we might assume all of them to be
constant� The constant latency assumption is reasonable in the case of a single subnetwork as well�

Theorem � Under the assumption that the all the latencies are constant� the TAP can be solved in poly�
nomial time� The optimal solution for the TAP is attained if the nodes are visited in decreasing order of
pi�	ti � l
�

��

Refer to �Moi��� for the proof� The proof uses an interchange argument commonly used in �nance and
economics �Ber���� in which we determine the relative merit of exchanging the order of visiting two machines�
The criteria for exchange is precisely that the machine with a larger value of pi�	ti� l
 be visited �rst� When
all necessary exchanges have been made� a sorted list of pi�	ti � l
 results�

Many more complicated situations can be modeled by variable latencies that are constant within subnetworks
and across subnetworks� Speci�cally� consider the case of two subnetworks separated by a great distance
	say� one in Japan and one in the US
� Latencies between any two nodes within the same subnetwork are
treated as constant� as are latencies across the two subnetworks� That is� for sites in Japan� latencies are a
constant� lJ � and in the USA they are lU � Latencies between two nodes� one in Japan and one in the USA�
are known to be a third constant� lJU � Formally� we de�ne the Two Subnetwork Traveling Agent Problem
	TSTAP
 as follows�

Two Subnetwork Traveling Agent Problem � The relevant sites belong to two subnetworks� S�
and S�� Sites in Si are sij where � � j � ni� ni is the number of sites in subnetwork Si�
There are three latencies� L�� L�� L�� � �� For s�j � S�� s�k � S�� l�j�k � l�k�j � L�� while for
s�j � s�k � S�� we have l�j�k � l�k�j � L�� Similarly� for s�j � s�k � S�� we have l�j�k � l�k�j � L��
Probabilities� pij � � are nonzero and independent as before� Computation times tij � � are
arbitrary but nonnegative� The home site� s
 can be in a third sub�network� Latencies between
s
 and sites in Si are L
i� We assume that L
i� L�� � Li� That is� latencies within a subnetwork
are smaller than latencies across networks and to the home sites�

Theorem � The Two Subnetwork Traveling Agent Problem �TSTAP� can be solved in polynomial time using
the algorithm in Theorem � and dynamic programming�

Outline of algorithm � The algorithm in Theorem � consists of two steps� The �rst step is to sort machines
within the same subnetwork in decreasing order of pi�	ti � l
� which can be accomplished in ni logni steps�
This sorted ordering is used in the second step� where a dynamic programming algorithm is used to compute
the optimal solution� Actions taken in the dynamic programming are either to stay in the same subnetwork
and migrate the next unvisited machine there� or to migrate the next unvisited machine in other subnetwork�
Even though the problem is stochastic� it can be solved by a deterministic dynamic programming algorithm
in roughly O		n� � �
	n� � �

 steps �Moi����

���� Experimental results

Next� we show the result of an experiment where a single mobile information�retrieval agent must search for
information in the network with the assistance of the planning 	module
 agent�

In the experiment� information�retrieval agents were launched� and the time each agent takes was measured�
The task of the agent is to open a certain text �le 	the size is �
�KB
 in a text database on a machine� and
parse the �le to determine if the �le satis�es a given query� The outcome on a machine is determined by
a random number generator� so that the probability of success is the same as that given by the directory
service agent� Note that the result of parsing the text while looking for a given query does not a�ect the
success of the task� which is in fact decided by the random generator� If the search at a machine is successful�
the information retrieval agent returns to the home machine where it was launched� Otherwise� it migrates
to the next unvisited machine�

We ran experiments using seven laptop computers distributed in three subnetworks� one subnetwork con�
tained the home site� and the other two subnetworks contained the document collections� We introduced
arti�cial delays on network links so that the latencies between sub�networks were much larger than the
latencies between machines within the same subnetwork� To use the TSTAP algorithm� we set the latencies
both within and across subnetworks to be constant�

For the sake of comparison with our optimal planning algorithm� two greedy algorithms are employed� one
of which is based on the probability of success and the other on the estimated computation time at each

��

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

E
xe

cu
tio

n
tim

e
(s

)

v.s. Greedy method : probability

Optimal algorithm
Greedy method (probability)

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

Experiment runs

E
xe

cu
tio

n
tim

e
(s

)

v.s. Greedy method : computation time

Optimal algorithm
Greedy method (computation time)

Figure �� Performance comparison� execution time� For each experimental run� we generated a new set
of probabilities� and ran both the optimal and greedy algorithms with the same set� On the two graphs�
the x�axis is the run number� and the run numbers are assigned in order of increasing optimal�algorithm
execution time�

machine� Note that the estimated computation time at each machine is obtained based on its current CPU
load� its benchmarked CPU performance� and the estimated size of a task�

The results of the experiment are shown in Figure � and Table �� The top graph shows the results for
the greedy algorithm that uses success probabilities� while the bottom graph shows the results for the
greedy algorithm that uses estimated computation times� As we can see in the �gure� the optimal planning
algorithm does not always outperform the other two methods� This is due to the stochastic nature of the
planning problem� For example� an agent may �nd the information at the �rst machine even if it has a
small probability of success� The optimal algorithm only guarantees the minimum expected time until the
desired information is found� not the minimum time in all cases� Thus� due to the stochastic character of the
planning problem� it is more appropriate to compare algorithms based on the average values shown in Table
�� According to the results in the table� we can see the optimal algorithm outperforms the other algorithms�

The weighted arithmetic mean and the geometric means in Table � are de�ned as follows�

Optimal algorithm Greedy algorithm Greedy algorithm
	probability
 	computation time

First place �nishes �� �� �
Geometric mean � ��
� ����
Weighted arithmetic mean � ���� ����

Table �� Performance comparison� TAP� The geometric and arithmetic means are de�ned in the text� but
essentially are normalized execution times�

��

� Geometric mean� The geometric mean of the times for each method is

Gk �

�
nY
i��

T imeMk
	i

T imeMOPT
	i

� �

n

�

where T imeMk
	i
 stands for the execution time of method Mk on its ith run� T imeMOPT

	i

stands for the execution time of the optimal algorithm on its ith run� and n is the number
of runs�

� Weighted arithmetic mean� The weighted arithmetic mean of the times for each method is

Ak �
�

n

�
nX
i��

T imeMk
	i
Pm

j�� T imeMj
	i

�

where T imeMk
	i
 is the execution time of method Mk on its ith run� T imeMj

	i
 is the
execution time of method Mj on its ith run� n is the number of runs� and m is the number
of methods�

This value is the average percentage of the combined execution time used by method Mk�

��� Observation agents

The planning methods described in the previous section all relied upon information provided by the yellow
pages service� This service provided the probability of success in a search for certain kinds of information at
possible machines� As the information available on the network is in constant �ux� the yellow pages must be
kept up�to�date by adding new sites� removing old ones� and re�indexing sites that have changed� Our yellow
pages index entire document sites� other yellow pages might index particular documents� such as World Wide
Web pages� We consider the best ways to maintain such indices so as to catch changing content quickly�
During the discussion� we will use the word document extensively� but the approaches apply equally well to
document collections�

To solve the indexing problem� limited computational� network� and storage resources are devoted to scouring
available collections for new documents� and also re�examining old documents to inspect them for changes�
Whether done in sequence or in parallel� a search engine must always decide what document or documents
to examine next� There are many questions to consider� when is the best time to re�examine a document�
given knowledge of the document�s history and the priority placed on having correct knowledge of its state!
Indeed� how should we describe a document�s state!

If resources were unlimited� the solution is simple� each and every document could be monitored as frequently
as desired� watching for changes to appear� Of course� an observation does have obvious costs associated
with it� a machine uses time 	some network latency and some CPU cycle time
 to retrieve and inspect a
document� and disk space to store the results� In exchange for this cost� the search engine bene�ts from a
more current index of previously explored documents� a more comprehensive collection 	if new documents
are discovered
� and an accurate picture of the �dynamics� of the document in question�

An understanding of how documents change is necessary to maximize the recency of such an index� Knowing
a document�s change dynamics allows us to make fewer wasteful observations� When the engine must decide
which document to examine next� some documents will be more likely to have changed since last inspection
than others� If looking for changes� it makes sense to re�examine these documents more often than documents
which exhibit greater stability� Algorithms for selecting which observation to make next can also account for
what the collection may look like as a result of document checks yet to be run� That is� planning observations
can take into account the likely outcome of making those observations� This gives rise to planning problems
similar to those discussed in the context of the traveling agent problem 	TAP
� If the index is being used
for user searches� then it has the most value for frequently�requested documents� It seems reasonable that
resources should be preferentially allocated to the documents that are popular� fast�changing� or both�

��

���� Analysis and modeling

To mathematically demonstrate how this allocation should proceed� three things are essential� a represen�
tation of the document�s state� the dynamics of state evolution� and a formalization of the value of perfect
state knowledge�

Time�since�modi�cation as a Markov chain If probability distributions on document ages can be
determined� we can use the age to de�ne the modi�cation state of a document� This rests on the assumption
that probability of modi�cation is a strong function of the time since the previous modi�cation� which is
true for a large class of document changes �Bre���� Any reasonable discretization of this time will serve our
purpose� such as the number of days since the last change� for example� Using this de�nition of state� a
probability distribution of the time intervals between changes can be viewed as a Markov chain� Given a
state s � n days since the last change� there are only two things that can occur next� either the state will
advance to s � n � �� or it will reset to s � �� If we model N � � states� then the state s � N � � can be
treated as �N or more days since last change�� In this way� we can de�ne a matrix of transition probabilities
as

M �

�
	

preset 	�
 �� preset 	�
 � ���
preset 	�
 � �� preset 	�
 ���

��� ��� ��� ���
preset 	N
 � ��� �� preset 	N

�
�
 	�

The function preset 	t
 can be determined either from knowledge of the distribution of time intervals between
changes� or from the distribution of observed ages for a particular document� Either distribution implies
the conditional probability that a reset will occur in the following time interval� given that no change has
occurred for t time steps� Further discussion can be found in �Bre����

Generally� by raisingM to an integer power k� we can �nd the probability 	for initial age i
 that the system
became age j after k time steps have elapsed since the last observation�

P 	st�k � jjst � i
 �
�
Mk
�
ij

	

De�ning a cost function� Using this model� we can de�ne an objective function that can be optimized
for the collection� The objective in a real system could be fairly complex� for our discussions� more simplistic
criteria are su�cient� In this section we restrict ourselves using some simplifying assumptions� First� we
consider a document collection containing d documents� Second� assume that documents can be retrieved
at a rate of � documents per day� and that all document fetches have identical cost� Assume the states
corresponding to the rows of matrixMr denote the age in days of the rth document in the collection� Any
unit of time could be used� so long as it is consistent across the collection and the rate � is expressed in
the same unit� For each document r� we know that it was last observed kr days ago to have age ir� The
probability that document r has changed during this kr�step interval is

P 	changej fir�Mr� krg
 �
P

j��
�ir�kr��

�
Mkr

r

�
irj

� ��
�
Mkr

r

�
ir�ir�kr�

	�

Using this result� we can formulate a cost function for the collection� One simple cost function is the expected
total number of documents that are incorrectly indexed 	the indexed version is out�of�date
� which is just
the sum of the probabilities listed in 	�
 over the entire collection�

C �

dX
r��

�
��

�
Mkr

r

�
ir�ir�kr�

�
	�

��

Greedy cost minimization� Using 	�
 we can �nd the best way to reduce the costs that we will incur in
the coming day� By our assumption� we can check � documents per day� The smallest possible cost for the
following day can be obtained if we fetch and re�index the � documents corresponding to the largest terms
in the cost summation� These terms correspond to those documents with the largest probability of being
out of date 	�
� For all of the � documents we fetch� the probability of them now being out of date is zero�
If there is no single best choice for the � documents� then we can select � at random from the pool of �best
choices�� This situation occurs when applying 	�
 if more than � documents have probability � 	to working
precision
�

�Liveness� conditions� While having the advantage of being relatively simple� greedy algorithms may
force a situation in which long�term performance is not optimal� For example� in the re�indexing system�
there is the possibility of never checking some subset of the documents� This is a situation the indexing
system must avoid� especially if all items to be indexed are equally important� In queuing models for
computer operating systems� the analogous constraint that all processes be served is termed a �liveness�
condition� which would not be met if there were a subset of documents that changed so quickly that its
members always contributed the largest terms in the cost function 	�
� Liveness can be shown to hold for
	�
 under some simple constraints� The proof centers on the fact that all terms in the cost summation
monotonically approach unity if the documents to which they correspond go unchecked� An unchecked
document�s contribution to the cost will eventually exceed any threshold value � � �� � � � � �� This is
usually su�cient to give assurance of its inclusion in the set of largest terms� See �Bre��� for more�

Extending the cost horizon� Having an assurance of liveness is not enough to be satis�ed with the
long�term performance of the indexing system� The one�step algorithm does not take into account anything
other than the current probability of change for various documents� Indeed� no one�step method can take
advantage of knowing the di�erence in change rates among documents�

Consider the following simplistic system that demonstrates how to take advantage of knowing document
change rates� There are two documents� A and B� and we can check one per day� Page A changes quickly�
it has a probability of ��" of having been changed today� and if unobserved� it will have a ��" chance
tomorrow� If� however� we observe today� there will be a ��" chance of having been changed by the end
of tomorrow� Page B changes more slowly� It has an ��" chance today� which becomes ��" tomorrow if
B is unchecked today� If it is checked today� then tomorrow�s probability will be �"� Assume we can only
choose one of these to observe per day� and that we wish to minimize the total number expected number of
documents out�of�date over the two�day period�

�X
t�

�t �Prob	A changed� t
 � Prob	B changed� t
� 	�

There are four possible strategies in this situation� We can write these as two�day sequences of observations�
namely AA� AB� BA� and BB� If we observe a document� then it contributes zero cost on that day� since
we consider it �up�to�date� if checked within the last day� Therefore� the cost for observing A on both days
is exactly the cost of not observing B on those days� namely� ��� � ���� � ����� Likewise� we can �nd the
two�day cost for each possible sequence of observations� as shown in Table
�

To implement a two�day cost function in practice� we need to determine the possible costs we might see on
the second day for each document� Since we are assuming that observation forces the document to contribute
zero cost on the day in question� the three nonzero costs we need to be able to determine are 	i
 the cost
of not observing on the �rst day 	same as in previous section
� 	ii
 the cost of not observing on the second
day if we did not observe on the �rst day either� and 	iii
 the cost of not observing on the second day if we
did observe on the �rst day� Moving through these in order� we know that the cost on the �rst day is of the
form�

�

Sequence Cost Comment

AB ��� � ���� � ���� lower �rst day cost� one�day algorithm would pick this one
BA ���� � ���� � ���� lower total cost� two�day algorithm would pick this one
AA ��� � ���� � ���� document B ignored
BB ���� � ���� � ���� document A ignored

Table
� Possible costs in example two�document� one�check system

Pc �
X

j��
�ir�kr��

�
Mkr

r

�
irj
� ��

�
Mkr

r

�
ir�ir�kr�

	�

After two days� the form is exactly the same� only the document has aged by one day� accounted for by
incrementing the value of kr� Therefore� if we choose not to observe on the second day� the cost for that day
is� X

j��
�ir�kr

�
Mkr��

r

�
irj
� ��

�
Mkr��

r

�
ir�ir�kr���

	�

If we do choose to observe a document on the �rst day� we can calculate the expected second�day cost of
not observing� The second day�s costs will be calculated using the new value of k�r � � 	days since last
observation
 and the newly observed age i�r � Since we only know a distribution of possible values for i

�
r �

second�day costs will necessarily consist of weighted values from the matrix Mr� These correspond to one�
day state transition probabilities in 	�
� If the document was observed to be in state jr on the �rst day� then
the probability of it being out�of�date at the end of the second day is just preset	jr
� as used in 	�
� These
probabilities are also the �rst column of the matrix Mr� In our cost function� the values in this column
vector will contribute in proportion to their probability of occurrence� These probabilities are obtained from
the row over which we sum in 	�
� or the distribution of possible ages on the previous day� Therefore� the
probability that the document is out�of�date at the end of the second day� given that the document was
observed on the �rst day� is

NX
jr�

�
Mkr

r

�
irjr

Mjr� 	�

If we choose not to observe on the second day� then 	�
 would be the cost contributed for this document�
Note that this cost� being a probability� can be no greater than ��

Even though we can now �nd the probabilities for a general collection� the computational situation is still
rather grim� In a collection of d documents� in which we can check � per day� there are dC

�
� possible

strategies� A brute�force approach� in which we evaluate a cost for every strategy� is entirely infeasible for
the collection sizes under consideration� Even a simple algorithm will be fairly intimidating for a collection
containing literally millions of documents� Our current research �Bre��� includes methods by which to
guarantee optimal long�term performance�

���� Accounting for unequal cost of observation

Throughout the above discussion� we have assumed that we were capable of checking � documents per
day� While this may be true in the long run� there is de�nitely a variation in service times required for
the processing of documents� Further� service times can vary dramatically even for a single document�
Download and processing times are both proportional to document size� and available bandwidth depends
strongly upon the time of day 	e�g�� one expects long service time around ���� PM EST
� Our cost function
should be modi�ed to account for this variation both among di�erent documents and for a single document�

��

Deterministic document retrieval times� We assume that all documents require some constant time
to process� but that this time may not be the same for di�erent documents� This requires us to restate our
objective� since we can no longer count on a constant number of documents processed per day� Speci�cally�
we wish to discover incorrectly indexed documents as quickly as possible�

To quantify this� we introduce some notation� We would like to determine an optimal ordering of documents
to check� S� � fs�� s�� � � � � sdg� such that the expected time t taken to �nd an incorrectly indexed document
is minimized� Each document i has a �xed probability Pi of having been changed� In order to consider Pi
constant and calculable from 	�
� we must create a new list S whenever the probabilities Pi have changed�
Corresponding to each document� a time Ti is required for processing� The time t expected to �nd an
incorrectly indexed document can be expressed by a probability�weighted sum of these times� If we assume
some ordering S as listed above� then this time can be written�

t � Ps�Ts� � 	�� Ps�
 �Ps�Ts� � 	�� Ps�
 �Ps�Ts� � 	�� Ps�
 �� � ���� 	��

This is the same as the constant�latency TAP presented earlier as 	�
� in which the solution was to sort by
decreasing order of Pi�Ti�

S� � fs�� s�� � � � � sdg � where
Ps�
Ts�

�
Ps�
Ts�

� � � � �
Psd
Tsd

	��

This result is intuitively pleasant�we have moved from obtaining some �xed amount of bene�t per document�
to an expected bene�t per unit time� In an economic context� we think of comparing salaries being o�ered
by di�erent employers� In order to minimize the time taken to acquire our next unit of income� we will
always wish to work for the highest salary for as long as we are allowed to do so� This corresponds to
the intuitive notion that a document having Ti � � second and Pi � ��� would have a payo� rate of ���
changed documents observed per second� and would provide the same utility as checking a sequence of two
documents both having Ti � ��� seconds and Pi � ����� These two could be checked within one second� and
if their changes were independent� then the expected changed documents observed per second would also
be ���� In this formulation� we also assume that there is no reason to prefer a correct index entry for one
document over that for another� the value of a correctly indexed document is independent of the document�
Correspondingly� in the TAP problem presented earlier� we assumed that there was no reason to prefer one
information source over another�

Nonetheless� the earlier problem 	TAP
 di�ers from this one in some important ways� First� both the
probability of �success� and the processing latency are both strong functions of time� Planning by the
Pi�Ti method will only be valid for time scales on which both the probability and time spent are essentially
constant� While this may be an appropriate assumption for timescales on the order of a few minutes� it is
certainly not correct when used for longer scales� The tradeo� for ignoring variation in the probability and
the retrieval time is that we accept that some error will develop in the ordering as time elapses� That is�
it is possible that by accepting lower immediate bene�t� better long�term bene�ts might be achieved� just
as was the case in the Table
 example� If using single�step planning� then we must reexamine the order
in which we had planned to fetch documents after either the probability or the retrieval time has changed
signi�cantly�

Problems due to variation in retrieval times� Using the methods suggested above for documents
with non�constant retrieval times will result in indexing preference being given to documents that are either
closer to the database or smaller in size� That is� we select between two documents with identical change
probability based upon either how far away they are 	if of identical size
 or how large they are 	if at the
same location
� If we truly value only the expected number of current documents or some other metric that
does not account for how the entire collection is treated� then this is not a problem� Intuitively� though�
an index should not assign preference based strictly upon convenience of indexing� Methods are needed for
removing unwanted bias against documents that are either larger or farther away�

��

B

download send an agent

A A

B

C faster download at C

Figure �� Remote observation

���� Reducing observation costs using mobile agents

These two biases naturally lead into two targeted solutions whereby we might make limited use of remote
sites� First� it is critical that observation time be reduced� The two sources of this time are network�related
delay and document size� In this section� we discuss how these di�culties can be ameliorated by moving the
observer closer to the data and using encoding schemes so as to enable more frequent observation of large
documents�

In order to even consider use of a remote observation post� there must be more machines available for this
limited use� We may or may not have signi�cant privileges on these machines� but even a very narrow use�
such as simply making an observation from a remote machine� could be useful� Mobile agents are a means by
which such limited access might be granted� If we have this access� then we can choose to make observations
from machines if it bene�ts us to do so� By adding mobility to the observer� we give it the freedom to observe
in closer proximity to the resource and the chance to perform pre��ltering on the result�

As with the technical report searcher� mobile agents are only a good choice if the additional machines at our
disposal can only be utilized through an agent server� if we have full access to a machine� there is no reason
not to have a search robot permanently resident on the machine� Mobile agents enable us to take advantage
of situations in which one has such limited privileges on a machine� Since relatively few permissions are
necessary in order to make observations and perform simple �ltering� mobile agents are a viable solution�

The simplest type of remote observer might migrate to the vicinity of a document 	or collection
 of interest�
compress the documents and send them back to the home machine� where they would be decompressed and
analyzed� If the remote machines are at a great distance� this could result in a signi�cant time savings� More
complicated agents might transmit only the changes in document state in some compressed form� This would
be especially appropriate for large documents that only experienced minor changes� Being able to transmit
changes in state this way is a large step towards the use of �delta encoding� 	analogous to MPEG
 schemes
for HTTP transmissions �MDFK���� The key to making this type of encoding work is to package the agent
with knowledge of the previous state of the document� Then� when a change is observed� the agent need
only transmit the change in the document�s index entry� not the entire document or even the entire index
entry� This scheme has the desired features of reducing network tra�c as well as removing bias against large
or distant documents�

As packaging agents with an index entry and a lookup mechanism might produce a rather large piece of
code� a better candidate for a remote observer would probably be a simpler �lter� Large routines such as
compression algorithms might be made available as part of standard libraries on remote machines� preventing
us from having to carry compression code from machine to machine� The proxy server agent could be modi�ed
so that it would only return requested documents if they did not match a previously hashed version of the
document� carried with the agent� This agent could observe these documents more frequently 	being closer to
the resource of interest
 and then send documents back to the server 	compressed� if utilities are available to
the agent
 only if they had changed� A typical retrieval task would entail sending an agent with instructions
to look at some set of documents and return compressed versions of those that do not match a hash carried by
the agent� Alternatively� the agent could simply notify the home machine that the document had de�nitely
changed�

While mobility may be a valuable option� we need to know the relative merit of observing locally versus
using a mobile agent on a remote machine� Consider three machines� A� B� and C� Machine A contains
the main document index database� machine B contains a document of interest� and machine C is available
for use to a mobile agent� We emphasize that this is the only mode in which machine C can be used� for
whatever reason� we are not allowed to compile and install code there on a permanent basis� We wish to

��

determine what observation scenarios favor the use of a mobile observer in this situation� To do this� we
consider a comparison of the two scenarios shown in Figure �� We wish to compare the time it takes to
transfer a document directly from B to A versus the time it takes to send a remote observer to C� observe
the document at B and return relevant information� Making this more concrete� the document has size SD
bytes� The link from machine i to j has latency Lij seconds� and an e�ective transfer rate of Nij seconds
per byte � If observed directly from machine A� the time for k observations would be�

t� � k 	�LAB �NABSD
 	��

The request for the document is assumed to be small enough that the time taken to transfer it is essentially
the same as the link latency� Half of the latency term is due to this request� and half is due to the response�
We compare t� with the time t� taken to perform the same k observations using a mobile agent of size
SA � �SD transferred to machine C� Further� we assume that the agent is clever enough to compress the
document to a fraction 	 of its original size before transmitting 	SD bytes of index information back to A�
The total time is then

t� � 	LAC �NAC�SD � Cstartup
 � k �	�LCB �NCBSD
 �
 	LAC �NAC	SD
� 	�

To initiate the agent on the remote machine takes a time Cstartup� For simple agents� this should be the
only computation time on the same order as the transfer times� Other computation times� such as compres�
sion�decompression times� are assumed negligible by comparison� Also� notice that the agent�s messages to
the home machine are only required for the fraction
 of the observations on which a changed document
is observed� It is immediately clear that the download portion of t�� namely the term k 	�LCB �NCBSD
�
must be strictly less than t� in order to even consider the use of a remote observer� If this is the case� then
the sum of the outer terms in 	�

 must be less than the savings in download time in order for it to be
worthwhile to observe remotely� In other words� remote observation is a good option when we save more by
downloading at the alternate site than we spend in sending an agent and returning results� The two times
can be estimated in advance in order to determine the relative bene�t of the two modes of observation�

���� Multiple tasks� �ltering� and change assessment

This was a relatively simple comparison� but we state it to emphasize that agents can present advantages
even in simple situations� But an observation agent can be given tasks that are arbitrarily complex� For
example� it need not perform observations of only a single document� and it can be free to move to a better
vantage point if this saves time� In fact� the agent will multiply its e�ciency if it observes many documents
that might be resident on the target machine� B� Multiple observations of multiple documents will serve to
amortize costs over time� Additionally� as an agent completes observations� it can �diet� by dumping code
corresponding to completed tasks� whereupon it can migrate more quickly to the next observation site�

Whether observed by an remote agent� or by a robot running on the home machine� there must be a well�
de�ned means by which to determine whether or not a document has �changed��We have been rather slippery
about avoiding explanation of what might be meant by this� so as allow for more general types of observation�
For example� the yellow pages index entire document sites according to the content types available at each
site� rather than indexing speci�c documents� Our formulation above� however� is completely general� and
the description we gave of document dynamics applies equally well to collection dynamics� We simply need
to use a di�erent change�detection function�

If one de�nes a change in the strict sense of whether or not any bytes were altered� this may be problematic�
especially if we are considering changes within an entire collection� There will be situations in which the
object in question has certainly changed� but the change that occurred was insigni�cant� For example�
if the documents are Web pages� unimportant changes include the �counter� images on some web pages�
randomized advertisements chosen for display� extra whitespace in the HTML source� and anything else
essentially unrelated to the page�s content� Furthermore� it may be simple to assess what portion of a page�s
content is of interest� For example� certain robots may be tasked with looking for new links� Changed pages

��

that do not have new links are then no longer of interest� Simple �ltering tasks such as this could be carried
out in order to determine if a change is of interest�

� Conclusion

Mobile agents have the potential to be a single� general framework in which a wide range of distributed�
information�retrieval applications� such as the technical�report searcher described in this chapter� can be
implemented e�ciently� easily and robustly� By migrating to the location of a data repository� an agent can
access the repository locally and avoid the network transfer of all intermediate data� regardless of whether
the server provides low� or high�level operations� By migrating to a high�powered or lightly loaded machine�
an agent can gain additional CPU cycles for its computation� By migrating to the other side of an unreliable
link� the agent can continue its task even if the link goes down� By migrating to the other side of a low�
bandwidth or high�latency link� an agent can avoid transferring partial results and intermediate operations
across that link� reducing its total completion time� Most importantly� the agent can decide dynamically how
to behave � i�e�� migrate sequentially through a set of machines� send out child agents� or remain stationary
� according to its task� repository characteristics� machine capabilities� and current network conditions�

To make mobile agents attractive in as wide a range of applications as possible� two key issues must be
addressed� First� mobile�agent systems must become more scalable� In the short term� the main scalability
problem is the raw performance of the low�level agent infrastructure� Speci�cally� the overhead of inter�
agent communication must be reduced� so that stationary agents can compete with traditional client�server
implementations� The overhead of agent migration must be reduced� so that an agent will �nd migration
advantageous even in the best network environments and even if it needs to invoke only a few operations
per information resource� Lastly� agent execution environments must be able to run agents nearly as fast
as if they were natively compiled code� then agents could be used for load balancing tasks� and the load
on a �server� machine due to an agent�s presence would be only a modest amount worse than if the server
implemented the agent�s functionality itself� Solutions to all of these implementation problems exist in both
traditional high�performance servers and the mobile�agent literature� and the main task now is to identify
and combine the most suitable� In the long term� more research�oriented scalability issues revolve around
higher�level services� such as agent tracking� debugging and visualization�

Second and more importantly� mobile agents require a wealth of information to make reasonable decisions
about when and where to migrate� Numerous support services are needed to obtain and analyze current
network� machine� and repository conditions� and then make an e�ective plan for accomplishing the desired
task� Some of these services� such as directories and network�sensing modules� have seen extensive devel�
opment within other distributed�computing contexts� Much work remains� however� to make these services
work well within mobile�agent systems� where software components move rapidly and continuously from one
machine to another� Other services are more unique to mobile�agent systems� Such services include planning
algorithms that allow a single agent or a small group of cooperating agents to identify the best migration
path through the network� as well as algorithms that allow an agent application to determine how to best
�observe� a changing document collection� Promising work on both these services was described in this
chapter�

Acknowledgments

Many thanks to the O�ce of Naval Research 	ONR
� the Air Force O�ce of Scienti�c Research 	AFOSR
�
the Department of Defense 	DOD
� and the Defense Advanced Research Projects Agency 	DARPA
 for
their �nancial support of the D�Agents project� ONR contract N���������������� AFOSR�DOD contract
F������������
���� and DARPA contract F
��������������� to the legion of graduate and undergraduate
students who have worked on D�Agents� particularly Katya Pelehkov� Debbie Chyi� Pablo Stern and Ron
Peterson� who implemented signi�cant portions of the technical�report application 	and associated support
services
 and are now implementing the next�generation version of the technical�report application� and to

��

the editors� Matthias Klusch and Katia Sycara� for their invitation to contribute a chapter�

Biographies

Brian Brewington received his his B�S� in Engineering and Applied Science� emphasizing robotics and
control systems� from the California Institute of Technology in ����� He is currently in his fourth year of
Ph�D� work at the Thayer School of Engineering at Dartmouth College� where he is focusing on problems
of optimal allocation of observation resources� His other research interests include signal processing� data
mining� and aspects of information theory�

Robert Gray is a Research Assistant Professor in the Thayer School of Engineering� He is the lead researcher
and programmer for the D�Agents system� one of the mobile�agent systems discussed in this chapter� He is
primarily interested in the performance� security and fault�tolerance of mobile agents� He received his Ph�D
in computer science from Dartmouth College in �����

Katsuhiro Moizumi is a postdoctoral researcher in the Thayer School of Engineering� He received his Ph�D�
degree in computer engineering from Dartmouth College in ����� His research interests include planning�
scheduling� Markov Decision processing� optimal control� machine learning� mobile computing� and agent
systems�

David Kotz is an Associate Professor of Computer Science at Dartmouth College� He received the M�S�
and Ph�D degrees in computer science from Duke University in ���� and ����� respectively� He received
the A�B� degree in computer science and physics from Dartmouth College in ����� He rejoined Dartmouth
College in ���� and was promoted with tenure to Associate Professor in ����� His research interests include
parallel operating systems and architecture� multiprocessor �le systems� transportable agents� and parallel
computing in computer�science education�

George Cybenko� Dorothy and Walter Gramm Professor of Engineering in the Thayer School of Engi�
neering� received his B�Sc� in mathematics at the University of Toronto� and an M�A� in mathematics and
Ph�D� in electrical engineering from Princeton� He has taught on the computer science faculty at Tufts
University and was professor of electrical engineering and computer science at the University of Illinois�
Champaign�Urbana� At Illinois� he was also a director of the university�s Center for Supercomputing Re�
search and Development� He has served as editor for several mathematics� computer and information�theory
publications� and has published over �fty journal papers� book chapters and conference papers�

Daniela Rus is an Assistant Professor of Computer Science at Dartmouth College� Previously� she was a
research associate and director of the Information Capture and Access project at Cornell University� She
holds a Ph�D degree in computer science form Cornell University� Her research interests include distributed
manipulation� three�dimensional navigation� self�recon�guring robotics� mobile agents� and information or�
ganization� She holds an NSF Career award and a Sloan fellowship�

References

�AA��� Jumping Beans white paper� Ad Astra Engineering� Inc�� September �� ����� See
http���www�JumpingBeans�com��

�BC��� Krishna A� Bharat and Luca Cardelli� Migratory applications� In Proceedings of the Eighth
Annual ACM Symposium on User Interface Software and Technology� November �����

�Ber��� D� M� Bertsekas� Dynamic Programming� Prentice Hall� �����

�BKR��� Jonathan Bredin� David Kotz� and Daniela Rus� Market�based resource control for mobile
agents� In Proceedings of the Second International Conference on Autonomous Agents� pages
�������� ACM Press� May �����

��

�BN��� A� D� Birrell and B� J� Nelson� Implementing remote procedure calls� ACM Transactions on
Computer Systems� �	�
�
����� February �����

�BN��� Ron Ben�Natan� CORBA� A guide to Common Object Request Broker Architrecture� McGraw�
Hill� �����

�BN��� Marc H� Brown and Marc A� Najork� Distributed active objects� Dr� Dobb	s Journal� 	��

�
��
��� March �����

�BP��� Andrea J� Borr and Franco Putzolu� High performance SQL through low�level system integra�
tion� In Proceedings of the ACM SIGMOD International Conference on Management of Data�
pages
���
��� Chicago� Illinois� ����� ACM Press�

�Bre��� Brian Brewington� Ph�D� thesis proposal� Optimal observation with WWW applications� Avail�
able from http���comp�engg�www�dartmouth�edu�#brew�research�proposal�ps� �����

�BVW��� Matt Bishop� Mark Valence� and Leonard F� Wisniewski� Process migration for heterogeneous
distributed systems� Technical Report PCS�TR������� Dept� of Computer Science� Dartmouth
College� August �����

�Car��� Luca Cardelli� A language with distributed scope� Computing Systems� �	�
������� Winter �����

�CBC��� George Cybenko� Aditya Bhasin� and Kurt D� Cohen� Pattern recognition of
D CAD objects�
Towards an electronic yellow pages of mechanical parts� Smart Engineering Systems Design�
�����
� �����

�CGH���� David Chess� Benjamin Grosof� Colin Harrison� David Levine� Colin Parris� and Gene Tsudik�
Itinerant agents for mobile computing� IEEE Personal Communications� �	�
�
����� October
�����

�Cha��� Phil Inje Chang� Inside the JavaWeb Server� An overview of JavaWeb Server ���� Java Servlets�
and the JavaServer architecture� Sun Microsystems White Paper� Sun Microsystems� �����

�CW��� Mary Campione and Kathy Walrath� The Java tutorial� Object�oriented programming for the
Internet� Addison Wesley� �����

�DMTH��� Giovanna Di Marzo� Murhimanya Muhugusa� Christian Tschudin� and J$urgen Harms� The
Messenger paradigm and its implications on distributed systems� In Proceedings of the ICC	
�
Workshop on Intelligent Computer Communication� �����

�DO��� Fred Douglis and John Ousterhout� Transparent process migration� Design alternatives and the
Sprite implementation� Software� Practice and Experience� ��	�
��������� August �����

�Fal��� Joseph R� Falcone� A programmable interface language for heterogeneous systems� ACM Trans�
actions on Computer Systems� �	�
�

��
��� November �����

�GJ��� M� R� Garey and D� S� Johnson� Computers and Intractability� A Guide to the Theory of
NP �Completeness� W�H� Freeman and Company� �����

�GKCR��� Robert S� Gray� David Kotz� George Cybenko� and Daniela Rus� D�Agents� Security in a
multiple�language� mobile�agent system� In Giovanni Vigna� editor� Mobile Agent Security�
Lecture Notes in Computer Science� Springer�Verlag� ����� To appear�

�Gra��� Robert Gray� Agent Tcl� A �exible and secure mobile�agent system� PhD thesis� Dept� of
Computer Science� Dartmouth College� June ����� Available as Dartmouth Computer Science
Technical Report TR���
���

�HMPP��� John Hartman� Udi Manber� Larry Peterson� and Todd Proebsting� Liquid software� A new
paradigm for networked systems� Technical Report TR������ Department of Computer Science�
University of Arizonia� �����

�

�JdT���� Anthony D� Joseph� Alan F� de Lespinasse� Joshua A� Tauber� David K� Gi�ord� and M� Frans
Kaashoek� Rover� A toolkit for mobile information access� In Proceedings of the Fifteenth
ACM Symposium on Operating Systems Principles� pages �������� Copper Mountain� Colorado�
December ����� ACM Press�

�JSvR��a� Dag Johansen� Fred B� Schneider� and Robbert van Renesse� Operating system support for
mobile agents� In Dejan Milojicic� Frederick Douglis� and Richard Wheeler� editors� Mobility�
Mobile Agents and Process Migration
 An Edited Collection� Addison Wesley� ����� Originally
appeared in the Proceedings of the �th IEEE Workshop on Hot Topics in Operating Systsems�

�JSvR��b� Dag Johansen� Fred B� Schneider� and Robbert van Renesse� What TACOMA taught us� In
Dejan Milojicic� Frederick Douglis� and Richard Wheeler� editors� Mobility� Mobile Agents and
Process Migration
 An Edited Collection� Addison Wesley� �����

�KGN���� David Kotz� Robert Gray� Saurab Nog� Daniela Rus� Sumit Chawla� and George Cybenko�
Mobile agents for mobile computing� In Dejan Milojicic� Fred Douglis� and Rick Wheeler� editors�
Mobility� Mobile Agents and Process Migration� An Edited Collection� Addison Wesley� �����

�LC��� Danny B� Lange and Daniel T� Chang� IBM Aglets Workbench� Programming mobile agents
in Java� IBM White Paper� �����

�LO��� Danny B� Lange and Mitsuru Oshima� Programming and Deploying Java mobile agents with
Aglets� Addison Wesley� �����

�LS��� Michael Litzkow and Marvin Solomon� Supporting checkpointing and process migration outside
the Unix kernel� In Proceedings of the �

� Winter USENIX Technical Conference� pages ��
�
���� �����

�LSW��� Steven Lucco� Oliver Sharp� and Robert Wahbe� Omniware� A universal substrate for web
programming� World Wide Web Journal� 	�
� December �����

�MDFK��� J� Mogul� F� Douglis� A� Feldmann� and B� Krishnamurthy� Potential bene�ts of delta�encoding
and data compression for
HTTP� In Proceedings of ACM SIGCOMM	
� Conference� pages �������� September �����
Available from http���www�research�digital�com�wrl�techreports�abstracts������html�

�Moi��� Katsuhiro Moizumi� The mobile agent planning problem� PhD thesis� Thayer School of Engi�
neering� Dartmouth College� November �����

�Muh��� Murhimanya Muhugusa� Implementing distributed services with mobile code� The case of the
Messenger environment� In Proceedings of the IASTED International Conference on Parallel
and Distributed Systems �Euro�PDS	
��� Austria� July �����

�MvRSS��� Yaron Minsky� Robbert van Renesse� Fred B� Schneider� and Scott D� Stoller� Cryptographic
support for fault�tolerant distributed computing� In Proceedings of the Seventh ACM SIGOPS
European Workshop� pages �������� September �����

�NCK��� Saurab Nog� Sumit Chawla� and David Kotz� An RPC mechanism for transportable agents�
Technical Report PCS�TR������� Department of Computer Science� Dartmouth College� March
�����

�OBJ��� ObjectSpace Voyager core package technical overview� ObjectSpace� Inc�� December ����� Ver�
sion ��

�Pei��� Holger Peine� Security concepts and implementations for the Ara mobile agent system� In
Proceedings of the Seventh IEEE Workshop on Enabling Technologies� Infrastructure for the
Collaborative Enterprises� Stanford University� USA� June �����

�

�PS��� Holger Peine and Torsten Stolpmann� The architecture of the Ara platform for mobile agents�
In Proceedings of the First International Workshop on Mobile Agents �MA 	
��� volume ���� of
Lecture Notes in Computer Science� Berlin� April ����� Springer�Verlag�

�RASS��� M� Ranganathan� Anurag Acharya� Shamik Sharma� and Joel Saltz� Network�aware mobile
programs� In Proceedings of the �

� USENIX Technical Conference� pages ������� �����

�RGK��� Daniela Rus� Robert Gray� and David Kotz� Transportable information agents� Journal of
Intelligent Information Systems� �������
�� �����

�Sal��� G� Salton� The Smart document retrieval project� In Proceedings of the Fourteenth International
ACM�SIGIR Conference on Research and Development in Information Retrieval� �����

�Sch��� Fred B� Schneider� Towards fault�tolerant and secure agentry� In Proceedings of the ��th Inter�
national Workshop on Distributed Algortithms� September �����

�SG��� J� Stamos and D� Gi�ord� Remote evaluation� ACM Transactions on Programming Languages
and Systems� ��	�
��
������ October �����

�Sto��� A� D� Stoyenko� SUPRA�RPC� SUbprogram PaRAmeters in Remote Procedure Calls� Software

Practice and Experience� ��	�
������� January �����

�TDM���� Christian Tschudin� Giovanna Di Marzo� Murhimanya Muhugusa� Christian Tschudin� and
J$urgen Harms� Messenger�based operating systems� Technical Report ��� University of Geneva�
Switzerland� July ����� Revised September ��� �����

�TMN��� Christian Tschudin� Murhimanya Muhugusa� and Guy Neuschwander� Using mobile code to
control native execution of distributed UNIX� In Proceedings of the Third ECOOP Workshop
on Mobile Object Systems� Finland� June �����

�Whi��a� James E� White� Mobile agents make a network an open platform for third�party developers�
IEEE Computer� ��	��
������� November �����

�Whi��b� James E� White� Telescript technology� The foundation for the electronic marketplace� General
Magic White Paper� General Magic� Inc�� �����

�Whi��� James E� White� Mobile agents� In Je�rey M� Bradshaw� editor� Software Agents� chapter ���
pages �
������ MIT Press� �����

�WPW���� David Wong� Noemi Paciorek� Tom Walsh� Joe DiCelie� Mike Young� and Bill Peet� Concordia�
An infrastructure for collaborating mobile agents� In Proceedings of the First International
Workshop on Mobile Agents �MA 	
��� pages ������ �����

�WPW��� Tom Walsh� Noemi Paciorek� and David Wong� Security and reliability in concordia� In Proceed�
ings of the Thirty�First Annual Hawaii International Conference on System Sciences� volume
VII� pages ����
� January �����

�WRW��� Ann Wollrath� Roger Riggs� and Jim Waldo� A distributed object model for the Java system�
Computing Systems� �	�
��������� Fall �����

�

