
1

Interpretable Learning in Multivariate Big Data
Analysis for Network Monitoring

José Camacho∗, Member, IEEE, Katarzyna Wasielewska∗, Senior Member, IEEE, Rasmus Bro†, David
Kotz‡, Fellow, IEEE ∗Department of Signal Theory, Telematics and Communications, CITIC, University of

Granada, Spain †Chemometrics Group, University of Copenhagen, Denmark ‡Department of Computer Science,
Dartmouth College, Hanover, United States

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be
accessible.

Abstract—There is an increasing interest in the development
of new data-driven models useful to assess the performance of
communication networks. For many applications, like network
monitoring and troubleshooting, a data model is of little use if
it cannot be interpreted by a human operator. In this paper,
we present an extension of the Multivariate Big Data Analysis
(MBDA) methodology, a recently proposed interpretable data
analysis tool. In this extension, we propose a solution to the
automatic derivation of features, a cornerstone step for the
application of MBDA when the amount of data is massive.
The resulting network monitoring approach allows us to detect
and diagnose disparate network anomalies, with a data-analysis
workflow that combines the advantages of interpretable and
interactive models with the power of parallel processing. We
apply the extended MBDA to two case studies: UGR’16, a
benchmark flow-based real-traffic dataset for anomaly detection,
and Dartmouth’18, the longest and largest Wi-Fi trace known to
date.

Index Terms—Interpretable Machine Learning, Multivariate
Big Data Analysis, Anomaly Detection, Big Data, UGR’16,
Dartmouth Campus Wi-Fi, Network Monitoring

I. INTRODUCTION

In the Big Data era, there is an increasing interest in the
development of new data analysis methods to improve the
performance of communication networks, in tasks like network
monitoring, troubleshooting and optimization [1]. The current
trend in data analysis is towards highly complex black-box
methodologies, like deep learning [2]. These methodologies
learn models of the data intended to be used automatically,
and with little or no human supervision or interaction. Unfor-
tunately, for many network applications, a model of the data
is of little use if it cannot be interpreted by a human operator.

The relevance of interpretable models in several applications
has raised a lot of attention in the research community in recent
years [3]. There are two basic approaches to the derivation
of interpretable models from data. On the one hand, the
need for the interpretation of black-box models has given
rise to concepts like interpretable or explainable machine
learning [4], where strategies to explain black-box models or
to calibrate more interpretable black-box models are pursued.
An alternative approach is to use data analysis methods that
are themselves interpretable, rather than black-box [5]. This
paper lies in the second category.

Corresponding author: J. Camacho (email: josecamacho@ugr.es).

Just like their black-box counterparts, interpretable models
can be useful in classification, regression and anomaly detec-
tion tasks. However, a major advantage of interpretable models
is that they also provide information about why a model gives
a certain output. There are many situations in which an answer
is not of practical use, without knowing the “why”. Network
monitoring is an example: network operators desire to detect
unwanted events during the network operation, but they also
need to understand their root causes and troubleshoot them as
soon as possible.

Multivariate analysis has been recognized as an outstanding
data analysis approach in several domains, including industrial
monitoring [6], network security [7], marketing [8], weather
modeling [9], bioinformatics [10], food research [11], and
so forth. In this paper, we are interested in a multivariate
methodology for data interpretation: matrix factorization with
component models. In this methodology, visualization, inter-
pretation and data interaction are the principal tools for an
analyst to understand the problem the data reflects. Two are
the main features that make matrix factorization an appealing
methodology for the analysis of complex data: i) most matrix
factorization models are simple to interpret, because they are
based on linear algebra, and ii) they generate factors that
simplify the visualization of data. Another advantage is that,
even if a model is created to respond to a specific question
(e.g., anomaly detection), the interaction of the analyst with
the data through the model can bring much more information,
like the derivation of new, unexpected findings (e.g., network
misconfiguration or sub-optimal functioning). This property is
a useful one that black-box models do not normally provide.

Researchers have been quite active in the extension of
machine learning methodologies to Big Data. Unfortunately,
the extension of multivariate analysis to Big Data while
retaining the capabilities of visualization, interpretation and
data interaction has received little attention. In this context, the
Multivariate Big Data Analysis (MBDA) tool [12] is a recent
multivariate anomaly detection and data analysis approach
suitable for Big Data. It is based on three modules: the
downstream module, which transforms a Big Data stream into
a small feature data; the analysis module, where the analyst
can interact with the featured data to analyze and interpret
anomalies; and the upstream module, useful to map anomalies
to the original logs in the Big Data stream, so that operators
can derive full understanding of their root causes. MBDA
works as a magnifying glass into massive amounts of data,

ar
X

iv
:1

90
7.

02
67

7v
2

 [
cs

.N
I]

 1
8

A
pr

 2
02

3

2

with a configurable trade-off between the level of detail for
data visualization and the capability for data compression. The
key to this trade-off is the downstream module, where we
set the features and the time resolution for the subsequent
analysis. In the original MBDA proposal [12], the features
were manually defined, which is a sub-optimal solution and
complicates its application to truly massive volumes of data.

In this paper, we define an automatic feature learning proce-
dure for MBDA. This enhancement improves the performance
in relatively massive datasets, and is principal in datasets so
massive that manual features cannot be properly defined due to
inherent limitations in the screening of raw data. To illustrate
the resulting methodology, we present two case studies: i) a
capture from a real network of a tier 3 Internet Server Provider
(ISP) [13], and ii) a campus-wide Wi-Fi network [14].

Our contributions in this paper are as follows.
• We contribute an automatic feature-learning procedure,

consistent with the MBDA methodology.
• We integrate this procedure into a Python tool and make it

available for the community. This Python tool allows the
parallelization of the computation in high-performance
processing centers.

• We showcase the extended MBDA approach with feature
learning in two real case studies, one from structured
netflow data and one from unstructured SNMP data,
highlighting what the method can provide to network
operators and presenting the workflow in detail.

The rest of the paper is organized as follows. Section II
discusses the interpretable and interactive characteristics in
multivariate analysis. Section III presents the MBDA method-
ology. Sections IV describes the interpretable learning ap-
proach proposed in this paper. Section V introduces the mate-
rials and methods of the experimental study. Sections VI and
VII walk through the case studies. Section ?? compares our
contributions to the related work in the literature. Section VIII
provides final conclusions.

II. INTERPRETABILITY AND INTERACTION IN
MULTIVARIATE ANALYSIS

This section is intended to motivate why and how multivari-
ate analysis can be useful in the analysis of Big Data streams.
The core of the original MBDA [12] is the Multivariate Sta-
tistical Network Monitoring (MSNM) [15] approach, which is
originally based on Principal Component Analysis (PCA) [9],
[16]. PCA is the most extended, most simple and most general
matrix factorization. Here, simple and general are interesting
features, since PCA will be easy to interpret and applicable
to almost any data set. MSNM is a PCA-based approach for
anomaly detection grounded on the theory of statistical control
developed in the process industry by the end of the previous
century [17], [18], [19]. Interpretability and data interaction
constitute the foundation of this methodology.

A. PCA Matrix Factorization for Interpretation

Let us take a data matrix X with N rows and M columns.
The rows represent the observations (a.k.a individuals, objects
or items). Generally speaking, observations are the elements

one would like to compare, in order to understand their
differences and commonalities. The columns of the data matrix
represent the variables (a.k.a. features) that are measured per
observation.

PCA transforms matrix X into a number A << M
of uncorrelated features: the so-called principal components
(PCs). The PCs are ordered by captured variance. PCA follows
the expression:

X = TA ·Pt
A + EA, (1)

where TA is the N×A scores matrix containing the projection
of the observations in the PCs sub-space, PA is the M ×
A loadings matrix containing the linear combination of the
variables represented in each of the PCs, and EA is the N×M
matrix of residuals.

We call model (1) a matrix factorization, since the infor-
mation in X is factorized into the scores in TA, the loadings
in PA and the residuals EA. While in the Machine Learning
discipline, PCA has been traditionally regarded as a simple
pre-processing mechanism to handle high-dimensional data,
the matrix factorization in Eq. (1) is especially useful for
the visualization of complex data. Thus, we can explore the
distribution of the observations (rows) and of the variables
(columns) of X in separate plots of TA and PA, respectively.
The latter are of much lower dimension than X, and hence
easier to visualize, while they retain most of the information
in the data.

The plots of TA are called score plots, while the plots of
PA are called loading plots. Clusters, trends or outliers can
be identified in the plots. We can also combine scores and
loadings in a single plot, commonly called a biplot [20]. Well-
designed biplots allow us to establish the interaction between
observations and variables. If one observation is located close
to a variable in the biplot, we expect this observation to have
a high value (load) of that variable. This property is useful to
draw connections between the patterns of observations and
variables: e.g., to identify which variables make an outlier
different from the rest of observations.

Let us illustrate the capability of PCA for data interpretation
with a very simple example: The Wine data [21], shown in
Table I. The observations (10) correspond to countries, and the
variables (5) include alcohol consumption and health informa-
tion. The goal of this data set is to look for patterns between
drinking habits and health variables across the countries.

TABLE I: The Wine data set [21] in the PLS-Toolbox [22].

Country Liquor Wine Beer LifeEx HeartD
France 2.5 63.5 40.1 78 61.1
Italy 0.9 58 25.1 78 94.1
Switz 1.7 46 65 78 106.4
Austra 1.2 15.7 102.1 78 173
Brit 1.5 12.2 100 77 199.7
U.S.A. 2 8.9 87.8 76 176
Russia 3.8 2.7 17.1 69 373.6
Czech 1 1.7 140 73 283.7
Japan 2.1 1 55 79 34.7
Mexico 0.8 0.2 50.4 73 36.4

3

-2 -1 0 1 2 3 4

Scores PC 1 (46%)

-2

-1

0

1

2

S
c
o
re

s
 P

C
 2

 (
3
2
%

)

France

Italy

Switz

Austra
Brit

U.S.A.

Russia

Czech

Japan

Mexico

(a) Score plot

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Loadings PC 1 (46%)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

L
o

a
d

in
g
s
 P

C
 2

 (
3

2
%

)

Liquor

Wine

Beer

LifeEx
HeartD

(b) Loading plot

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

PC 1 (46%)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

P
C

 2
 (

3
2
%

)

Liquor

Wine

Beer

LifeEx
HeartD

(c) Biplot

France Italy Switz Austra Brit U.S.A. Russia Czech Japan Mexico
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
e
s
id

u
a
ls

 (
Q

-s
t)

(d) Residuals: Q-statistic and control limits (95% and 99%)

Fig. 1: PCA plots for the Wine data set.

We decompose the matrix of data into scores and loadings
with two PCs, which represent 78% of the variance of the data.
The variance is a measure of the patterns of change within
the data. This means that the first 2 PCs contain almost 4/5
of the total patterns of change, and we can display all this
information in a reduced number of plots.

The first plot (Figure 1(a)) is a score plot, which shows
the distribution of the countries. In this plot we observe
two patterns, highlighted with the arrows. Most countries are
displayed in a quasi-linear pattern from France to the Czech
Republic. As second pattern, Russia is far from the rest of
the countries, manifesting a singular content in its variables in
comparison to other countries.

The loading plot (Figure 1(b)) shows how variables dis-
tribute in the first 2 PCs. PC 1, in the abscissa, is mainly
modeling the negative relationship between life expectancy
and heart disease. The types of alcohol are evenly distributed
in the plot, forming an almost perfect equilateral triangle. This
shows that a preference for one type of alcohol leads to a
reduced consumption of the other two.

Combining both scores and loadings in a biplot (Figure
1(c)), we can infer inter-connections between countries and
variables. The trend from France to the Czech Republic shows

where countries lie in their preference between wine and beer.
Given also that this trend is slightly leaning towards the right,
the pattern suggests that the wine preference correlates in the
data with a higher life expectancy. Finally, Russia is separated
from the rest due to its preference for liqueur and higher
incidence of heart attacks.

Previous conclusions amount to 78% of the patterns of
change in the data. This means that there is still 22% of
change/information we have not observed yet. Most often,
when subsequent PCs do not contain relevant patterns, we look
at the residuals as squared aggregates. For instance, the resid-
uals can be observed as sum-of-squares in the observations (or
variables). The residual plot in Figure 1(d) shows there is more
to understand about Mexico and Japan than what we observed
in the first 2 PCs. Looking at the third PC (not shown), we
can infer that mainly Mexico but also Japan have lower values
in all variables, pattern that could not be seen in the first 2
PCs.

The matrix factorization in PCA can be extremely useful
to understand data sets of high dimensionality, with up to
thousands of variables or even more. Data interaction is also
central in matrix factorization, due to its reduced computa-
tional burden: we can create a specific model to study in detail

4

any pattern we find, or we can discard the data in a pattern
in order to find new and more subtle patterns, an operation
typically referred to as model update.

B. MSNM for Interpretable Anomaly Detection

MSNM is an extension of the Multivariate Statistical Pro-
cess Control developed in the past century, and originally
inspired by the pioneering work in industrial quality control
by Walter Andrew Shewhart [15]. MSNM is based on the
PCA analysis of network data (traffic, logs, etc.), previously
codified as interpretable counters. As part of statistical theory,
interpretation has been a major cornerstone of MSNM.

MSNM handles the high-dimensional network data with
PCA. From the scores and residuals in PCA, the data is
further compressed in a pair of statistics, the D-statistic (D-
st) and Q-statistic (Q-st), that represent the normality level
of an observation in the model and residual sub-spaces of
PCA, respectively. Upper control limits (UCLs, thresholds) are
defined for each statistic to facilitate the detection of anomalies
[15]. UCLs leave below-normal observations with a certain
confidence level, e.g., 99%. An anomaly is detected if either its
D-statistic or its Q-statistic exceed the corresponding control
limit.

The D-statistic and the Q-statistic for observation n are
computed with the following equations:

Dn = tn · (ΣT)−1 · ttn (2)

Qn = en · etn (3)

where tn is a 1×A vector with the scores for observation n,
en is a 1×M vector with the residuals, and ΣT represents the
covariance matrix of the scores. In order to detect anomalies,
the number of PCs to use has to be determined. There are
many methods to aid in that decision [16], [23].

Once an anomaly is detected, its interpretation is necessary
for root cause analysis. Interpretation of anomalies in MSNM
can be done following different diagnostic approaches [24],
[25], but all of them amount to identifying a subset of variables
associated with the specific anomaly. Generally speaking,
diagnostic plots are plots where the contribution of the set of
variables to a single statistic (D-st or Q-st) can be inspected.

Let us come back to the example of Figure 1(d). The Q-
statistic for Mexico exceeds the control limit at 95% confi-
dence level. An oMEDA diagnosis plot [26] is shown in Figure
2, with one bar per variable in the data. Since all bars are
negative, we can conclude that Mexico has a lower value than
the average country in all variables. This observation can be
confirmed in Table I.

III. MULTIVARIATE BIG DATA ANALYSIS

The MBDA approach is depicted in Figure 3. It consists of
three stages: downstream, analysis and upstream:

1) In the downstream stage, we transform the Big Data
input stream, coming from structured and/or unstructured
sources, into time-resolved counters. The input stream
is the data collected from the network (e.g., through a
Security Information and Event Management system):

Liquor Wine Beer LifeEx HeartD
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

o
M

E
D

A
 c

o
n

tr
ib

u
ti
o

n
s

Fig. 2: OMEDA diagnosis plot for Mexico for the Wine data
set.

typically a massive amount of logs and messages stored
in a collector, potentially including different sources
like network traffic, routing logs, SNMP, etc. [27]. We
transform this data into a compressed form we refer to as
the feature data. If several sources of data are considered,
the features of the different sources of data are combined
into a single feature data stream [15].

2) In the analysis module, we visualize the feature data
to identify anomalies in time using PCA and MSNM.
For each anomaly, we find the associated features with
a diagnosis plot, which provides a fast first hint to
understand its root causes. The output of this second stage
is a list of anomalies identified in time and the associated
features.

3) De-parsing: Using both detection and diagnosis informa-
tion, we identify the original raw data records out of the
massive input data that are related to the anomalies. This
list of records allows a more detailed diagnosis, providing
information about specific IPs, ports, etc. involved in
the anomaly. The original MBDA paper [12] reports an
accuracy above 0.99 in presenting anomalous records,
drastically reducing the amount of information to inspect
by the human operator.

MBDA makes use of two open software packages avail-
able on Github: the MEDA Toolbox [28], [29] and the FC-
Parser [30]. The FCParser is a Python tool for the parsing
of both structured and unstructured logs. The MEDA Toolbox
is a Matlab/Octave toolset for multivariate analysis and data
visualization. The FCParser is used in the downstream and
upstream modules, potentially on top of a computer cluster
with enough computing power to handle the Big Data stream.
The MEDA Toolbox is used in the analysis module in a regular
computer, simplifying the interactive analysis by the human
operator.

Basically, the downstream module transforms a Big Data
stream into a manageable feature data set, that can be analyzed
interactively in a traditional computer with multivariate analy-
sis tools. Any interesting pattern found during the analysis can
then be contrasted with the raw data thanks to the upstream
module. Following this approach, we retain the interpretability

5

Fig. 3: MBDA diagram.

and interactive nature of multivariate methods for the analysis
of Big Data streams. These characteristics constitute a major
advantage of MBDA over other Big Data methodologies, in
particular black-box models.

A. Feature-as-a-counter parsing

In the downstream stage, network logs are transformed into
feature data. MBDA makes use of the feature-as-a-counter
(FaaC) approach [7], described below.

In FaaC, each feature contains the number of times a given
event takes place during a pre-defined time interval. Examples
of suitable features are the counts of a given word in a log
or the number of traffic flows with given destination port in a
Netflow file. This flexible feature definition makes it possible
to integrate, in a suitable way, most sources of information.

To implement the FaaC, the FCParser defines variables
and features. Variables represent general entities in the raw
data. In the previous two examples, the variables would be
word and destination port. The features are defined for a
specific value or regular expression of a variable. Examples
of features would be word=‘food’ and destination port=‘80’.
This representation in variables and features has the relevant
advantage that allows for the definition of default features,
e.g., word=<ANY OTHER>, useful to count the instances of
a variable that have not been considered in another feature.

Variables and features are defined using regular expressions
in configuration files, where we also set the time resolution of
the parsing. Each configuration file typically contains several
variables and several features per variable. The FCParser
applies this configuration to the data to compute a feature

vector for each interval of time present in the original data.
This operation is done using a multi-threading configuration
to speed-up computation. By selecting the time resolution and
the features, we define the trade-off between level of detail
and compression. Defining more features and/or using a lower
time resolution result in more detail, while defining fewer
features and/or using a higher time resolution lead to more
compression.

An example of the FaaC approach over a Simple Network
Management Protocol (SNMP) trap of the second case study
considered in this work can be found in Supplementary
Materials.

IV. FEATURE LEARNING IN THE DOWNSTREAM STAGE

MBDA relies on the definition of the features in the con-
figuration files of the FCParser. To write such configuration
files, the analyst needs to get familiarized with the data.
Unfortunately, in a practical Big Data problem like the ones
under analysis, the data capture is simply too massive for direct
inspection. If we want to obtain a good description of the
content, we may apply an automatic feature-derivation tech-
nique. The definition of this technique is not straightforward,
since it needs to be consistent with the subsequent multivariate
analysis, so that we maximize compression while retaining
the interpretability required for anomaly detection and root
cause analysis. There are two basic properties we would like
to have in the learning procedure in consistency with PCA
and MSNM: i) the main sources of variance (patterns of
change within the data) need to be captured, and ii) uncommon
characteristics with low variance should also be modeled
somehow, in a summary of residual information.

6

We developed a learning algorithm to automatically identify
a list of common FaaC features in a Big Data set, and
included it in the FCParser repository at Github with the
name fclearner.py. The learning algorithm is depicted
in Algorithm 1. It takes as input a data set and a configuration
file with the regular expressions of the variables. The goal is
to learn features, that is, specific values that meet any of those
regular expressions, with a local and global prevalence in the
data above user-defined thresholds in the input configuration
file, Tl and Tg , respectively. The prevalence is defined as the
portion of log entries where the feature appears in the raw
data. The local prevalence threshold is applied over the time
interval defined in the parsing, while the global prevalence is
defined over the entire dataset.

Both local and global thresholds are complementary and
need to be satisfied for a feature to be selected (learned). The
local threshold Tl needs to be satisfied at least in one time
interval. The global Tg needs to be satisfied in the complete
data set. While in general Tl may be lower than Tg , we
may use higher values to speed-up computation. Satisfying
both thresholds implies that any feature learned had to show
a prevalence above Tl in at least one interval and a global
prevalence above Tg . That way, we learn those features that
may be related to anomalous patterns in a handful of intervals,
but with enough relevance to be considered a main source
of change, meeting our first aforementioned requirement (i)).
Those non-learned counters will still be integrated into the
default features, so that we still have (arguably limited)
observability of low variance patterns, meeting our second
requirement (ii).

The learning algorithm works as follows. For each variable
in the configuration file, the algorithm extracts its different
features (F 1

j to F f
j) and the number of records in which

they are found (counts #F 1
j to #F f

j) and store them in
Pj . The features which prevalence is above Tl in at least
one interval are included in list Fj . At the last part, features
with a global prevalence below Tg or that are not in the
list are discarded and their prevalence accumulated in the
corresponding default feature (F def

j) of the variable. Finally,
the learning algorithm outputs all the features that satisfy both
thresholds and the default features. The fclearner.py tool
that implements this algorithm automatically transforms this
output in a FCParser configuration file. In turn, this file can
be used in the downstream stage of MBDA.

V. MATERIALS & METHODS

Below we describe the experimental case studies and the
computational architecture used.

A. The UGR’16 Case Study

The UGR’16 dataset [13]1 includes Netflow traffic flows
captured in a ISP between March and June of 2016. In

1Dataset available online at https://nesg.ugr.es/nesg-UGR\unhbox\
voidb@x\bgroup\let\unhbox\voidb@x\setbox\@tempboxa\hbox{1\
global\mathchardef\accent@spacefactor\spacefactor}\let\begingroup\
endgroup\relax\let\ignorespaces\relax\accent191\egroup\spacefactor\
accent@spacefactor6/

Algorithm 1: Pseudocode for the learning algorithm.

INPUT:
V← {V1, ..., Vv}: Regular expressions of variables
D← {D1, ..., Dd}: Data files of disjoint time intervals
Tl: Local threshold
Tg: Global threshold

Initialization:
Set C = 0: global counter of entries
For each variable j

Set Pj = ∅ : pairs of features and counts
Set Fj = ∅ : list of features above threshold
Set #F def

j = 0: count for default feature

Algorithm:

For each data file Di : parallelize at this point
For each time interval Di(t) in Di

Ci(t)← count entries(Di(t))
C ← C + Ci(t)
For each variable j
{(F 1

j ,#F 1
j)..., (FF

j ,#FF
j)} ←Match(Vj , Di(t))

Pj ← combine(Pj , {(F 1
j ,#F 1

j)..., (F f
j ,#FF

j)})
For F f

j in {F 1
j ..., F

F
j }

If (#F f
j /Ci(t)) > Tl

Fj ← Fj ∪ F f
j

For each variable j

For F f
j in Pj

If (#F f
j /C) < Tg OR F f

j 6∈ Fj

#F def
j ← #F def

j + #F i
j

Pj ← discard(Pj , (F
i
j ,#F i

j))

OUTPUT: Pj for all variables

addition, another capture was made between July and August
of 2016, including some controlled attacks launched to obtain
a test dataset for validation of anomaly detection algorithms.
To do this, twenty five virtual machines were deployed within
one of the ISP sub-networks. Five of these machines at-
tacked the other twenty. The type of attacks were: Denial
of Service (DOS), port scanning in two modalities: either
from one attacking machine to one victim machine (SCAN11)
or from four attacking machines to four victim machines
(SCAN44), and botnet traffic (NERISBOTNET). These attacks
were launched during twelve days in different periods of time,
following either planned or random scheduling, and with real
background traffic. The flows of the dataset were labelled
indicating if they were “background” (regarded as legitimate
flows), or “anomalies” (identified as non-legitimate flows). The
general characteristics of the dataset are provided in Table II.

The UGR’16 data set was used to evaluate MBDA in
its original work [12]. This application of MBDA, follow-
ing a completely unsupervised anomaly detection approach,

https://nesg.ugr.es/nesg-UGR\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {1\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \endgroup \relax \let \ignorespaces \relax \accent 19 1\egroup \spacefactor \accent@spacefactor 6/
https://nesg.ugr.es/nesg-UGR\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {1\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \endgroup \relax \let \ignorespaces \relax \accent 19 1\egroup \spacefactor \accent@spacefactor 6/
https://nesg.ugr.es/nesg-UGR\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {1\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \endgroup \relax \let \ignorespaces \relax \accent 19 1\egroup \spacefactor \accent@spacefactor 6/
https://nesg.ugr.es/nesg-UGR\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {1\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \endgroup \relax \let \ignorespaces \relax \accent 19 1\egroup \spacefactor \accent@spacefactor 6/
https://nesg.ugr.es/nesg-UGR\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {1\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \endgroup \relax \let \ignorespaces \relax \accent 19 1\egroup \spacefactor \accent@spacefactor 6/

7

TABLE II: Characteristics of the calibration and the test sets
in UGR’16.

Feature Training Test

Capture start 10:47h 03/18/2016 13:38h 07/27/2016
Capture end 18:27h 06/26/2016 09:27h 08/29/2016
Attacks start N/A 00:00h 07/28/2016
Attacks end N/A 12:00h 08/09/2016
Number of files 17 6
Size (compressed) 181GB 55GB
Connections ≈ 13,000M ≈ 3,900M

showed high performance in the detection of attacks with
exception to the NERISBOTNET. Later, the detection perfor-
mance was improved by using a semi-supervised extension of
MBDA [31] based on Partial Least Squares (PLS) [32][33].
More recently, we showed that better performance than using
semi-supervised methods can yet be achieved by properly
performing outlier isolation in the background traffic [34].
Importantly, comparing MBDA to the One-Class Support
Vector Machine (OCSVM), a widely used black-box anomaly
detection approach, we found that outlier isolation impacts by
far more than the specific anomaly detection method. We will
benchmark the performance of the feature learning approach
proposed in this paper against all these previous results.

Intensive Big Data analysis requires a parallel computer. We
used a multi-GPU DGX-1 server with dual 20-core processors
(80 threads) and 512GB RAM. Python scripts using the
FCParser run on top of the parallel hardware as grid jobs.
The paralellization of the downstream phase, from learning to
parsing, is straightforward. We can split data in parallel jobs
in agreement with the data file partition (see Algorithm 1),
and the result is simply appended. This approach can also
be applied in the upstream phase. The analysis stage was
performed with the MEDA Toolbox in a regular laptop.

B. The Dartmouth Wi-Fi network Case Study

Dartmouth College has a compact campus with over 200
buildings on 200 acres. The original evolution of the network
is documented in the series of early papers [35], [36], [14].
The number of students, staff, and academic faculty reached
near 6,500, 3,300 and 1,000, respectively, at the end of 2018,
and the number of Access Points (APs) was above 3,000.
Researchers at Dartmouth have been capturing data about the
usage of the network for many years, providing a perfect case
study for tools like MBDA.

In this paper we analyze a data capture containing the con-
nections of users to the network in the seven years: from 2012
to 2018 [14]. This data contains Simple Network Management
Protocol (SNMP) traps [37] sent from wireless controllers to
a collector. The capture reveals the statistics in Table III. The
data set contains a total of 5 Billion traps and 7 TB of data. A
total of 38K authenticated users and an undetermined number
of non-authenticated users have been connected to the network
in the last seven years, using 600K devices. The network
infrastructure supports several SSIDs, primarily Dartmouth
Secure, the WPA2-Enterprise authenticated college network,
Dartmouth Public, a public-access network, and eduroam, the

world-wide roaming network for educational institutions [38].
Dartmouth Secure was entirely replaced by eduroam in the
final months of the capture.

TABLE III: Details of the SNMP trap capture at Dartmouth
College.

Statistic Number
Capture period Jan 1st 2012 - Dec 31st 2018

(2556 days)
log entries (SNMP traps) 5 Billion
Data Size (raw) 7 TB
Access points 3,330
Authenticated Users 38,096
Stations 624,903
SSIDs 20

We used the Anthill Compute Cluster hosted by the Com-
puter Science Department at Dartmouth for both the down-
stream and the upstream phase. Again, the analysis stage was
performed with the MEDA Toolbox in a regular laptop.

VI. UGR’16

Let us start with the application of the MBDA pipeline in
the first case study. Our goal in this case is to automatically
identify the attacks in the capture.

A. Downstream

1) Feature learning: We can think of at least two alternative
ways to assess our approach for feature learning with the
UGR’16 data set. One intuitive approach would be to learn the
most prevalent features of background traffic in the training
dataset, and then apply them for the detection of the attacks in
the test set. This approach would render a purely unsupervised
MBDA, equivalent to the work in [12]. Unfortunately, the
background traffic also contains unlabeled anomalies and real
attacks, and the evaluation based only in the artificial attacks
may not be conclusive [34]. An alternative and arguably more
objective option is to learn the features from part of the flows
corresponding to the artificial attacks themselves, and assess if
they provide an improved performance in the detection of the
remaining flows of those attacks. This is the choice we take
in the paper, which corresponds to a semi-supervised MBDA
approach similar to the one in [31]. In a practical situation,
the analyst would apply this approach when she wants to
optimize the anomaly detector for specific (common) attacks.
Still, given the unsupervised nature of the core of MBDA,
MSNM, we retain the ability to detect unknown attacks.

In agreement with the semi-supervised version of MBDA
in [31], we performed the feature learning on the raw files
of the attacks corresponding to the first third of the test
dataset, i.e., the first 4 days of attacks. The learning algorithm
fclearner.py was launched in parallel in 24 processing
jobs, one per hour in the day. The sampling interval, con-
sistently with previous work, is set to 1 minute, and we set
Tl = 0.01 and Tg = 0.001. Input variables were the source
and destination port, the protocol and the tcp flags. Given
the Netflow data is structured, the regular expressions of the
variables are simply the location of the variable in the entries

8

of the csv file with the raw dataset. The learning process
resulted in a total of 396 features, most of them related to
individual ports, and approximately 3 times the number of
features in previous papers (134 manually selected features)
[12], [31], [34]. We also considered a second set of learned
features obtained for Tl = Tg = 0.01, which resulted in a
subset of the first set with a total of only 17 features. The
whole learning process using the parallel hardware took 33
hours.

2) Parsing: We use FCParser to generate feature vectors
with two variants of configuration files learned from the data:
with 396 and 17 features, respectively. In agreement with the
learning phase, we consider feature vectors for intervals of one
minute. This generates a total of approx. 160K observations
of 396/17 features, which can be handled with the Big Data
version of the MEDA Toolbox in a regular computer [12].
Recall that we can vary the level of detail by using different
time resolutions: if we use 1 hour intervals rather than 1 minute
intervals, the number of observations would be reduced 60-fold
to approx. 2,7K, but the resolution of detection would also be
reduced.

The parsing was parallelized again in 24 processing jobs,
one per hour in the day, and the whole process took 20 days.
While this is a lengthy process, considering that the trace
corresponds to 4 months of data, we can conclude that the
parsing approach can be implemented in real time. In any case,
this time can be reduced using a larger computer and properly
arranging the input data for parallelization (see Algorithm 1).
The resulting feature data is available on request from the
authors.

B. Analysis
We focus on the ability of MBDA to identify the attacks in

the part of the test set not used for the feature learning, that is,
the last 8 days. To benchmark the anomaly detection perfor-
mance with previous results, we compute the false positive rate
(FPR) and true positive rate (TPR) of detection, and in turn the
Receiver Operating Characteristic (ROC) curves, that shows
the evolution of the TPR versus the FPR for different values of
the anomaly detection threshold. A practical way to compare
several ROC curves is with the Area Under the Curve (AUC),
a scalar that quantifies the quality of the anomaly detector.
The anomaly detector should present an AUC as close to 1 as
possible, while an AUC around 0.5 corresponds to a random
classifier.

Figure 4 shows the comparison of a number of different
MBDA variants (see also Table IV), including:

• MBDA: The original, unsupervised approach [12] trained
with the complete training dataset using manually se-
lected features.

• MBDA Opt: The semi-supervised extension of MBDA
[31] trained with the complete training dataset using
manually selected features and optimized with Partial
Least Squares (PLS) using the attacks of the first four
days of the testset.

• MBDA WoJ: The unsupervised MBDA with manually
selected features trained without June, where an anomaly
with a similar pattern as a botnet was found [34].

• MBDA FL0.001: The semi-supervised MBDA trained
with the complete training dataset and with the 396
features learned for Tg = 0.001 using the attacks of the
first four days of the testset.

• MBDA FL0.01: The semi-supervised MBDA trained with
the complete training dataset and with the 17 features
learned for Tg = 0.01 using the attacks of the first four
days of the testset.

• MBDA WoJ FL0.01: The semi-supervised MBDA trained
without June and with the 17 features learned for Tg =
0.01 using the attacks of the first four days of the testset.

Figure 4(a) presents the general ROC curves, obtained for
the four types of attacks, and Figure 4(b) represents the AUCs
per attack type. Our proposal for feature learning generally
outperforms other methods based on manually selected fea-
tures. We can see that the improvements are mainly on NERIS-
BOTNET attacks, while the performance for SCAN attacks is
generally better for versions of MBDA with manually selected
features.

We can obtain more information about the root causes for
aforementioned performance differences among the models
when detecting specific attacks. For that purpose, we use the
approach presented in [34] that combines oMEDA diagnosis
plots (in particular, the full-rank version of oMEDA also
referred to as Univariate-Squared (U-Squared) [25]), univariate
box plots and t-tests for statistical inference. We compare
MBDA Opt and MBDA FL0.01 as representatives of models
with manual features and learned features, respectively, since
both are semi-supervised and trained with the complete train-
ing dataset.

The diagnosis plots for NERISBOTNET attacks are shown
in Figure 5. MBDA Opt emphasizes irc and telnet ports,
while MBDA FL0.01 focuses on ports 2077 and 45062.
All selected features yield statistically significant differences
between background traffic and NERISBOTNET attacks, as
illustrated in Figure 6. However, according to AUC results,
learned features provide a more powerful detection.

We repeat the same procedure for SCAN11 attacks, shown
in Figures 7 and 8. MBDA Opt emphasizes kpasswd and
telnet ports, while MBDA FL0.01 focuses on the TCP flags,
in particular Sync and the combination of Reset and Sync. In
this case, the manual selection of features provides a more
powerful detection in terms of AUC. However, neither pattern
of detection is perfect: in SCAN attacks, the attacker sends
probing messages to find open ports, and does that for a large
number of different ports. MBDA Opt only detects the attack
because there is one single port of those tested, kpasswd,
with negligible background traffic, but the diagnosis does
not reflect the true pattern of attack. MBDA FL0.01 provides
limited performance because the learning approach based on
prevalence and counting features cannot capture the pattern
of the attack. Future work may look at different learning loss
functions other than prevalence and/or alternative definitions
of features that capture distributional information of a variable,
like the number of different ports in a time interval.

2The fclearner.py tool combines the label of the variable with the
regular expression learned to create the label of a feature. This is why we
only see numbers in the labels, unlike in manual features.

9

TABLE IV: MBDA variants under study.

Name Type Features June in training data

MBDA unsupervised manual Yes
MBDA Opt semi-supervised manual Yes
MBDA WoJ unsupervised manual No
MBDA FL0.001 semi-supervised learned (Tg = 0.001) Yes
MBDA FL0.01 semi-supervised learned (Tg = 0.01) Yes
MBDA WoJ FL0.01 semi-supervised learned (Tg = 0.01) No

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MBDA (AUC=0.75)

MBDA Opt (AUC=0.89)

MBDA WoJ (AUC=0.90)

MBDA FL
0.001

 (AUC=0.96)

MBDA FL
0.01

 (AUC=0.98)

MBDA WoJ FL
0.01

 (AUC=0.99)

(a)

D
O
S

SC
AN

11

SC
AN

44

N
ER

IS
BO

TN
ET

0.5

0.6

0.7

0.8

0.9

1

A
U

C

MBDA

MBDA Opt

MBDA WoJ

MBDA FL
0.001

MBDA FL
0.01

MBDA WoJ FL
0.01

(b)

Fig. 4: ROC curves (a) and attack-type based AUC results (b) for a set of different solutions based on MBDA.

20 40 60 80 100 120

Features

0

5000

10000

15000

20000

C
o

n
tr

ib
u

ti
o

n

dport_irc

sport_telnet

(a)

5 10 15

Features

-2

0

2

4

6

8

C
o

n
tr

ib
u

ti
o

n

10
7

netflow_dst_port_2077

netflow_src_port_2077
netflow_dst_port_4506

(b)

Fig. 5: Profile of detection of NERISBOTNET attacks with
MBDA Opt (a) and MBDA FL0.01 (b) using oMEDA.

Neg Pos

0

50

100

150

d
p
o
rt

_
ir
c

(a) Ttest p−value < 0.01

Neg Pos

0

5

10

15

20

25

30

n
e
tf
lo

w
_
d
s
t_

p
o
rt

_
2
0
7
7

(b) Ttest p−value < 0.01

Neg Pos

0

5

10

15

20

25

30

n
e
tf
lo

w
_
s
rc

_
p
o
rt

_
2
0
7
7

(c) Ttest p−value < 0.01

Neg Pos

0

20

40

60

80

100

n
e
tf
lo

w
_
d
s
t_

p
o
rt

_
4
5
0
6

(d) Ttest p−value < 0.01

Fig. 6: Boxplots and ttests of selected features in background
traffic (Negative) versus NERISBOTNET traffic (Positive).

C. Upstream

The previous analysis compared the accuracy of detection
at time interval (1 minute) level. As an illustrative example of
the upstream step, we compare here the accuracy of detection
of the NERISBOTNET attack at flow-level by MBDA Opt
and MBDA FL0.01. Results are presented in Table V in terms
of the number of true positives (TP) and negatives (TN),

10

20 40 60 80 100 120

Features

-500

0

500

1000

1500

2000

2500

C
o

n
tr

ib
u

ti
o

n

dport_kpasswd

sport_telnet

(a)

5 10 15

Features

-1000

0

1000

2000

3000

4000

C
o

n
tr

ib
u

ti
o

n

netflow_tcp_flags_S

netflow_tcp_flags_RS

(b)

Fig. 7: Profile of detection of SCAN11 attacks with MBDA
Opt (a) and MBDA FL0.01 (b) using oMEDA.

Neg Pos

0

2

4

6

8

10

12

14

d
p
o
rt

_
k
p
a
s
s
w

d

(a) Ttest p−value < 0.01

Neg Pos

0

50

100

150

200

s
p

o
rt

_
te

ln
e

t

(b) Ttest p−value < 0.01

Neg Pos
0

2

4

6

8

10

n
e

tf
lo

w
_

tc
p

_
fl
a

g
s
_

S

10
4

(c) Ttest p−value < 0.01

Neg Pos

0

50

100

150

200

250

300

n
e

tf
lo

w
_

tc
p

_
fl
a

g
s
_

R
S

(d) Ttest p−value = 0.83

Fig. 8: Boxplots and t-tests of selected features in background
traffic (Negative) versus SCAN11 traffic (Positive).

the number of false positives (FP) and negatives (FN), the
accuracy ((TP+TN)/Total) and the False Discovery Rate (FDR
= FP /(TP+FP)). While accuracy levels are close to 1.00, like
those reported earlier [12], the FDR is a more relevant statistic
to assess the difficulty in the process of root cause analysis.
The FDR gives us an estimate of the relative number of false
alarms an analyst will have to face in the process of alarm
validation. In the example, we can see that the MBDA based
on feature learning reduces the relative number of false alarms

to only 1.8%, which is a competitive statistic and much lower
that the one using manual features.

VII. DARTMOUTH WI-FI

Let us move on to the analysis of the Dartmouth Wi-Fi
capture. Our goal here is to visualize and understand the main
factors of variance in the connection data.

A. Downstream

1) Feature learning: We performed the learning strategy in
two steps to identify high variance features in the Wi-Fi data.
First, the learning algorithm fclearning.py was launched
in parallel in 2556 processing jobs, each one for a different
day in the capture, using a sampling interval of 1 day and a
threshold values Tl = 0.05 and Tg = 0.01. Input variables
were the regular expressions for a SNMP object identifier
(OID) and for the trap type (TT) (see Supplementary Materials
for more detail). The output is 2556 configuration files, one
per day, with the set of most prevalent OIDs and TTs in each
day. That way, we learn as features all those OIDs or TTs
with a daily prevalence above the 5% in at least one day and
a total prevalence above 1%. This resulted in a total of 90
features, including prevalent OIDs, TTs and default features.
The ten most prevalent features are shown in Table VI, where
we make the distinction between OIDs representing trap types
(TTs) and the rest.

The whole learning process using the parallel hardware and
multi-threading (4 threads per processor) took 12 hours, during
which a maximum of 150 jobs were processed in parallel. This
means that the processing time could be further reduced 17-
fold using a larger computer cluster, where as many as 2556
jobs could be run in parallel.

2) Parsing: We use the FCParser to generate the feature
vectors with the aforementioned configuration file learned
from the data. In agreement with the learning phase, we
consider feature vectors for intervals of one day. To the set of
90 learning features, we added the total number of traps and
OIDs per day. This results in a compression of the data from
7TB to less than 1MB, yielding 2556 observations (days) of
92 features each in matrix X. The compression conveniently
transforms a Big Data set into a handleable data set in a
common computer. Again, we can vary the level of detail by
using different time resolutions or number of features.

The parsing was parallelized in 2556 processing jobs, one
per day, and the whole process using the Anthill Computer
Cluster and multi-threading (with a maximum of 150 jobs)
took 15 hours. The resulting feature data is available on request
from the authors.

B. Analysis

1) Analysis with PCA: Figure 9 depicts the plots corre-
sponding to the first two PCs in matrix X (refer to Supple-
mentary Materials for other patterns found in subsequent PCs).
Recall that matrix X contains 2556 rows, representing days
of the capture, and 92 features. We present the score plot at
the left of the figure and a bi-plot at the right. In the score

11

TABLE V: Comparison of MBDA Opt and MBDA FL0.01 in the upstream step in the detection of the NERISBOTNET attack.
We present the number of true positives (TP) and negatives (TN), the number of false positives (FP) and negatives (FN), the
accuracy ((TP+TN)/Total) and the False Discovery Rate (FDR = FP /(TP+FP)). The total number of flows in the test data (the
part used for performance evaluation, that is, the last 8 days) is 1,074,221,524, and the number of attack flows in the same
data is 1,074,493 (0.1% of the total).

Method TP TN FP FN Accuracy FDR
MBDA Opt 33,613 1,073,101,984 45,047 1,040,880 ≈ 1.00 0.570
MBDA FL0.01 61,261 1,073,145,928 1,103 1,013,232 ≈ 1.00 0.018

Scores PC 1 (45%)

-20 -15 -10 -5 0 5 10 15 20

S
c
o
re

s
 P

C
 2

 (
2
3
%

)

-15

-10

-5

0

5

10

15

2013-10-11

2015-04-23

2015-04-28

2016-12-16

2018-03-21

2018-04-09

2018-05-18

2012

2013

2014

2015

2016

2017

2018

Toward more

connection activity

Different trap content

(a)

Loadings PC 1 (45%)

-0.15 -0.1 -0.05 0 0.05 0.1

L
o
a
d
in

g
s
 P

C
 2

 (
2
3
%

)
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

1

2

4

5

6

8

9

10111213

14

15

16

18

19

25

2930

31

3233

35

36

37

41

5154

55

56

57

60

61

7072

7679

81

82

83
84

85

86

87
888990

91

92

Scores

Loadings

Different trap content

Toward more

connection activity

(b)

Fig. 9: PCA scores and loadings for PC1 vs PC2.

TABLE VI: First 10 SNMP OIDs with more prevalence in
the data. CLAM refers to CISCO-LWAPP-AP-MIB, AWM
to AIRESPACE-WIRELESS-MIB and CLDCM to CISCO-
LWAPP-DOT11-CLIENT-MIB.

Label Type Presence
CLAM::cLApDot11IfSlotId OID 0.45
AWM::bsnAPName OID 0.41
AWM::bsnStationMacAddress OID 0.39
AWM::bsnStationAPIfSlotId OID 0.39
AWM::bsnStationAPMacAddr OID 0.39
AWM::bsnStationUserName OID 0.39
CLAM::cLApName OID 0.36
CLDCM::cldcClientMacAddress OID 0.22
CLDCM::cldcApMacAddress OID 0.22
AWM::bsnDot11StationAssociate TT 0.20

plot, points represent the 2556 days of the data capture and
are colored according to the year. In the bi-plot, (red) points
represent the 92 features and the (gray) shadow represent the
scores.

The first two PCs represent 68% (45% + 23%) of the
variance in the data. Because variance is a measure of the
degree of change within the data set, these two PCs show
the main patterns of change in X. As a matter of fact, a
variance of 68% roughly indicates that only 1/3 of the patterns
of change in the data is missing in this plot, giving an idea of
how powerful PCA is for visualization.

The score plot at Figure 9(a) shows that the dots (days) with
different colors are in different locations. This means that they
are different in content, from which follows that there are large

differences in prevalence of OIDs in different years.
To interpret the bi-plot at Figure 9(b), recall that the location

of an observation (a day) will approach more the location of a
feature (which represents counts of a specific OID) as the value
of that feature increases in the observation. Thus, days with a
large content on specific OIDs will be located closer in the plot
to the loading representing that OID. The bi-plot shows that a
large majority of the features are located far from the center of
coordinates towards the right side. Therefore, any day toward
the right in the score plot will have a generally higher content
of OIDs. Thus, as we traverse from left to right in the score
plot, the days will have more connection activity. Busy periods
are represented towards the far right of the plot, and vacations
are clustered to the left, and we could say that the first PC (the
horizontal direction in the score and loading plots) represents
the general activity in the network. We annotated this in both
plots using a horizontal arrow.

The bi-plot in Figure 9(b) also shows that the variables
are distributed from the bottom to top, and we see a similar
distribution for the different years in the score plot: the first
two years are in the bottom and the last two in the top, with
middle years in between. We also see a separated cluster of
days in 2018, highlighted with a circle. A closer look reveals
that all the days in the cluster belong to the period from
September to November, when eduroam replaced Dartmouth
Secure. The vertical pattern in the loading and score plots
shows that the distribution of traps has changed across the
years: days towards the top have a higher content of traps and
OIDs represented by the features in the top and less of those
in the bottom, and vice-versa. Again, we annotated this in the

12

Fig. 10: Multivariate Statistical Network Monitoring (MSNM)
plot: D-statistic vs Q-statistic. At the top, zoomed image of
the bottom left corner.

score plot and the bi-plot using a vertical arrow. Questioned
about this difference, the network operators replied that there
was an update in the controllers’ software, which changed the
types of SNMP traps that were collected. This variability in
traps for different temporal periods makes the analysis of the
data a real challenge. It may also go unnoticed if we do not
use feature learning, since to determine features manually we
can only screen limited portions of the massive data, and this
operation would likely miss the changing pattern of OIDs.

Regarding processing burden, the analysis performed in
this section is completely interactive in a regular computer,
meaning that the time to obtain each of the plots is on the
order of seconds.

2) Analysis with MSNM: After the inspection of score and
loading plots, one can visualize a summary of the whole
data distribution in one single plot using MSNM: a scatter
plot of the observations in terms of the D-statistic and the
Q-statistic. The MSNM plot for the Wi-Fi data is shown
in Figure 10. Anomalies are expected to surpass any of the
two control limits: the vertical one for the D-statistic or the
horizontal one for the Q-statistic. This plot is optimized for
anomaly detection. Note that with only one visualization, the
operator can identify the main patterns of change in 7TB of
data. Clearly, in the plot we miss other details, like yearly
and seasonal patterns and the difference in trap contents. A
main advantage of this plot is that it also includes residuals,
containing the remaining 6% of the variance that is not
accounted for in the six PCs (including those shown in the
Supplementary Materials). The Q-statistic, which comprises
a summary of the residuals, clearly identifies anomalies in
2012 and 2013, while the D-statistic finds several anomalous
intervals in 2012 and 2017.

Note that the parsing (and thus of the learning process)
has a principal impact in the visualization and anomaly
detection of MBDA. For instance, we can detect anomalies
(e.g., excursions) only at the day level when using one-day

20 40 60 80

c
o

n
tr

ib
u

ti
o

n

-100

0

100

200

300

400

500

600

(a) Excursion in 2013

20 40 60 80

c
o

n
tr

ib
u

ti
o

n

-5000

0

5000

10000

15000

(b) Excursion in 2017

Fig. 11: Pre-diagnosis of the anomalies in 2013 and 2017 with
oMEDA.

resolution. If we want to detect anomalies in other time
resolutions, we can modify the parsing configuration and re-
run the downstream stage. Furthermore, differences in OID
content can only be directly visualized if we include features
for those OIDs (recall default features will still represent such
differences to a certain level). Therefore, learning features of
high variance is paramount to obtaining accurate insights of
the data distribution.

To illustrate the use of oMEDA in the diagnosis, we selected
the anomalies in 2013 and 2017, which we found to be
the main outliers in the Q-statistic and in the D-statistic,
respectively. The plots are shown in Figure 11. The high
bars identify the features that make the anomalous intervals
different to the normal days. Each of the intervals are related to
a different set of features. Table VII lists the specific features.
We determined that the first anomaly (2013) is related to a
large number of Authentication Fails, which in a subsequent
analysis (not shown) we determined these fails were one
order of magnitude higher than usual during the detected
anomalous interval. The second anomaly (2017) is related
to an unprecedentedly high number of re-starts of APs, two
orders of magnitude higher than usual.

As for 2018, the network operators did not have any records
of these old anomalies, but they suggested that the second one

13

TABLE VII: Pre-diagnosis of the excursions of 2013 and 2017 with oMEDA.

Timestamps Features selected
2013-12-14 – 2013-12-16 bsnDot11StationAuthenticateFail, bsnAuthenticationFailure, bsnDot11StationAssociateFail,

bsnStationReasonCode, bsnAuthFailureUserType, bsnAuthFailureUserName
2017-10-16 – 2017-10-30 ciscoLwappApIfUpNotify, ciscoLwappApIfDownNotify

cLApAdminStatus, cLApSysMacAddress, cLApPortNumber

could be related to the installation of a security patch after
the publication of a vulnerability. Effectively, October 16th
of 2017, the famous KRACK attack against WPA2 [39] and
the corresponding patch was released to the public. Even if a
restart is necessary after a patch installation, the number and
duration (15 days) of the event is remarkable, evidencing that
a major management problem took place that went unnoticed
into the massive stream of SNMP traps.

Like the PCA analysis, the MSNM analysis is fully inter-
active and easily done in a regular computer.

C. Upstream

We applied the upstream stage with the FCParser to the
anomalies in 2013 and 2017 in the Wi-Fi data set. We
parallelized the processing using the Anthill Computer Cluster
and multi-threading (4 threads per processor), with as many
parallel jobs as days in the excursions. The first anomaly
took 30 minutes to be processed, and the second one 135
minutes. The output is a file per anomaly, containing the traps
involved, which represent a subset of total set of traps in
the corresponding periods of time. Table VIII provides some
statistics of the deparsing. The human operator can use the
output files to retrieve more information about the anomalies,
like the main actors (APs, users, devices) involved.

VIII. CONCLUSION

In this paper, we introduce feature learning in the Multivari-
ate Big Data Analysis (MBDA), an interpretable data analysis
tool optimized to analyze Big Data streams, for network
monitoring. The application is concerned with the detection
and diagnosis of anomalies in two real case studies: a Netflow
trace from a TIER-3 ISP and a connection trace from a campus
Wi-Fi network. The results illustrate that multivariate methods
can bring light into massive data sets for network-monitoring
purposes using interpretable feature learning.

The main advantages of the approach, illustrated through
the paper, are the following:

• With MBDA, we can detect anomalies and other data
patterns related to network operation that may go unno-
ticed otherwise due to the massive nature of network data.
The paper illustrates several examples of those patterns.
The detection is general in the sense that anomalies are
detected without actually targeting them, so we do not
require the user to pre-identify a set of potential failures.

• Thanks to the interpretability of multivariate models in
the core of MBDA, we can also diagnose problems, so
that potential root causes can be identified and problems
can be troubleshooted faster.

• MBDA can run on parallel hardware to speed up com-
putation. We analyzed 7TB of data in a little more than

a day, and this can be reduced to a couple of hours in a
high-throughput cluster.

• The MBDA data pipeline is designed so that the data
analysis is partially done in a cluster of computers and in
a regular computer. Long operations with raw, Big Data,
are done in a cluster and provide as output a feature data
set of limited size. These operations can be scheduled in
non-busy periods of time and be fully automated. The
network operator only needs to interact with the feature
data to detect anomalies and diagnose them, and this can
be done in real time in a regular computer. This approach
combines the advantages of interactive models with the
power of parallel processing.

• MBDA using feature learning is general framework for
the extension of exploratory multivariate analysis to Big
Data.

ACKNOWLEDGEMENT

This work was supported by Dartmouth College, and in
particular by the many network and IT staff who assisted
us in configuring the Wi-Fi network infrastructure to collect
data, and who patiently answered our many questions about
the network and its operation. We furthermore appreciate the
support of research colleagues and staff who have contributed
to our data-collection and data-analytics infrastructure over the
years: most notably Wayne Cripps, Tristan Henderson, Patrick
Proctor, Anna Shubina, and Jihwang Yeo. Jose Manuel Garcı́a-
Giménez is acknowledged for his enthusiastic work on the
FCParser.

Some of the Dartmouth effort was funded through support
from ACM SIGMOBILE and by an early grant from the US
National Science Foundation under award number 0454062.
This work was also supported by the Agencia Estatal de
Investigación in Spain, grant No PID2020-113462RB-I00, and
the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agree-
ment No 893146.

REFERENCES

[1] H. Song, F. Qin, P. Martinez-Julia, L. Ciavaglia, A. Wang, Network
Telemetry Framework, Internet-Draft draft-ietf-opsawg-ntf-13, Internet
Engineering Task Force, work in Progress (Dec. 2021).
URL https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-ntf-13

[2] G. Pang, C. Shen, L. Cao, A. V. D. Hengel, Deep learning for anomaly
detection: A review, ACM Computing Surveys (CSUR) 54 (2) (2021)
1–38.

[3] C. Molnar, Interpretable Machine Learning, 2019, https://christophm.
github.io/interpretable-ml-book/.

[4] F. Doshi-Velez, B. Kim, Towards a rigorous science of interpretable
machine learning, arXiv preprint arXiv:1702.08608 (2017).

[5] C. Rudin, Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead (2019). arXiv:
1811.10154.

https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-ntf-13
https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-ntf-13
https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-ntf-13
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
http://arxiv.org/abs/1811.10154
http://arxiv.org/abs/1811.10154

14

TABLE VIII: Deparsing of the anomalies of 2013 and 2017 with oMEDA.

Timestamps log entries/tot #APs #Stations #Users
2013-12-14 – 2013-12-16 5.4M/8.4M (64%) 824 595 103
2017-10-16 – 2017-10-30 19.0M/64.1M (30%) 1,376 0 0

[6] A. Ferrer, Latent structures-based multivariate statistical process control:
A paradigm shift, Quality Engineering 26 (1) (2014) 72–91.

[7] J. Camacho, G. Maciá-Fernández, J. Dı́az-Verdejo, P. Garcı́a-Teodoro,
Tackling the Big Data 4 Vs for anomaly detection, in: Proceedings of
IEEE INFOCOM, 2014, pp. 500–505. doi:10.1109/INFCOMW.
2014.6849282.

[8] J. Hernández-Méndez, F. Muñoz Leiva, J. Sánchez-Fernández, The
influence of e-word-of-mouth on travel decision-making: consumer
profiles, Current Issues in Tourism 1-14 (2013) 1–21. doi:10.1080/
13683500.2013.802764.

[9] I. Jolliffe, Principal component analysis, Springer Verlag, New York,
2002.

[10] H. Zou, T. Hastie, R. Tibshirani, Sparse Principal Compo-
nent Analysis, Journal of Computational and Graphical Statistics
15 (2) (2006) 265–286. arXiv:1205.0121v2, doi:10.1198/
106186006X113430.

[11] R. Bro, Multi-way analysis in the food industry - models, algorithms,
and applications, Tech. rep., MRI, EPG and EMA, Proc ICSLP 2000
(1998).

[12] J. Camacho, J. M. Garcı́a-Giménez, N. M. Fuentes-Garcı́a, G. Maciá-
Fernández, Multivariate big data analysis for intrusion detection: 5 steps
from the haystack to the needle, Computers & Security 87 (2019)
101603.

[13] G. Maciá-Fernández, J. Camacho, R. Magán-Carrión, P. Garcı́a-
Teodoro, R. Therón, UGR‘16: A new dataset for the evaluation of
cyclostationarity-based network IDSs, Computers & Security 73 (2018)
411–424.

[14] J. Camacho, C. McDonald, R. Peterson, X. Zhou, D. Kotz, Longitudinal
analysis of a campus wi-fi network, Computer Networks 170 (2020)
107103.

[15] J. Camacho, A. Pérez-Villegas, P. Garcı́a-Teodoro, G. Maciá-
Fernández, PCA-based multivariate statistical network monitoring
for anomaly detection, Computers & Security 59 (2016) 118–137.
doi:10.1016/j.cose.2016.02.008.
URL http://www.sciencedirect.com/science/article/pii/
S0167404816300116

[16] J. Jackson, A User’s Guide to Principal Components, Wiley-Interscience,
England, 2003.

[17] J. V. Kresta, J. F. Macgregor, T. E. Marlin, Multivariate statistical
monitoring of process operating performance, The Canadian Journal of
Chemical Engineering 69 (1) (1991) 35–47. doi:10.1002/cjce.
5450690105.

[18] P. Nomikos, J. F. MacGregor, Monitoring batch processes using multi-
way principal component analysis, AIChE Journal 40 (8) (1994) 1361–
1375. doi:10.1002/aic.690400809.

[19] A. Ferrer, Multivariate statistical process control based on principal
component analysis (MSPC-PCA): Some reflections and a case study
in an autobody assembly process, Quality Engineering 19 (4) (2007)
311–325. doi:10.1080/08982110701621304.

[20] K. Gabriel, The biplot graphic display of matrices with application to
principal component analysis, Biometrika 58 (1971) 453–467.

[21] Pls-toolbox, Newsweek 127 (4) (1996) 52.
[22] B. Wise, N. Gallagher, R. Bro, J. Shaver, W. Windig, R. Koch,

PLSToolbox 3.5 for use with Matlab, Eigenvector Research Inc., 2005.
[23] E. Saccenti, J. Camacho, Determining the number of components

in principal components analysis: A comparison of statistical,
crossvalidation and approximated methods, Chemometrics and
Intelligent Laboratory Systems 149, Part A (2015) 99–116.
doi:10.1016/j.chemolab.2015.10.006.
URL http://www.sciencedirect.com/science/article/pii/
S0169743915002579

[24] C. F. Alcala, S. J. Qin, Reconstruction-based contribution for process
monitoring, Automatica 45 (7) (2009) 1593–1600.

[25] M. Fuentes-Garcı́a, G. Maciá-Fernández, J. Camacho, Evaluation of
diagnosis methods in PCA-based multivariate statistical process control,
Chemometrics and Intelligent Laboratory Systems 172 (2018) 194–210.
doi:10.1016/j.chemolab.2017.12.008.
URL http://www.sciencedirect.com/science/article/pii/
S0169743917302046

[26] J. Camacho, Observation-based missing data methods for exploratory
data analysis to unveil the connection between observations and variables
in latent subspace models, Journal of Chemometrics 25 (11) (2011) 592–
600.

[27] M. Fuentes-Garcı́a, J. Camacho, G. Maciá-Fernández, Present and future
of network security monitoring, IEEE Access 9 (2021) 112744–112760.
doi:10.1109/ACCESS.2021.3067106.

[28] J. Camacho, A. Pérez-Villegas, R. A. Rodrı́guez-Gómez, E. Jiménez,
Multivariate exploratory data analysis (MEDA) toolbox for Matlab,
Chemometrics and Intelligent Laboratory Systems 143 (0) (2015) 49–57.
doi:10.1016/j.chemolab.2015.02.016.

[29] GitHub repository for the MEDA Toolbox, https://github.com/
josecamachop/MEDA-Toolbox, accessed: 2018-09-30.

[30] GitHub repository for the FCParser, https://github.com/josecamachop/
FCParser, accessed: 2018-09-30.

[31] J. Camacho, G. Maciá-Fernández, N. M. Fuentes-Garcı́a, E. Saccenti,
Semi-supervised multivariate statistical network monitoring for learn-
ing security threats, IEEE Transactions on Information Forensics and
Security 14 (8) (2019) 2179–2189. doi:10.1109/TIFS.2019.
2894358.

[32] H. Martens, T. N. s, Multivariate Calibration, John Wiley & Sons, 1992.
[33] P. Geladi, B. Kowalski, Partial least-squares regression: a tutorial,

Analytica Chimica Acta 185 (1986) 1–17.
[34]
[35] D. Kotz, K. Essien, Analysis of a campus-wide wireless network,

Wireless Networks 11 (1–2) (2005) 115–133. doi:10.1007/
s11276-004-4750-0.

[36] T. Henderson, D. Kotz, I. Abyzov, The changing usage of a mature
campus-wide wireless network, Computer Networks 52 (14) (2008)
2690–2712. doi:10.1016/j.comnet.2008.05.003.

[37] J. Case, M. Fedor, M. Schoffstall, J. Davin, A Simple Network Man-
agement Protocol (SNMP), RFC 1157, RFC Editor (May 1990).
URL https://www.rfc-editor.org/rfc/rfc1157.txt

[38] Eduroam: World wide education roaming for research & education,
https://www.eduroam.org/, accessed: 2018-09-30.

[39] M. Vanhoef, F. Piessens, Key reinstallation attacks: Forcing nonce
reuse in WPA2, in: Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security, CCS ’17, ACM, 2017, pp.
1313–1328. doi:10.1145/3133956.3134027.
URL http://doi.acm.org/10.1145/3133956.3134027

[40] A. D’Alconzo, I. Drago, A. Morichetta, M. Mellia, P. Casas, A survey on
big data for network traffic monitoring and analysis, IEEE Transactions
on Network and Service Management 16 (3) (2019) 800–813. doi:
10.1109/TNSM.2019.2933358.

[41] Q. Thai, C. Ordonez, O. Gnawali, Monitoring networks with queries
evaluated by edge computing, in: 2020 IEEE International Conference
on Big Data (Big Data), 2020, pp. 2223–2231. doi:10.1109/
BigData50022.2020.9377998.

[42] P. Khandait, N. Hubballi, B. Mazumdar, Efficient keyword match-
ing for deep packet inspection based network traffic classification,
in: 2020 International Conference on COMmunication Systems NET-
workS (COMSNETS), IEEE, 2020, pp. 567–570. doi:10.1109/
COMSNETS48256.2020.9027353.

[43] A. Benzekri, R. Laborde, A. Oglaza, D. Rammal, F. Barrère, Dynamic
security management driven by situations: An exploratory analysis of
logs for the identification of security situations, in: 2019 3rd Cyber
Security in Networking Conference (CSNet), IEEE, 2019, pp. 66–72.
doi:10.1109/CSNet47905.2019.9108976.

[44] A. Sgambelluri, F. Paolucci, A. Giorgetti, D. Scano, F. Cugini, Ex-
ploiting telemetry in multi-layer networks, in: 2020 22nd International
Conference on Transparent Optical Networks (ICTON), IEEE, 2020, pp.
1–4. doi:10.1109/ICTON51198.2020.9203310.

[45] R. A. K. Fezeu, Z. L. Zhang, Anomalous model-driven-telemetry
network-stream bgp detection, in: 2020 IEEE 28th International Confer-
ence on Network Protocols (ICNP), 2020, pp. 1–6. doi:10.1109/
ICNP49622.2020.9259411.

[46] A. Sivanathan, H. Habibi Gharakheili, V. Sivaraman, Managing iot
cyber-security using programmable telemetry and machine learning,

https://doi.org/10.1109/INFCOMW.2014.6849282
https://doi.org/10.1109/INFCOMW.2014.6849282
https://doi.org/10.1080/13683500.2013.802764
https://doi.org/10.1080/13683500.2013.802764
http://arxiv.org/abs/1205.0121v2
https://doi.org/10.1198/106186006X113430
https://doi.org/10.1198/106186006X113430
http://www.sciencedirect.com/science/article/pii/S0167404816300116
http://www.sciencedirect.com/science/article/pii/S0167404816300116
https://doi.org/10.1016/j.cose.2016.02.008
http://www.sciencedirect.com/science/article/pii/S0167404816300116
http://www.sciencedirect.com/science/article/pii/S0167404816300116
https://doi.org/10.1002/cjce.5450690105
https://doi.org/10.1002/cjce.5450690105
https://doi.org/10.1002/aic.690400809
https://doi.org/10.1080/08982110701621304
http://www.sciencedirect.com/science/article/pii/S0169743915002579
http://www.sciencedirect.com/science/article/pii/S0169743915002579
http://www.sciencedirect.com/science/article/pii/S0169743915002579
https://doi.org/10.1016/j.chemolab.2015.10.006
http://www.sciencedirect.com/science/article/pii/S0169743915002579
http://www.sciencedirect.com/science/article/pii/S0169743915002579
http://www.sciencedirect.com/science/article/pii/S0169743917302046
http://www.sciencedirect.com/science/article/pii/S0169743917302046
https://doi.org/10.1016/j.chemolab.2017.12.008
http://www.sciencedirect.com/science/article/pii/S0169743917302046
http://www.sciencedirect.com/science/article/pii/S0169743917302046
https://doi.org/10.1109/ACCESS.2021.3067106
https://doi.org/10.1016/j.chemolab.2015.02.016
https://github.com/josecamachop/MEDA-Toolbox
https://github.com/josecamachop/MEDA-Toolbox
https://github.com/josecamachop/FCParser
https://github.com/josecamachop/FCParser
https://doi.org/10.1109/TIFS.2019.2894358
https://doi.org/10.1109/TIFS.2019.2894358
https://doi.org/10.1007/s11276-004-4750-0
https://doi.org/10.1007/s11276-004-4750-0
https://doi.org/10.1016/j.comnet.2008.05.003
https://www.rfc-editor.org/rfc/rfc1157.txt
https://www.rfc-editor.org/rfc/rfc1157.txt
https://www.rfc-editor.org/rfc/rfc1157.txt
https://www.eduroam.org/
http://doi.acm.org/10.1145/3133956.3134027
http://doi.acm.org/10.1145/3133956.3134027
https://doi.org/10.1145/3133956.3134027
http://doi.acm.org/10.1145/3133956.3134027
https://doi.org/10.1109/TNSM.2019.2933358
https://doi.org/10.1109/TNSM.2019.2933358
https://doi.org/10.1109/BigData50022.2020.9377998
https://doi.org/10.1109/BigData50022.2020.9377998
https://doi.org/10.1109/COMSNETS48256.2020.9027353
https://doi.org/10.1109/COMSNETS48256.2020.9027353
https://doi.org/10.1109/CSNet47905.2019.9108976
https://doi.org/10.1109/ICTON51198.2020.9203310
https://doi.org/10.1109/ICNP49622.2020.9259411
https://doi.org/10.1109/ICNP49622.2020.9259411

15

IEEE Transactions on Network and Service Management 17 (1) (2020)
60–74. doi:10.1109/TNSM.2020.2971213.

[47] N. Anerousis, P. Chemouil, A. A. Lazar, N. Mihai, S. B. Weinstein,
The origin and evolution of open programmable networks and sdn,
IEEE Communications Surveys Tutorials (2021) 1–1doi:10.1109/
COMST.2021.3060582.

[48] V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: A sur-
vey, ACM Computing Surveys 41 (3) (Jul. 2009). doi:10.1145/
1541880.1541882.
URL https://doi.org/10.1145/1541880.1541882

[49] M. Salehi, L. Rashidi, A survey on anomaly detection in evolving data:
[with application to forest fire risk prediction], ACM SIGKDD Explo-
rations Newsletter 20 (1) (2018) 13–23. doi:10.1145/3229329.
3229332.
URL https://doi.org/10.1145/3229329.3229332

[50] A. A. Sawant, P. S. Game, Approaches for anomaly detection in network:
A survey, in: 2018 Fourth International Conference on Computing
Communication Control and Automation (ICCUBEA), IEEE, 2018, pp.
1–6. doi:10.1109/ICCUBEA.2018.8697557.

[51] K. Kurniabudi, B. Purnama, Sharipuddin, D. Dr, D. Stiawan, S. Sahmin,
A. Heryanto, R. Budiarto, Network anomaly detection research: A
survey, Indonesian Journal of Electrical Engineering and Informatics
7 (2019) 36–49. doi:10.11591/ijeei.v7i1.773.

[52] G. Fernandes, J. J. Rodrigues, L. F. Carvalho, J. F. Al-Muhtadi,
M. L. Proença, A comprehensive survey on network anomaly detection,
Telecommunications Systems 70 (3) (2019) 447–489. doi:10.1007/
s11235-018-0475-8.
URL https://doi.org/10.1007/s11235-018-0475-8

[53] M. Munir, M. A. Chattha, A. Dengel, S. Ahmed, A comparative anal-
ysis of traditional and deep learning-based anomaly detection methods
for streaming data, in: 2019 18th IEEE International Conference On
Machine Learning And Applications (ICMLA), 2019, pp. 561–566.
doi:10.1109/ICMLA.2019.00105.

[54] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, L. Kagal,
Explaining explanations: An overview of interpretability of machine
learning, in: 2018 IEEE 5th International Conference on Data Science
and Advanced Analytics (DSAA), 2018, pp. 80–89. doi:10.1109/
DSAA.2018.00018.

[55] M. Du, N. Liu, X. Hu, Techniques for interpretable machine learning,
Communications of the ACM 63 (1) (2019) 68–77. doi:10.1145/
3359786.
URL https://doi.org/10.1145/3359786

[56] M. Moradi, M. Samwald, Explaining black-box models for biomedical
text classification, IEEE Journal of Biomedical and Health Informatics
(2021) 1–1doi:10.1109/JBHI.2021.3056748.

[57] A. Tahmassebi, J. Martin, A. Meyer-Baese, A. H. Gandomi, An in-
terpretable deep learning framework for health monitoring systems: A
case study of eye state detection using eeg signals, in: 2020 IEEE
Symposium Series on Computational Intelligence (SSCI), 2020, pp.
211–218. doi:10.1109/SSCI47803.2020.9308230.

[58] M. Li, K. Kuang, Q. Zhu, X. Chen, Q. Guo, F. Wu, Ib-m: A flexible
framework to align an interpretable model and a black-box model, in:
2020 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM), 2020, pp. 643–649. doi:10.1109/BIBM49941.2020.
9313119.

[59] C. Rudin, Stop explaining black box machine learning models for
high stakes decisions and use interpretable models instead, Na-
ture Machine Intelligence 1 (2019) 206–215. doi:10.1038/
s42256-019-0048-x.

[60] D. C. Elton, Self-explaining ai as an alternative to interpretable ai, in:
B. Goertzel, A. I. Panov, A. Potapov, R. Yampolskiy (Eds.), Artificial
General Intelligence, 2020.

[61] I. T. Jolliffe, J. Cadima, Principal component analysis: a review and
recent developments, Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences 374 (2065) (2016)
20150202. arXiv:https://royalsocietypublishing.org/
doi/pdf/10.1098/rsta.2015.0202, doi:10.1098/rsta.
2015.0202.
URL https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2015.0202

[62] K. M. . A. N. Lever, J., Principal component analysis, Nature Methods
14 (2017) 641–642. doi:10.1038/nmeth.4346.
URL https://doi.org/10.1038/nmeth.4346

[63] C. Callegari, L. Gazzarrini, S. Giordano, M. Pagano, T. Pepe, Improving
pca-based anomaly detection by using multiple time scale analysis and
kullback–leibler divergence, International Journal of Communication
Systems 27 (10) (2014) 1731–1751. arXiv:https://
onlinelibrary.wiley.com/doi/pdf/10.1002/dac.2432,

doi:https://doi.org/10.1002/dac.2432.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.2432

[64] A. Delimargas, E. Skevakis, H. Halabian, I. Lambadaris, N. Seddigh,
B. Nandy, R. Makkar, Evaluating a modified pca approach on network
anomaly detection, in: 2014 International Conference on Next Gen-
eration Networks and Services (NGNS), 2014, pp. 124–131. doi:
10.1109/NGNS.2014.6990240.

[65] J. Camacho, A. Pérez-Villegas, P. Garcı́a-Teodoro, G. Maciá-
Fernández, Pca-based multivariate statistical network monitoring
for anomaly detection, Computers & Security 59 (2016) 118–137.
doi:https://doi.org/10.1016/j.cose.2016.02.008.
URL https://www.sciencedirect.com/science/article/pii/
S0167404816300116

José Camacho José Camacho is Full Professor in
the Department of Signal Theory, Telematics and
Communication and head of the Computational Data
Science Laboratory (CoDaS Lab), at the University
of Granada, Spain. He holds a degree in Computer
Science from the University of Granada (2003) and
a Ph.D. from the Technical University of Valencia
(2007), both in Spain. He worked as a post-doctoral
fellow at the University of Girona, granted by the
Juan de la Cierva program, and was a Fulbright
fellow in 2018 at Dartmouth College, USA. His

research interests include networkmetrics and intelligent communication
systems, computational biology, knowledge discovery in Big Data and the
development of new machine learning and statistical tools.

Katarzyna Wasielewska Katarzyna Wasielewska
received MSc in computer science from the Faculty
of Mathematics and Computer Science, Nicolaus
Copernicus University in Torun (NCU), Poland, in
1999, and PhD in telecommunications from the Fac-
ulty of Telecommunication, Information Technology
and Electrical Engineering, University of Science
and Technology in Bydgoszcz (UTP), Poland, in
2014. She is Assistant Professor at the Institute of
Applied Informatics, State University of Applied
Sciences in Elblag, Poland. Currently, she is a Post-

doctoral Researcher at the Department of Signal Theory, Telematics and
Communication and the CoDaS Lab, University of Granada, Spain, granted
by EU Marie Skodowska-Curie Actions Individual Fellowships program. Her
research interests include computer communications, network traffic analysis,
network security, multivariate analysis and machine learning. She worked 10
years as an ISP network administrator, and she is an active IEEE volunteer.

Rasmus Bro Rasmus Bro (born 1965) studied math-
ematics and analytical chemistry at the Technical
University of Denmark and received his M.Sc. in
1994. In 1998 he obtained his Ph.D. in multiway
analysis from the University of Amsterdam, The
Netherlands. Since 1994 he has been employed at
the Department of Food Science, at the University
of Copenhagen, and in 2002 he was appointed full
professor of chemometrics. He has had several stays
abroad at research institutions in The Netherlands,
Norway, France, and United States. Current research

interests include chemometrics, multivariate calibration, multiway analysis,
exploratory analysis, blind source separation, curve resolution, MATLAB
programming.

https://doi.org/10.1109/TNSM.2020.2971213
https://doi.org/10.1109/COMST.2021.3060582
https://doi.org/10.1109/COMST.2021.3060582
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/3229329.3229332
https://doi.org/10.1145/3229329.3229332
https://doi.org/10.1145/3229329.3229332
https://doi.org/10.1145/3229329.3229332
https://doi.org/10.1145/3229329.3229332
https://doi.org/10.1109/ICCUBEA.2018.8697557
https://doi.org/10.11591/ijeei.v7i1.773
https://doi.org/10.1007/s11235-018-0475-8
https://doi.org/10.1007/s11235-018-0475-8
https://doi.org/10.1007/s11235-018-0475-8
https://doi.org/10.1007/s11235-018-0475-8
https://doi.org/10.1109/ICMLA.2019.00105
https://doi.org/10.1109/DSAA.2018.00018
https://doi.org/10.1109/DSAA.2018.00018
https://doi.org/10.1145/3359786
https://doi.org/10.1145/3359786
https://doi.org/10.1145/3359786
https://doi.org/10.1145/3359786
https://doi.org/10.1109/JBHI.2021.3056748
https://doi.org/10.1109/SSCI47803.2020.9308230
https://doi.org/10.1109/BIBM49941.2020.9313119
https://doi.org/10.1109/BIBM49941.2020.9313119
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2015.0202
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2015.0202
http://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2015.0202
http://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2015.0202
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1098/rsta.2015.0202
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2015.0202
https://doi.org/10.1038/nmeth.4346
https://doi.org/10.1038/nmeth.4346
https://doi.org/10.1038/nmeth.4346
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.2432
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.2432
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.2432
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/dac.2432
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/dac.2432
https://doi.org/https://doi.org/10.1002/dac.2432
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.2432
https://doi.org/10.1109/NGNS.2014.6990240
https://doi.org/10.1109/NGNS.2014.6990240
https://www.sciencedirect.com/science/article/pii/S0167404816300116
https://www.sciencedirect.com/science/article/pii/S0167404816300116
https://doi.org/https://doi.org/10.1016/j.cose.2016.02.008
https://www.sciencedirect.com/science/article/pii/S0167404816300116
https://www.sciencedirect.com/science/article/pii/S0167404816300116

16

David Kotz David Kotz is the Provost, and the Pat
and John Rosenwald Professor in the Department
of Computer Science, at Dartmouth College. He
previously served as Associate Dean of the Faculty
for the Sciences, as a Core Director at the Cen-
ter for Technology and Behavioral Health, and as
the Executive Director of the Institute for Security
Technology Studies. His current research involves
security and privacy in smart homes, and wireless
networks. He has published over 250 refereed pa-
pers, obtained $89m in grant funding, and mentored

over 100 research students and postdocs. He is an ACM Fellow, an IEEE
Fellow, a 2008 Fulbright Fellow to India, a 2019 Visiting Professor at ETH
Zürich, and an elected member of Phi Beta Kappa. He received his AB in
Computer Science and Physics from Dartmouth in 1986, and his PhD in
Computer Science from Duke University in 1991.

	I Introduction
	II Interpretability and Interaction in Multivariate Analysis
	II-A PCA Matrix Factorization for Interpretation
	II-B MSNM for Interpretable Anomaly Detection

	III Multivariate Big Data Analysis
	III-A Feature-as-a-counter parsing

	IV Feature Learning in the Downstream Stage
	V Materials & Methods
	V-A The UGR'16 Case Study
	V-B The Dartmouth Wi-Fi network Case Study

	VI UGR'16
	VI-A Downstream
	VI-A1 Feature learning
	VI-A2 Parsing

	VI-B Analysis
	VI-C Upstream

	VII Dartmouth Wi-Fi
	VII-A Downstream
	VII-A1 Feature learning
	VII-A2 Parsing

	VII-B Analysis
	VII-B1 Analysis with PCA
	VII-B2 Analysis with MSNM

	VII-C Upstream

	VIII Conclusion
	References
	Biographies
	José Camacho
	Katarzyna Wasielewska
	Rasmus Bro
	David Kotz

