Solar: An Open Platform for Context-Aware
Mobile Applications

Guanling Chen and David Kotz

Dept. of Computer Science, Dartmouth College
Hanover, NH, USA 03755
{glchen, df} @cs.dartmouth.edu

Abstract the set of devices and their interactions change as she
moves about in the environment. To reduce user distrac-
Emerging pervasive computing technologies transfotign, pervasive-computing applications must be aware of
the way we live and work by embedding computation ifhe context in which they run. Thesentext-awareap-
our surrounding environment. To avoid increasing corptications should be able to learn and dynamically adjust
plexity, and allow the user to concentrate on her taskeir behaviors to the current context, that is, the current
applications in a pervasive computing environment mustate of the user, the current computational environment,
automatically adapt to their changirmgntext including and the current physical environment[15], so that the user
the user state and the physical and computational envirgain focus on her current activity.
ment in which they run. Solar is a middleware platform context information is derived from an array of diverse
to help these “context-aware” applications aggregate gi§formation sources, such as location sensors, weather or
sired context from heterogeneous sources and to loc@ifific sensors, computer-network monitors, and the sta-
environmental services depending on the current contgyk of computational or human services. While the raw
By moving most of the context computation into the insensor data may be sufficient for some applications, many
frastructure, Solar allows applications to run on thin Meaquire the raw data to be transformed or fused with other
bile clients more effectively. By providing an open framesensor data before it is useful. By aggregating many sen-
work to enable dynamic injection of context processingy inputs to derive higher-level context, applications can
modules, Solar shares these modules across many appjipt more accurately.
cations, reducing application development cost and net: f,ndamental challenge in pervasive computing, then,

work traffic. By distributing these modules across nefs 14 collect raw data from thousands of diverse sensors,
work nodes and reconfiguring the distribution at runtimgocesghe data into context information, adisseminate
Solar achieves parallelism and online load balancing. he information to hundreds of diverse applications run-
ning on thousands of devices, whilealingto large num-
; rs of r lications, an ringcontex
1 Introduction bers of sources, applications, and useeuringcontext
information from unauthorized uses, and respecting indi-

In a pervasive-computing environment, it is unreasonafyiguals’ privacy. In this paper we address this fundamen-

to expect a user to configure and manage hundredsi@ichallenge by proposing Solar as an open platform to

computationally enhanced appliances, particularly Wthpport. context-information collection, aggregation, and
Issemination. Its security and privacy features are ad-

We gratefully acknowledge the support of the Cisco Systems Uijressed in another paper [14]_
versity Research Program, Microsoft Research, the USENIX Scholars

Program, DARPA contract F30602-98-2-0107, and DoD MURI contract S0lar is currently a work in progress. We have imple-
F49620-97-1-03821. mented a prototype based on Java, with early results and

Copyright 2002 by the authors.
In Proceedings of the First International Conference on Pervasive Computing,
pages 41-47, June 2002. In an informal companion volume of short papers.

David Kotz
Copyright 2002 by the authors.
In Proceedings of the First International Conference on Pervasive Computing,
 pages 41-47, June 2002. In an informal companion volume of short papers.�

some applications described in a recent report [3]. Solar i | pagge = "VER16481",

[measure = "location",

now evolving, based on our discussion of the challengeg location= badge = "VER16481",
. [organization = "Dartmouth", granularity = "room",

and design guidelines for a context aggregation infrastruc{ building = "Sudikoft", rate = "3s",

ture [2]. In this paper, we give an overview of Solar (Sec- | ,room="120 provider = "Versus

. . . 1 1
tion[2), its “operator graph” abstraction (Sect[dn 3), and]timestamp: 1023510520

the overall system architecture (Sectign 4).

(a) A location event (b) A source name
2 Solar model Sbadge-loc =any |
[measure = "location", badge = "VER16481"]
Context-aware applications respond to context changes [delvicej"camera”,
. . . color = true,
by adapting to the new context. These applications are resolution = "640x480",
active in nature and their actions are triggered by asyn-]locatlon=$badge-loc:locat10n
chronous occurrences. Thus they are likely to have an
“event_driven” Structure, Where context Changes are rep_ (c) A context-sensitive name for the mobile camera

resented asvents We treat sensors of contextual data as))
information sourceswhether they sense physical prop-/9U'€ 1: The event representation and naming mecha-
erties such as location, or computational properties sU¥fm N Solar.

as network bandwidth. An information sourpablishes
events indicating its current state or changes to its stat

Bftribute-value pairs makes no difference. Solar uses
The sequence of events produced arewant stream(A :
. . . a hybrid approach that keeps the values order-free but
sensor with only a query interface can be easily wrappg .
ows a tree structure on attribute names (not values)

with a proxy publisher.) Context-sensitive applicatio &
broxy p) P qSO{‘ convenience, exactly like the representation of Solar
events. An example name of the source that tracks badge

subscribeto event streams that interest them, and reac
to arriving events to adapt to their changing e_nV|ronrr_1em{]ER16481,, is shown in FigurE|1(b).
Solar represents contextual events as a list of hierar-

chical attribute-value pairs. The internal data structure 'raditionally aresource directory is fairly static and as-
is a forest with the values at the leaves. An example $fMes that names rarely change after they are registered.
an event about the current location of badge numbefegntext-aware applications, however, may need to look
“VER16481” may look like Figurg[i(a). up names based on context. For example, a context-aware

To enable an application to subscribe to its desir@fPlay may want to find all nearby cameras. In this case,
sources, Solar needs to name the sources and proviégeaphysmal location is part of the resource description
flexible mechanism for resource discovery (services 4pg each camera, Wh'Cb may move frequenyly. Ma'mua!
also named but we focus on sources in this paper). Gffifates to the camera’s name are almost impossible in
possibility is to use a hierarchical naming scheme, suchSh scenarios. Instead, automatic name updates should
Unix path names. For example, the source that publistsused; for example, attach an active badge to the camera
the location of badge “VER16481" could be named [/Id"lnd arrange to hayellocatlon changes _u.pdate the camera’s
cator/Versus/VER16481]. The strict hierarchical stryfame. The name is itself context-se_nsmvg. _
ture, however, depends on a strong convention that musthus there are three challenges involving naming and
be followed by both providers and users. The syntax megsource discovery for context-aware applications: to au-
be difficult to adapt to more expressive name queries (lil@matically track associations (such as between badge and
range selection). These limitations make a hierarchié@mera), to handle frequent name updates, and to support
name space less attractive in a pervasive computing ef@rsistent name queries so applications can be notified
ronment. when the name space changes.

On the other hand, an attribute-based naming schem&olar uses an approach that allows the name for a
is more flexible and expressive because the order of #mirce to change according to context. Solar provides

a unigue way to automatically manage context-sensitithe highest temperature of the day.

names by defining the values of contextual attributes toFrom a subscriber’s view, both sources and operators
be the output of some sources computing that pieceexfpose same interface so they are both epebtishers
context. We show an example of such a context-sensiti&ry publisher can be named, and it is equivalent to say
name for a mobile camera in Figyre 1(c). It first defingbat their output event stream is named since each pub-
a source that tracks the camera’s location (assuming lisber publishes one event stream, and each event stream
camera has badge “VER16481" attached), and then #las only one publisher.

fines the location attribute of that camera to be part of theSince the inputs and output of an operator are all event

location event published by the specified source. streams, the applications can use a tree of recursively con-
Due to space limitations, we reserve the details of Suected operators (starting from sources) to collect and ag-
lar's naming system for a future paper. gregate desired context. While each application can build

its own operator tree, to scale to a large number of ap-

plications we must take advantage of opportunities to re-
3 Operator graph use operators between applications’ operator trees. As an

open platform, Solar uses a small flexible language to al-
Solar is not simply another event delivery system. Instedow applications to specify an operator tree that is to be
Solar is an open platform to allow dynamic injection ahstantiated at runtime. At the leaves are the name queries
context processing modules that can be shared acrossf@ppublishers; but some names may match multiple pub-
plications. The observation is that few context-aware djshers (the application can choose to use any of them
plications want to work directly with raw data from coner merge all of them into one event stream), and some
textual sources. It could be that the application only neettsme queries are resolved to different publishers at differ-
a portion of the data, the data is in wrong format, thent times, depending on context.
data is inaccurate, or the data is incomplete and not useApplications can also choose to name the event stream
ful without aggregating other sensor inputs. Thus, sepublished by the root operator of the subscription tree,
sor data typically needs to go through several processggit can be re-used by other applications. These inter-
steps before it becomes the meaningful contextual knowbnnected overlapping operator trees form a directed
edge desired by applications. Such contextual compudayclic graph, which we call theperator graph Cur-
tion tends to result in a high development cost for contexently, Solar incrementally builds the operator graph as
aware applications, given the heterogeneous sources ae@ subscription trees are added, sharing event streams
diverse context needed. wherever names match. We explore the background and

On the other hand, we see that many adaptive apflistification for this design in an earlier paper [2].
cations ask for similar (if not exactly the same) contex- Stateful operators may cause some complexity if shared
tual information, from basics (such as location contexdkross many applications. Consider a location aggregator
to high-level social context (such as user activity). It that maintains the current location of all objects that are
then natural to re-use the overlapping context aggregathming tracked, and it publishes an event whenever an ob-
functions or sub-functions among applications. Our aject changes its location. An active map now subscribes
proach is to decompose the context-aggregation procesthis aggregator, but may never know the location of a
of every application into a series of modular and re-usalgenter until it moves, although the aggregator has this in-
operators each of which is an object that subscribes formation in its state. Solar allows the operator to publish
and processes one or more input event streams and ubpecial sequence of events, to the new subscriber only,
lishes another event stream. events that are marked as “state-pushing events” and when
Typical operators include filters, transformers, armbnsidered together represent the current state of the op-

more complicated aggregators. Some operators do edtor. (This feature is reminiscent of the Gryphon expan-
have accumulated state, such as a transformer mapsiny operation [1]). Thus, new subscribers receive a series
from sensor ID to room number. Other operators may events to bring them “up to date” and then the ongo-
have state, such as a temperature aggregator publishiggstream of events that represent changes to the current

. o . O P
i i i PI H "]]
Occasionally an application may not need the ongo- O— L CodeServer I\ Manager | !
ing event stream, but simply needs to obtain the current ' Naming Service |

R X NN fSubscrjption \:
value. In another system, the application might query b Engne
the information source. In the operator graph we retain /" A
the publish-and-subscribe abstraction by permitting “one-~__ ' . A O ¢ ... Subscription

Request |

time” subscriptions of stateful operators. An application
that needs to obtain the current value of the information
published by an operator makes a one-time subscription to
that operator. The operator “pushes” its state, as described
above, and then cancels the subscription. The one-timigure 2: The architecture of Solar. The small circles are
subscription approach avoids the need for additional kources and operators.
terfaces and maintains the unidirectional data flow.

There are several advantages of the operator-graph ab-
straction for context collection, aggregation, and dis-
semination. First, applications receive events semanti-
cally closer to their needs than those produced by thel he Star services requests for new subscriptions. When
sources. Second, due to the modular, object-oriented Hi& Star receives a new subscription-tree description, it
sign we benefit from operator re-usability, data abstraearses the description, and resolves the name queries on
tion, and maintainability. Third, due to the modular ddhe leaves of the subscription tree using the naming ser-
sign this operator graph can be deployed across a nége. It then deploys other operators in the tree by in-
work and achieve the benefits of parallelism and distftantiating the operator’s object on one of matgnets
bution. Fourth, since filters and aggregators can dmdhich periodically register themselves with the Star. Thus
matically reduce traffic along the graph edges, they fke Star maintains a list of active Planets and determines
duce inter-process (and often inter-host) communicatigfich Planet should host the new operator by consider-
requirements. Finally, by sharing the common operatdf§ the Planet's load and network traffic between Planets.

and event streams the system can support more such!/@gssence, it attempts to map the operator graph onto the
plications and more users. Planetary network to distribute load and avoid congestion.

Planets play a key role in the subscriptions of resident

4 System architecture operators. When deploying new subscriptions, the Star
tells the Planets to arrange a subscription from one of its

erators to another operator, possibly in another Planet.

Solar architecture, our current prototype impIementati%? us the Planet maintains all the subscriptions for each

and programming model, and future research directions the resident operators. When an operator publishes
prog g ' an event, the hosting Planet delivers the event to all the

subscribing operators (that may reside on several Planets)
4.1 Overview and applications. When a Planet receives an event, it dis-

patches the event to the appropriate resident operator(s).
The Solar system consists of several components (see Fig-
ure[2). A centralizedtar processes subscription requests Sources and applications run outside the Solar system
from applications and deploys operators onto appropriaied use a small Solar library to interface with Solar. The
Planetsas necessary. A Planet is an execution platforsmall library allows the sources to publish events into So-
for Solar sources and operators, and it is responsible far, and allows the applications to send requests to the
tracking subscriptions and delivering events in the opeftar, to manage their subscriptions, and to receive Solar
tor graph. events over standard network protocols.

In this section we describe the various components of

4.2 Implementation In our second prototype, we are implementing
attribute-based naming and replacing the XML-based lan-

Our Solar system is implemented in Java. The first profgyage with a more general composition language that is

type models events as arbitrary Java objects and uses &\@er to use for selecting publishers and constructing the

serialization for event transmission [3]. In our second prayent-flow tree.

totype we use the hybrid hierarchical attribute-value struc-

ture to represent events (see Sedfion 2) and are enhancing

event delivery performancE [119]. The operators are sméli3 Future work

Java objects thatimplement a simple publish/subscribej[[?{ere are several research directions we plan to explore

terface. Since Solar builds the operato h incrementally and
The first Solar prototype provides an XML-based lary 1T burds P rgraph i naty
s L .__.event publishing rates by the sources are generally unpre-
guage to allow an application to describe its subscriptign . i X
. . : ictable, we need a dynamic deployment algorithm to dis-
tree. The leaves are simple name queries while all other o
. . tribute (and redistribute) operators across Planets to bal-

operators are defined with a Java classname and the_ar-

. . _Iehnce load and minimize network traffic. Solar needs to
guments that are necessary to initialize the instance.

e . L
Star looks in the name space to find matching sourcessgPport some kind of flow-control policies in the operator
existing operators installed by other applications. For

Eaph, without violating application semantics. For ex-
i ample, a fast publisher may want to disconnect slow sub-
other operators, the Star deploys a new instance on a ran- . : X
d . scribers, or slow down to wait until subscribers to catch
domly chosen Planet from the list of active Planets.
When asked to deploy an operator, the Planet loads ﬁ?

operator's Java class ffo.".‘ the local CLASSPATH Of 'Seneral garbage-collection mechanism to delete operators
mote code server and initializes a hew instance with ith no subscribers

rameters supplied in the XML subscription request. TheTo determine the value of the operator-graph abstrac-

Planet maintains one outbound event queue for each rﬁe?sﬁ and programming model, and the performance of

ident source or operator, and a dedicated thread takes Solar system, we are developing and deploying sev-
events from this queue and sends them to Planets h%'f} y ’

ing the subscribers. We multiplex operator subscriptions real-world context-sensitive mobile applications. We
; : I IR- I i ly | i
onto inter-Planetary TCP/IP sockets, so that there ar InStalled an IR-based location system to supply location

e.at . T
. context to our Solar system and its apphcatlﬁnsWe
most two one-way TCP/IP connections between any t an to add more information sources to enrich the con-

Pla_ne_ts, regardiess of the number of operators'on or S space and to explore the performance and flexibility
scriptions between the two Planets. The Planet's Network, operator-graph abstraction
Manager thread monitors the inbound sockets and fills an '
inbound event queue; a dispatcher thread removes events

from this queue and enters a reference for the event i%o

the incoming event queue for each destination operator. Related work

Each operator has a dedicated thread to invoke the opgra- . L .
:) any have studied context-aware applications and their
tor’s event handler as new events arrive.

Sol id ing f K fsupporting systems. In Xerox Parc’s distributed architec-
olar provides an open programming framework 19f,e e5ch yser's “agent” collects context (location) about

Opefa“’r develqpers._ 'Developers can wr|t.e a New opgdst user, and decides to whom the context can be deliv-
tor (in Java) by inheriting from the appropriate base Cla@?ed based on that user’s poliey [L6] 17]

and |mplement|ng_a few abstragt m_ethods. Wher! an Obery few projects specifically address the flexibility and
ator needs to publish an event, it simply calls an inherited

publish(IEvenmethod: the hosting Planet will Caloturscalablllty of context aggregation and dissemination. Like

the event and send to all its subscribers. An operatorglar’ the Context Toolkit is a distributed architecture sup-

: . orting context fusion and deliveryl[5]. It usesmdget
handleEvent(IEventls automatically invoked when the” g V] g
Planet receives an event destined to that operator. 1See http:/iwww.cs.dartmouth.edu/ solar/ for more information.

, or drop the events based on policies provided either
subscribers or the publisher itself. Solar also needs a

to wrap a sensor, through which the sensor can be queried non-procedural language, iQL, can specify the logic
about its state or activated. Applications can subscrifte composing pervasive datal [4]. The model supports
to pre-defined aggregators that compute commonly udeath requested and triggered evaluation. For one com-
context. Solar allows applications to dynamically insepbser, iQL allows the inputs to be continually rebound to
operators into the system and compose refined contegpropriate data sources as the environment changes. The
that can be shared by other applications. The Contéatguage iQL complements Solar in two ways: iQL can
Toolkit allows applications to supply filters for their subbe the programming language for individual operators, or
scriptions, while Solar introduces general filter operatai3L can be the high-level subscription language the com-
to maintain a simple abstraction. IBM Research’s contepiter can decompose into a data-flow tree description used
service, Owl, addresses similar issues such as scalabibtySolar.
extensibility, and privacyL[6], but the paper provides no
details.
Targeted for distributed sensor networks, Michahell€s Summary
et al. propose to use context-aware packets to detect de-
sired context [13]. These smart packets contain a retrieVal support context-aware pervasive-computing applica-
plan that indicates what context sensors to visit to get t®ns, we propose an open platform, the “Solar” system,
sults. The plan can be updated at run time according thiBich employs a graph-based abstraction for context ag-
results from certain sensors. The packets may also congtiegation and dissemination. The abstraction models the
acontext hypothesjsvhich can be evaluated at computesontextual information sources as event publishers. The
empowered nodes, that derive higher-level context infavents flow through a graph of event-processing opera-
mation based on the retrieved raw sensor data. At thiss and become customized context for individual appli-
point, it is unclear whether these smart packets could ¢&ions. This graph-based structure is motivated by the
used to deliver notifications about context changes. observation that context-aware applications have diverse
Given the type of desired data, some systems automageds, requiring application-specific production of con-
cally construct a data-flow path from sources to requestitext information from source data. On the other hand, ap-
applications, by selecting and chaining appropriate coplications do not haveniqueneeds, so we expect there
ponents from a system repositofy [10, 9]. CANS cas substantial opportunity to share some of the processing
further replace or rearrange the components to adapb&iween applications or users. Using a specification lan-
changes in resource usa@é [8]. To apply this approactgtege, Solar allows applications to flexibly select contex-
support context-aware applications, the system manatye sources and construct their own event-flow tree. Solar
must foresee the necessary event transformations andlien interconnects these trees to form a graph through re-
stall them in the component repository. These systense of named event streams.
offer no specific support for applications to provide cus- We present the general model of Solar, discuss the de-
tom operators. Active Names, on the other hand, alldaeils of the operator graph abstraction, and describe So-
clients to supply a chain of generic components througdr's system architecture. We are using our Solar proto-
which the data from a service must p&ss [18]. Also, Atype to develop some context-aware applications [3, 12],
tive Streams support event-oriented inter-process comrand to support context-aware authorization [11]. We re-
nication, and allow application-supplietireamletdo be port some early experimental results fini [3] and describe
dynamically inserted into the data path [7]. Solar’'s access-control model in‘]J14]. We plan extensive
All of these approaches encourage the re-use of stadditional research.
dard components to construct custom event flows. None,
to our knowledge, specifically encourage the dynamic and
transparent re-use of event streams across applicatibb@ferences
and users. Solar’s re-use of operator instances, and their
event streams, avoids redundant computation and ddqtd Guruduth Banavar, Marc Kaplan, Kelly Shaw,
transmission, and improves scalability. Robert E. Strom, Daniel C. Sturman, and Wei Tao.

[2]

(3]

Information flow based event distribution middlef11]
ware. InICDCS 1999 Austin, Texas. IEEE Com-
puter Society Press.

Guanling Chen and David Kotz. Context aggrega-
tion and dissemination in ubiquitous computing sys-
tems. InProceedings of the Fourth IEEE Work{12]
shop on Mobile Computing Systems and Applica-
tions. IEEE Computer Society Press, June 2002.

Guanling Chen and David Kotz. Solar: A pervasive
computing infrastructure for context-aware mobilEL3]
applications. Technical Report TR2002-421, Dept.
of Computer Science, Dartmouth College, February
2002.

Norman H. Cohen, Hui Lei, Paul Castro, John S.
Davis Il, and Apratim Purakayastha. Composind.4]
pervasive data using iQL. IWWMCSA 2002Cal-
licoon, New York.

[5] Anind K. Dey. Providing Architectural Support for

[6]

[7]

[8]

[9] Jason I. Hong and James A. Landay. An infrasiruft9] Abram White.

[10]

Building Context-Aware ApplicationsPhD thesis, [15]
College of Computing, Georgia Institute of Technol-
ogy, December 2000.

Maria R. Ebling, Guerney D. H. Hunt, and Hui Lei.
Issues for context services for pervasive computing.6]
In Workshop on Middleware for Mobile Computing
2001, Heidelberg, Germany.

Greg Eisenhauer, Fabian E. Bustamante, afid/]
Karsten Schwan._A middleware toolkit for client-
initiated service specializationOperating Systems
Review 35(2):7-20, April 2001.

Xiaodong Fu, Weisong Shi, Anatoly Akkerman, an{iL8]
Vijay Karamcheti. | CANS: Composable, adaptive
network services infrastructure. WSITS 2001San
Francisco, California. USENIX.

ture approach to context-aware computiktman-
Computer Interactionl6(2&3), 2001.

Emre Kiciman and Armando Fox. Using dynamic
mediation to integrate COTS entities in a ubiquitous
computing environment. IHUC 200Q pages 211-
226, Bristol, UK. Springer-Verlag.

Chris Masone.| Role Definition Language (RDL):
A language to describe context-aware roles. Tech-
nical Report TR2001-426, Dept. of Computer Sci-
ence, Dartmouth College, May 2002. Senior Honors
Thesis.

Arun Mathias. | SmartReminder. A case study
on context-sensitive applications. Technical Re-
port TR2001-392, Dept. of Computer Science, Dart-
mouth College, June 2001. Senior Honors Thesis.

Florian Michahelles, Michael Samulowitz, and
Bernt Schiele. Detecting context in distributed sen-
sor networks by using smart context-aware pack-
ets. INARCS 2002Karlsruhe, Germany. Springer-
Verlag.

Kazuhiro Minami and David Kotz. Controlling éc-
cess to pervasive information in the “Solar” system.
Technical Report TR2002-422, Dept. of Computer
Science, Dartmouth College, February 2002.

Bill Schilit, Norman Adams, and Roy Want.
Context-aware computing applications. WMCSA
1994 pages 8590, Santa Cruz, California. IEEE
Computer Society Press.

William Noah Schilit. A System Architecture for
Context-Aware Mobile Computing PhD thesis,
Columbia University, May 1995.

Mike Spreitzer and Marvin Theimer. Providing lo-
cation information in a ubiquitous computing envi-
ronment. INSOSP 1993pages 270-283, Asheville,
NC. ACM Press.

Amin Vahdat, Michael Dahlin, Thomas Anderson,
and Amit Aggarwal.| Active Names: Flexible loca-
tion and transport of wide-area resourcesUBITS
1999 Boulder, Colorado. USENIX.

Performance and interoperability

in Solar. Technical Report TR2001-427, Dept. of

Computer Science, Dartmouth College, June 2002.
Senior Honors Thesis.

http://www.research.ibm.com/gryphon/Gryphon_ASSR/Gryphon_Papers/ICDCS_% 99_Middleware_Workshop_Final.pdf
http://www.research.ibm.com/gryphon/Gryphon_ASSR/Gryphon_Papers/ICDCS_% 99_Middleware_Workshop_Final.pdf
http://www.cs.dartmouth.edu/reports/abstracts/TR2001-421/
http://www.cs.dartmouth.edu/reports/abstracts/TR2001-421/
http://www.cs.dartmouth.edu/reports/abstracts/TR2001-421/
http://www.cs.arizona.edu/mmc/13%20Ebling.pdf
http://www.cc.gatech.edu/systems/papers/schwan/Eisenhauer00MTC.html
http://www.cc.gatech.edu/systems/papers/schwan/Eisenhauer00MTC.html
http://www.usenix.org/publications/library/proceedings/usits01/fu.html%
http://www.usenix.org/publications/library/proceedings/usits01/fu.html%
http://www.cs.berkeley.edu/~jasonh/publications/context-essay-final.pd% f
http://www.cs.berkeley.edu/~jasonh/publications/context-essay-final.pd% f
http://www.cs.dartmouth.edu/reports/abstracts/TR2001-426/
http://www.cs.dartmouth.edu/reports/abstracts/TR2001-426/
http://www.cs.dartmouth.edu/reports/abstracts/TR2001-392/
http://www.cs.dartmouth.edu/reports/abstracts/TR2001-392/
http://www.cs.dartmouth.edu/reports/abstracts/TR2002-422/
http://www.cs.dartmouth.edu/reports/abstracts/TR2002-422/
http://www.acm.org/pubs/citations/proceedings/ops/168619/p270-spreitze% r/
http://www.acm.org/pubs/citations/proceedings/ops/168619/p270-spreitze% r/
http://www.acm.org/pubs/citations/proceedings/ops/168619/p270-spreitze% r/
http://www.usenix.org/publications/library/proceedings/usits99/vahdat.% html
http://www.usenix.org/publications/library/proceedings/usits99/vahdat.% html
http://www.cs.dartmouth.edu/reports/abstracts/TR2001-427/
http://www.cs.dartmouth.edu/reports/abstracts/TR2001-427/

	Introduction
	Solar model
	Operator graph
	System architecture
	Overview
	Implementation
	Future work

	Related work
	Summary

