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Abstract

Emerging pervasive computing technologies transform
the way we live and work by embedding computation in
our surrounding environment. To avoid increasing com-
plexity, and allow the user to concentrate on her tasks,
applications in a pervasive computing environment must
automatically adapt to their changingcontext, including
the user state and the physical and computational environ-
ment in which they run. Solar is a middleware platform
to help these “context-aware” applications aggregate de-
sired context from heterogeneous sources and to locate
environmental services depending on the current context.
By moving most of the context computation into the in-
frastructure, Solar allows applications to run on thin mo-
bile clients more effectively. By providing an open frame-
work to enable dynamic injection of context processing
modules, Solar shares these modules across many appli-
cations, reducing application development cost and net-
work traffic. By distributing these modules across net-
work nodes and reconfiguring the distribution at runtime,
Solar achieves parallelism and online load balancing.

1 Introduction

In a pervasive-computing environment, it is unreasonable
to expect a user to configure and manage hundreds of
computationally enhanced appliances, particularly when
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the set of devices and their interactions change as she
moves about in the environment. To reduce user distrac-
tion, pervasive-computing applications must be aware of
the context in which they run. Thesecontext-awareap-
plications should be able to learn and dynamically adjust
their behaviors to the current context, that is, the current
state of the user, the current computational environment,
and the current physical environment [15], so that the user
can focus on her current activity.

Context information is derived from an array of diverse
information sources, such as location sensors, weather or
traffic sensors, computer-network monitors, and the sta-
tus of computational or human services. While the raw
sensor data may be sufficient for some applications, many
require the raw data to be transformed or fused with other
sensor data before it is useful. By aggregating many sen-
sor inputs to derive higher-level context, applications can
adapt more accurately.

A fundamental challenge in pervasive computing, then,
is to collect raw data from thousands of diverse sensors,
processthe data into context information, anddisseminate
the information to hundreds of diverse applications run-
ning on thousands of devices, whilescalingto large num-
bers of sources, applications, and users,securingcontext
information from unauthorized uses, and respecting indi-
viduals’privacy. In this paper we address this fundamen-
tal challenge by proposing Solar as an open platform to
support context-information collection, aggregation, and
dissemination. Its security and privacy features are ad-
dressed in another paper [14].

Solar is currently a work in progress. We have imple-
mented a prototype based on Java, with early results and
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some applications described in a recent report [3]. Solar is
now evolving, based on our discussion of the challenges
and design guidelines for a context aggregation infrastruc-
ture [2]. In this paper, we give an overview of Solar (Sec-
tion 2), its “operator graph” abstraction (Section 3), and
the overall system architecture (Section 4).

2 Solar model

Context-aware applications respond to context changes
by adapting to the new context. These applications are
active in nature and their actions are triggered by asyn-
chronous occurrences. Thus they are likely to have an
“event-driven” structure, where context changes are rep-
resented asevents. We treat sensors of contextual data as
information sources, whether they sense physical prop-
erties such as location, or computational properties such
as network bandwidth. An information sourcepublishes
events indicating its current state or changes to its state.
The sequence of events produced are anevent stream. (A
sensor with only a query interface can be easily wrapped
with a proxy publisher.) Context-sensitive applications
subscribeto event streams that interest them, and react
to arriving events to adapt to their changing environment.

Solar represents contextual events as a list of hierar-
chical attribute-value pairs. The internal data structure
is a forest with the values at the leaves. An example of
an event about the current location of badge numbered
“VER16481” may look like Figure 1(a).

To enable an application to subscribe to its desired
sources, Solar needs to name the sources and provide a
flexible mechanism for resource discovery (services are
also named but we focus on sources in this paper). One
possibility is to use a hierarchical naming scheme, such as
Unix path names. For example, the source that publishes
the location of badge “VER16481” could be named [/lo-
cator/Versus/VER16481]. The strict hierarchical struc-
ture, however, depends on a strong convention that must
be followed by both providers and users. The syntax may
be difficult to adapt to more expressive name queries (like
range selection). These limitations make a hierarchical
name space less attractive in a pervasive computing envi-
ronment.

On the other hand, an attribute-based naming scheme
is more flexible and expressive because the order of the

[ badge = "VER16481",
  location = 
    [ organization = "Dartmouth",
      building = "Sudikoff",
      room = "120"
    ]
  timestamp = 1023510520
]

[ measure = "location",
  badge = "VER16481",
  granularity = "room",
  rate = "3s",
  provider = "Versus"
]

(a) A location event (b) A source name

$badge-loc = any |
          [ measure = "location", badge = "VER16481" ]

[ device = "camera",
  color = true,
  resolution = "640x480",
  location = $badge-loc:location
]

(c) A context-sensitive name for the mobile camera

Figure 1: The event representation and naming mecha-
nism in Solar.

attribute-value pairs makes no difference. Solar uses
a hybrid approach that keeps the values order-free but
allows a tree structure on attribute names (not values)
for convenience, exactly like the representation of Solar
events. An example name of the source that tracks badge
“VER16481” is shown in Figure 1(b).

Traditionally a resource directory is fairly static and as-
sumes that names rarely change after they are registered.
Context-aware applications, however, may need to look
up names based on context. For example, a context-aware
display may want to find all nearby cameras. In this case,
the physical location is part of the resource description
for each camera, which may move frequently. Manual
updates to the camera’s name are almost impossible in
such scenarios. Instead, automatic name updates should
be used; for example, attach an active badge to the camera
and arrange to have location changes update the camera’s
name. The name is itself context-sensitive.

Thus there are three challenges involving naming and
resource discovery for context-aware applications: to au-
tomatically track associations (such as between badge and
camera), to handle frequent name updates, and to support
persistent name queries so applications can be notified
when the name space changes.

Solar uses an approach that allows the name for a
source to change according to context. Solar provides



a unique way to automatically manage context-sensitive
names by defining the values of contextual attributes to
be the output of some sources computing that piece of
context. We show an example of such a context-sensitive
name for a mobile camera in Figure 1(c). It first defines
a source that tracks the camera’s location (assuming the
camera has badge “VER16481” attached), and then de-
fines the location attribute of that camera to be part of the
location event published by the specified source.

Due to space limitations, we reserve the details of So-
lar’s naming system for a future paper.

3 Operator graph

Solar is not simply another event delivery system. Instead,
Solar is an open platform to allow dynamic injection of
context processing modules that can be shared across ap-
plications. The observation is that few context-aware ap-
plications want to work directly with raw data from con-
textual sources. It could be that the application only needs
a portion of the data, the data is in wrong format, the
data is inaccurate, or the data is incomplete and not use-
ful without aggregating other sensor inputs. Thus, sen-
sor data typically needs to go through several processing
steps before it becomes the meaningful contextual knowl-
edge desired by applications. Such contextual computa-
tion tends to result in a high development cost for context-
aware applications, given the heterogeneous sources and
diverse context needed.

On the other hand, we see that many adaptive appli-
cations ask for similar (if not exactly the same) contex-
tual information, from basics (such as location context)
to high-level social context (such as user activity). It is
then natural to re-use the overlapping context aggregation
functions or sub-functions among applications. Our ap-
proach is to decompose the context-aggregation process
of every application into a series of modular and re-usable
operators, each of which is an object that subscribes to
and processes one or more input event streams and pub-
lishes another event stream.

Typical operators include filters, transformers, and
more complicated aggregators. Some operators do not
have accumulated state, such as a transformer mapping
from sensor ID to room number. Other operators may
have state, such as a temperature aggregator publishing

the highest temperature of the day.
From a subscriber’s view, both sources and operators

expose same interface so they are both eventpublishers.
Any publisher can be named, and it is equivalent to say
that their output event stream is named since each pub-
lisher publishes one event stream, and each event stream
has only one publisher.

Since the inputs and output of an operator are all event
streams, the applications can use a tree of recursively con-
nected operators (starting from sources) to collect and ag-
gregate desired context. While each application can build
its own operator tree, to scale to a large number of ap-
plications we must take advantage of opportunities to re-
use operators between applications’ operator trees. As an
open platform, Solar uses a small flexible language to al-
low applications to specify an operator tree that is to be
instantiated at runtime. At the leaves are the name queries
for publishers; but some names may match multiple pub-
lishers (the application can choose to use any of them
or merge all of them into one event stream), and some
name queries are resolved to different publishers at differ-
ent times, depending on context.

Applications can also choose to name the event stream
published by the root operator of the subscription tree,
so it can be re-used by other applications. These inter-
connected overlapping operator trees form a directed
acyclic graph, which we call theoperator graph. Cur-
rently, Solar incrementally builds the operator graph as
new subscription trees are added, sharing event streams
wherever names match. We explore the background and
justification for this design in an earlier paper [2].

Stateful operators may cause some complexity if shared
across many applications. Consider a location aggregator
that maintains the current location of all objects that are
being tracked, and it publishes an event whenever an ob-
ject changes its location. An active map now subscribes
to this aggregator, but may never know the location of a
printer until it moves, although the aggregator has this in-
formation in its state. Solar allows the operator to publish
a special sequence of events, to the new subscriber only,
events that are marked as “state-pushing events” and when
considered together represent the current state of the op-
erator. (This feature is reminiscent of the Gryphon expan-
sion operation [1]). Thus, new subscribers receive a series
of events to bring them “up to date” and then the ongo-
ing stream of events that represent changes to the current



state.
Occasionally an application may not need the ongo-

ing event stream, but simply needs to obtain the current
value. In another system, the application might query
the information source. In the operator graph we retain
the publish-and-subscribe abstraction by permitting “one-
time” subscriptions of stateful operators. An application
that needs to obtain the current value of the information
published by an operator makes a one-time subscription to
that operator. The operator “pushes” its state, as described
above, and then cancels the subscription. The one-time
subscription approach avoids the need for additional in-
terfaces and maintains the unidirectional data flow.

There are several advantages of the operator-graph ab-
straction for context collection, aggregation, and dis-
semination. First, applications receive events semanti-
cally closer to their needs than those produced by the
sources. Second, due to the modular, object-oriented de-
sign we benefit from operator re-usability, data abstrac-
tion, and maintainability. Third, due to the modular de-
sign this operator graph can be deployed across a net-
work and achieve the benefits of parallelism and distri-
bution. Fourth, since filters and aggregators can dra-
matically reduce traffic along the graph edges, they re-
duce inter-process (and often inter-host) communication
requirements. Finally, by sharing the common operators
and event streams the system can support more such ap-
plications and more users.

4 System architecture

In this section we describe the various components of the
Solar architecture, our current prototype implementation
and programming model, and future research directions.

4.1 Overview

The Solar system consists of several components (see Fig-
ure 2). A centralizedStarprocesses subscription requests
from applications and deploys operators onto appropriate
Planetsas necessary. A Planet is an execution platform
for Solar sources and operators, and it is responsible for
tracking subscriptions and delivering events in the opera-
tor graph.

Planet
Planet

Planet
Deployment 

Manager

Subscription
Engine

Star

Subscription
Request

Application

Code Server

Naming Service

Figure 2: The architecture of Solar. The small circles are
sources and operators.

The Star services requests for new subscriptions. When
the Star receives a new subscription-tree description, it
parses the description, and resolves the name queries on
the leaves of the subscription tree using the naming ser-
vice. It then deploys other operators in the tree by in-
stantiating the operator’s object on one of manyPlanets,
which periodically register themselves with the Star. Thus
the Star maintains a list of active Planets and determines
which Planet should host the new operator by consider-
ing the Planet’s load and network traffic between Planets.
In essence, it attempts to map the operator graph onto the
Planetary network to distribute load and avoid congestion.

Planets play a key role in the subscriptions of resident
operators. When deploying new subscriptions, the Star
tells the Planets to arrange a subscription from one of its
operators to another operator, possibly in another Planet.
Thus the Planet maintains all the subscriptions for each
of the resident operators. When an operator publishes
an event, the hosting Planet delivers the event to all the
subscribing operators (that may reside on several Planets)
and applications. When a Planet receives an event, it dis-
patches the event to the appropriate resident operator(s).

Sources and applications run outside the Solar system
and use a small Solar library to interface with Solar. The
small library allows the sources to publish events into So-
lar, and allows the applications to send requests to the
Star, to manage their subscriptions, and to receive Solar
events over standard network protocols.



4.2 Implementation

Our Solar system is implemented in Java. The first proto-
type models events as arbitrary Java objects and uses Java
serialization for event transmission [3]. In our second pro-
totype we use the hybrid hierarchical attribute-value struc-
ture to represent events (see Section 2) and are enhancing
event delivery performance [19]. The operators are small
Java objects that implement a simple publish/subscribe in-
terface.

The first Solar prototype provides an XML-based lan-
guage to allow an application to describe its subscription
tree. The leaves are simple name queries while all other
operators are defined with a Java classname and the ar-
guments that are necessary to initialize the instance. The
Star looks in the name space to find matching sources or
existing operators installed by other applications. For all
other operators, the Star deploys a new instance on a ran-
domly chosen Planet from the list of active Planets.

When asked to deploy an operator, the Planet loads the
operator’s Java class from the local CLASSPATH or re-
mote code server and initializes a new instance with pa-
rameters supplied in the XML subscription request. The
Planet maintains one outbound event queue for each res-
ident source or operator, and a dedicated thread takes
events from this queue and sends them to Planets host-
ing the subscribers. We multiplex operator subscriptions
onto inter-Planetary TCP/IP sockets, so that there are at
most two one-way TCP/IP connections between any two
Planets, regardless of the number of operators on or sub-
scriptions between the two Planets. The Planet’s Network
Manager thread monitors the inbound sockets and fills an
inbound event queue; a dispatcher thread removes events
from this queue and enters a reference for the event into
the incoming event queue for each destination operator.
Each operator has a dedicated thread to invoke the opera-
tor’s event handler as new events arrive.

Solar provides an open programming framework for
operator developers. Developers can write a new opera-
tor (in Java) by inheriting from the appropriate base class
and implementing a few abstract methods. When an oper-
ator needs to publish an event, it simply calls an inherited
publish(IEvent)method; the hosting Planet will capture
the event and send to all its subscribers. An operator’s
handleEvent(IEvent)is automatically invoked when the
Planet receives an event destined to that operator.

In our second prototype, we are implementing
attribute-based naming and replacing the XML-based lan-
guage with a more general composition language that is
easier to use for selecting publishers and constructing the
event-flow tree.

4.3 Future work

There are several research directions we plan to explore.
Since Solar builds the operator graph incrementally and
event publishing rates by the sources are generally unpre-
dictable, we need a dynamic deployment algorithm to dis-
tribute (and redistribute) operators across Planets to bal-
ance load and minimize network traffic. Solar needs to
support some kind of flow-control policies in the operator
graph, without violating application semantics. For ex-
ample, a fast publisher may want to disconnect slow sub-
scribers, or slow down to wait until subscribers to catch
up, or drop the events based on policies provided either
by subscribers or the publisher itself. Solar also needs a
general garbage-collection mechanism to delete operators
with no subscribers.

To determine the value of the operator-graph abstrac-
tion and programming model, and the performance of
the Solar system, we are developing and deploying sev-
eral real-world context-sensitive mobile applications. We
installed an IR-based location system to supply location
context to our Solar system and its applications.1 We
plan to add more information sources to enrich the con-
text space and to explore the performance and flexibility
of the operator-graph abstraction.

5 Related work

Many have studied context-aware applications and their
supporting systems. In Xerox Parc’s distributed architec-
ture each user’s “agent” collects context (location) about
that user, and decides to whom the context can be deliv-
ered based on that user’s policy [16, 17].

A few projects specifically address the flexibility and
scalability of context aggregation and dissemination. Like
Solar, the Context Toolkit is a distributed architecture sup-
porting context fusion and delivery [5]. It uses awidget

1See http://www.cs.dartmouth.edu/˜solar/ for more information.



to wrap a sensor, through which the sensor can be queried
about its state or activated. Applications can subscribe
to pre-defined aggregators that compute commonly used
context. Solar allows applications to dynamically insert
operators into the system and compose refined context
that can be shared by other applications. The Context
Toolkit allows applications to supply filters for their sub-
scriptions, while Solar introduces general filter operators
to maintain a simple abstraction. IBM Research’s context
service, Owl, addresses similar issues such as scalability,
extensibility, and privacy [6], but the paper provides no
details.

Targeted for distributed sensor networks, Michahelles
et al. propose to use context-aware packets to detect de-
sired context [13]. These smart packets contain a retrieval
plan that indicates what context sensors to visit to get re-
sults. The plan can be updated at run time according the
results from certain sensors. The packets may also contain
a context hypothesis, which can be evaluated at compute-
empowered nodes, that derive higher-level context infor-
mation based on the retrieved raw sensor data. At this
point, it is unclear whether these smart packets could be
used to deliver notifications about context changes.

Given the type of desired data, some systems automati-
cally construct a data-flow path from sources to requesting
applications, by selecting and chaining appropriate com-
ponents from a system repository [10, 9]. CANS can
further replace or rearrange the components to adapt to
changes in resource usage [8]. To apply this approach to
support context-aware applications, the system manager
must foresee the necessary event transformations and in-
stall them in the component repository. These systems
offer no specific support for applications to provide cus-
tom operators. Active Names, on the other hand, allow
clients to supply a chain of generic components through
which the data from a service must pass [18]. Also, Ac-
tive Streams support event-oriented inter-process commu-
nication, and allow application-suppliedstreamletsto be
dynamically inserted into the data path [7].

All of these approaches encourage the re-use of stan-
dard components to construct custom event flows. None,
to our knowledge, specifically encourage the dynamic and
transparent re-use of event streams across applications
and users. Solar’s re-use of operator instances, and their
event streams, avoids redundant computation and data
transmission, and improves scalability.

A non-procedural language, iQL, can specify the logic
for composing pervasive data [4]. The model supports
both requested and triggered evaluation. For one com-
poser, iQL allows the inputs to be continually rebound to
appropriate data sources as the environment changes. The
language iQL complements Solar in two ways: iQL can
be the programming language for individual operators, or
iQL can be the high-level subscription language the com-
piler can decompose into a data-flow tree description used
by Solar.

6 Summary

To support context-aware pervasive-computing applica-
tions, we propose an open platform, the “Solar” system,
which employs a graph-based abstraction for context ag-
gregation and dissemination. The abstraction models the
contextual information sources as event publishers. The
events flow through a graph of event-processing opera-
tors and become customized context for individual appli-
cations. This graph-based structure is motivated by the
observation that context-aware applications have diverse
needs, requiring application-specific production of con-
text information from source data. On the other hand, ap-
plications do not haveuniqueneeds, so we expect there
is substantial opportunity to share some of the processing
between applications or users. Using a specification lan-
guage, Solar allows applications to flexibly select contex-
tual sources and construct their own event-flow tree. Solar
then interconnects these trees to form a graph through re-
use of named event streams.

We present the general model of Solar, discuss the de-
tails of the operator graph abstraction, and describe So-
lar’s system architecture. We are using our Solar proto-
type to develop some context-aware applications [3, 12],
and to support context-aware authorization [11]. We re-
port some early experimental results in [3] and describe
Solar’s access-control model in [14]. We plan extensive
additional research.
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