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Abstract

Mobile agents are an increasingly popular
paradigm, and in recent years there has been
a proliferation of mobile-agent systems. These
systems are, however, largely incompatible with
each other. In particular, agents cannot migrate
to a host that runs a different mobile-agent sys-
tem. Prior approaches to interoperability have
tried to force agents to use a common API, and
so far none have succeeded. Our goal, summa-
rized in the catch phrase Write Once, Move Any-
where, led to our efforts to develop mechanisms
that support dynamic runtime interoperability of
mobile-agent systems. This paper describes the
Grid Mobile-Agent System, which allows agents
to migrate to different mobile-agent systems.
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1 Introduction

There is increasing interest in the mobile agent
paradigm. Many mobile agent systems have
been developed, but with different proprietary
Application Programming Interfaces (APIs) for
the agents. This proliferation of incompatible
APIs implies that agents developed for one agent
platform cannot migrate to a system with a dif-
ferent agent platform. In our opinion, interoper-
ability of platforms is essential for mobile agents
to become a ubiquitous technology.

Prior approaches such as MASIF [5] have at-
tempted to define a standard API and require
all platforms that wish to inter-operate to then
implement the common API. However, these ap-
proaches have failed to encourage systems to
adopt the API. !

This paper describes initial results from ongo-
ing work to enable dynamic interoperability of
mobile agent systems. We begin with a motivat-
ing application scenario. Section 2 describes the
overall design followed by implementation details
in section 3. Section 4 presents a cost-benefit
analysis of the interoperability system. Section

!The Mobile Agent System List identifies systems that
do and do not comply with MASIF and other standards.
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5 discusses related work. In section 6, we discuss
some future directions for our approach. Finally,
in section 7, we conclude by presenting a sum-
mary of important lessons learned.

1.1 Motivating Application

Our motivating application arises in the context
of an urban peacekeeping scenario, where the
soldiers have been given the mission of finding
and arresting a group of terrorists that are ac-
tive within a particular city. As part of this mis-
sion, the analysts at mission headquarters must
monitor intercepted phone calls for indications
of suspicious activity. The application that does
this monitoring makes use of two databases. The
first database is a Black-Gray-White (BGW)
database? that contains names, aliases, descrip-
tions and affiliations of known terrorists, and
the second database contains transcripts of in-
tercepted phone calls along with associated an-
notations such as the time of the call, the source
phone number, and the target phone number.
The application first queries the BGW database
to get the names and aliases of terrorists operat-
ing in that part of the world, and then examines
each new intercepted phone call, scoring the call
according to whether it was made at the right
time, and whether the transcript includes any
of the names or aliases or any suspicious words.
Phone calls whose scores are above some thresh-
old are reported to the analysts.

This application could be implemented in sev-
eral ways, but two factors motivated apply-
ing mobile agents. First, the network con-
nection between mission headquarters and the
databases might be unreliable and of low band-
width. The phone calls must be examined at
or near the phone-call database, so that only
high-scoring calls are sent across this unreli-
able, low-bandwidth link. The developers of the
phone-call database might not have anticipated
the needs of every client however, and thus the
desired examination code might not be avail-
able at or near the database. Mobile agents
can dynamically deploy the examination func-

2A Black-Gray-White database contains descriptions
of bad, neutral, and good people.

tion to the phone-call database. Thus, the ana-
lyst’s machine sends out a mobile agent to per-
form the monitoring task. The agent migrates
to the BGW database and gets the description
of known terrorists, and then proceeds to the
phone-call database where it applies the exam-
ination function to each new phone call. The
agent stays at the phone-call database for the du-
ration of the mission, and sends all high-scoring
calls back to the analyst for further review.
Avoiding the transmission of irrelevant phone
calls more than makes up for the transmission of
the agent, and significant bandwidth savings are
achieved over the mission lifetime. Moreover, the
agent can continue analyzing phone calls even if
the unreliable link back to mission headquarters
goes down, and simply generate a queue of rele-
vant phone calls, ready for transmission as soon
as the network link comes back up.

This mobile-agent approach is straightforward
if the databases and analyst machines belong to
the same nation. If this nation’s military has se-
lected mobile agents as a valid implementation
technique for military applications, presumably
it has selected a particular mobile-agent system.
Imagine, however, that the databases and the an-
alyst machines belong to different nations, some-
thing that is common in peace-keeping missions,
which are often multi-national coalition opera-
tions. It is unreasonable to assume that all par-
ticipant nations would select the same mobile-
agent system, but they might agree on an inter-
operation standard. The goal of our work was to
develop a standard that allows mobile agents not
only to communicate with agents from a different
system, but also to migrate from one agent sys-
tem to another. Allowing inter-system migration
makes the mobile-agent phone application possi-
ble even when different mobile-agent systems are
installed on the different machines.

2 Overall Design

Our basic approach to interoperability is to al-
low foreign agents to execute in a non-native
mobile agent system by translating the foreign
agent’s API into the local platform’s API. We
did not wish to build n x n translators, how-
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Figure 1: Structure of Mobile Agent Interoperability System

ever, so we followed the (n — 1) x n approach.
That is, we defined a single common interoper-
ability APT (IAPI) and then wrote translators to
and from each of the local platform APIs and the
IAPI. 3 The IAPI is defined through two different
Java interfaces that support agent registration,
lookup, messaging, launching, and mobility.

Figure 1 shows the overall design for the inter-
operability mechanism, referred to as the Grid
Mobile Agent Service (GMAS) in this paper.
We anticipate that some interconnection mech-
anisms will be present that can handle the net-
work interconnection, registration of agents and
systems, and the lookup of agents and systems.
In our current implementation, the interconnec-
tion mechanism is the DARPA Control of Agent
Based Systems (CoABS) Grid, which is Jini
based, but we anticipate that CORBA or any
other similar mechanism can also be used.

Each mobile agent system that wishes to inter-
operate must develop four components. These
are: a Gateway to the Interconnection Mech-
anism (Gateway) that implements a common
Interoperability API (TAPI), an adaptor that
maps the native platform API to the IAPI (Na-
tive2IAPI), an adaptor that maps the TAPI to
the native platform API (IPAI2Native), and a
launcher service. Note that Figure 1 shows a fifth
component, the Foreign API to IAPI adaptor
(Foreign2IAPI). This is not provided by the lo-
cal platform developer. Its role will be explained

3For readers familiar with the PBM image translation
tools, PBM uses the same approach.

later.

The agent launcher is a key component of the
system. The launcher registers the mobile agent
system with the Grid and handles incoming re-
quests from other agent platforms to launch or
move agents within the local system. Depend-
ing on the network topology and local policy, a
launcher may serve an entire subnet or an in-
dividual host machine as a stand-alone service
or as an integral component of the host mobile
agent system. Our design assumes the availabil-
ity of a global name lookup service to provide
agent and launcher discovery, and a reliable com-
munication system between the various servers
by which mobile agents can pass between hosts.

The second key component of the system is
the Gateway, which provides an implementation
of the TAPTI on the local system. The TAPI is a set
of interfaces and utility classes and are described
below.

The last interesting component of the system
is the Foreign2I API adaptor. This adaptor must
have been made available to the system by the
remote mobile agent system. The local system
composes the Foreign2IAPI adaptor with the
TAPI2Native adaptor in order to map the Foreign
API to the Native API. When a foreign mobile
agent arrives at the system, the local system dy-
namically loads the corresponding Foreign2IAPI
adaptor. This capability is the key to provid-
ing dynamic interoperability of the mobile agent
systems.



2.1 Interoperability API

Every inter-operable agent must provide a de-
scription of itself to the launcher on arrival. This
description lists information about the agent in-
cluding its origin and the location where the Java
class files may be obtained. This information re-
sides in a AgentMetaData object and must be
provided at the time an agent is created. An
agent (or the system) may obtain access to the
meta data by calling the getMetaData() func-
tion.

The TAPI provides methods to create an agent
either by launching a new agent or by cloning the
current agent. The corresponding methods are
launchAgent() or cloneAgent(). When launching
a new agent, the agent’s initial state must be
provided to the system.

Note that TAPI does not provide an explicit
moveAgent() method. The move can be imple-
mented as a clone operation followed by the ter-
mination of the original agent.

Cloning an agent requires that the state of the
agent be moved to the destination. One of the
main advantages of using Java for mobile agent
programming is the ability to use object serial-
ization for packaging an agent before shipment to
another host. This behaviour is supported in our
design too. Any agent that implements Java's
Serializable interface can be cloned through the
TAPI.

Many systems, such as D’Agents, do not sup-
port Java serialization however. In order to oper-
ate on those systems, an agent programmer must
explicitly manage the data store of the agent.
These agents are referred to as self-serializing
agents. To assist the programmer in that task,
we provide the AgentVariableState class as a
means of storing variables as well as handling
the conversions to and from the message format.
The IAPI defines the SelfSerializable in order to
support agents and systems that cannot imple-
ment Java’s serialization.

The agent launcher handles cloning an exist-
ing agent and launching a new agent. In both
cases, the launcher creates a new instance of
the agent on the receiving side. When cloning,
the launcher then copies the state of the origi-

nal agent into the newly created agent. When
launching a new agent, the launcher copies the
initial launch parameters into the new agent.

2.2 Gateway to Launcher Communi-
cation Protocol

As in many agent systems, agent migration de-
pends on message passing. In our agent transfer,
the client Gateway sends a launch request mes-
sage to the destination server’s Launcher, which
responds with success or failure.

A launch request message has two forms. In
the case of self-serializing agents, a request is
comprised of two sections: a basic description
of the agent that is being moved (the meta-
data) and the variable state of the agent. The
metadata contains information such as the agent
name and a unique identifier as well as oper-
ational information about the execution entry
point and the location from which the agent code
can be downloaded. The variable state section
contains a listing of the name, type and value
of all variables contained in the agent. In the
case of Java serializable agents, the launch re-
quest carries a byte stream representation of the
serialized agent object.

3 Implementation

To evaluate our design, we created a reference
implementation of an inter-operable agent in-
frastructure and then added support for in-
teroperability to three mobile agent systems:
D’Agents, EMAA and NOMADS. In this sec-
tion, we present our implementations and discuss
the decisions made during that work.

3.1

Our GMAS reference implementation uses the
Jini-based CoABS Grid [7] to provide the under-
lying lookup and communication services needed
to support interoperability. On this foundation,
we constructed the communication protocol, the
launcher and the gateway components.

Reference Implementation

3.1.1 Communication Protocol.

As described in the design section, agent mi-
gration is accomplished via message passing be-



tween the source and the destination host. The
CoABS Grid provides a well-integrated message-
passing service, so implementing the launch re-
quest and response protocol only required us to
create a Message object and invoke the appro-
priate message transmission method.

In our design, we specified that a launch re-
quest is comprised of a description of the agent
and that agent’s data state. We did not spec-
ify a format for a launch request however. We
chose to leave these decisions to the service im-
plementers so they can choose a representation
appropriate to their underlying communication
mechanism. Because we used the Grid to handle
our communications, we were free to choose be-
tween a string-based or a binary-based message
format since a Grid Message is equally capable
of either form of data. We chose a string-based
approach since it would be easier to construct
protocol bridges to systems that could not di-
rectly use the Grid software.

Using a string-based format requires special
marshaling and unmarshalling code at both ends
of the communications link. Rather than write
custom software to handle the translation, we de-
fined a set of XML tags that hold the agent de-
scription and state information. Using an XML-
based format gave us a structured way to trans-
late agents to and from the launch request for-
mat, a way to leverage existing XML parsers
such as Xerces [10], and a way to make changes in
our data format with minimal disruption to the
existing code base. XML does not support trans-
fer of binary data, however, so we use Base64 to
encode all serialized agents before inserting them
into a launch request.

3.1.2 Launcher Implementation.

Our launcher is implemented as a stationary
Grid service that accepts and processes incom-
ing Grid messages bearing launch requests. It
can be run stand alone or as a separate thread
within a mobile agent system’s JVM.

When a message is received, the launch re-
quest is parsed and the agent information is ex-
tracted. The agent is returned as either a seri-
alized object or a two object set: one containing

the agent metadata and the other containing the
data state. The agent information is then passed
to an inter-operable agent handler where the re-
quired Java class files are downloaded from the
specified source locations and the agent is dese-
rialized or the data state is loaded into a new
instance of the agent.

The agent object is then passed to an execu-
tor, which is responsible for resuming the agent
at the specified entry point. Depending on the
location of the server, the executor may pass con-
trol to the agent, fork a new thread for the agent
to run in, or forward the agent on to another ma-
chine. Executor behaviour is dependent on the
policy and configuration of the site where the
launcher resides. An implementation may spec-
ify an executor for each agent system, or use a
generic executor to support previously unknown
agent types.

3.1.3 Gateway Implementation.

Each system that wishes to inter-operate us-
ing our mechanism must implement the Gate-
way. The gateway hides any local implementa-
tion details, such as special translation, from the
agent programmer. In our reference implemen-
tation, this process is straightforward; the laun-
chAgent() and cloneAgent() methods find the
destination then create and send the launch re-
quest to the appropriate launcher.

Since each platform provides a different Gate-
way implementation, the mobile agents should
not carry a Gateway implementation object with
them. Instead, the TAPI provides a wrapper
class that returns the correct instance of the
Gateway depending on the current location of
the agent. The Gateway implementation re-
turned is determined by a system property that
can be set on the command line or in a config-
uration file. Using this additional layer of ab-
straction allows the launcher to change the re-
turned mobility service implementation at run-
time allowing greater adaptability to changing
local conditions.



3.2 D’Agents

D’Agents [6], formerly known as AgentTcl, is a
mobile agent system that supports agents writ-
ten in Tcl, Scheme or Java. FEach site that
accepts D’Agents must run a D’Agent server.
The server is constructed in four layers. The
base layer manages the network interactions
of the server. The engine layer provides ad-
ministration, migration, communication, and
non-volatile storage required to support mobile
agents. On top of the engine, the agent opera-
tions such as jump and send are implemented as
a common set of agent APIs. Finally, a language
interpreter, or virtual machine in the case of
Java, connects an agent to the server via a set of
stub routines that wrap the common agent APIs.
The interpreters also protect the hosts from ma-
licious agents and provide state capture and re-
construction facilities in addition to giving the
agent the necessary runtime environment. Each
agent executes its own interpreter in a separate
process thereby isolating it from interference by
other agents.

The version of Java supported by D’Agents
was the main obstacle to implementing inter-
operable agents support on a D’Agents server.
To capture the execution state of a Java agent,
D’Agents required a specially modified Java, vir-
tual machine (JVM), based on the version 1.0.2
JVM. Our reference implementation, however,
was implemented on top of the CoABS Grid,
which uses Jini, for lookup and communication
services. Since Jini requires language features
and APIs that were added in later revisions of
the Java language, our D’ Agents server could not
talk to any other agent system via this infras-
tructure.

We overcame this compatibility problem by
constructing a simple communication bridge and
using the implementation hiding abilities of our
TAPI. Instead of making a connection to the
Grid, the D’Agents implementation of the mo-
bility service establishes a standard socket con-
nection to the bridge and sends out its launch re-
quest. The bridge then takes that request, places
it in a Grid message, and forwards that message
to the destination host. The response message is

then returned over the same path. The use of a
string-based request format ensured that bridge
construction was a straightforward process.

The language version incompatibility problem
creates two limitations on interoperability. First,
since object serialization is not supported in Java
version 1.0.2, only non-serialized mobile agents
can be accepted on or be launched from D’Agent
hosts. This restriction can be handled at the
launcher level by simply rejecting incoming se-
rialized agents. The second restriction requires
that incoming agents must be written to be com-
patible with Java version 1.0.2 since there is no
support for newer language APIs and features. It
may be possible to test and reject incompatible
incoming agents, but that is beyond the current
scope of our work.

3.3 EMAA

The Extendable Mobile Agent Architecture
(EMAA) is a Java-based, object-oriented mobile
agent architecture [4, 8]. At EMAA’s core lies
an agent Dock that resides on each execution
host. The Dock provides an execution environ-
ment for agents, handles incoming and outgoing
agent migration, and allows agents to obtain ref-
erences to services. EMAA allows users to define
agents, services, and events. EMAA agents are
composed of small, easily reused tasks performed
to meet a goal for a user. An agent’s tasks are en-
capsulated in an itinerary; itineraries are struc-
tured as process-oriented state graphs. Agents
may be mobile, and they typically make use of
stationary services.

EMAA agents employ weak mobility; that is,
the agent’s full execution state (stack and pro-
gram counter) is not transferred to the receiv-
ing machine; rather, the agent’s data state is
maintained, and the agent starts execution at
a predefined entry point upon arrival. Because
EMAA does not need to do state capture below
the level of the Java Virtual Machine(JVM), it is
able to use a standard, unmodified JVM and can
evolve with JVM releases. An EMAA agent may
migrate in between execution of activities in its
itinerary. To migrate, an agent invokes the Com-
municationServer, a core Server that is a part of
the Dock, to serialize and send itself to another



machine.

Several types of EMAA agents exist, rang-
ing from extremely simple to complex. The
simplest EMAA agent merely implements the
Agent interface, which extends the Serializable
and Runnable interfaces. Such an agent is given
its thread by the Dock and may use the Dock
to send itself elsewhere or acquire references to
service, but it does not have any structure or
form imposed upon its execution. An intermedi-
ate type of EMAA agent, the SequentialAgent,
has a sequential itinerary; that is, given a list
of task/host pairs, it executes each task on its
corresponding host, in order. The most com-
plex, and most frequently used form of EMAA
agent, the ComposableAgent, employs an activ-
ity diagram-based itinerary, and makes its own
execution path and mobility decisions.

Because the EMAA agent system runs on
a standard SUN JDK 1.2 virtual machine, we
found it possible to use both the reference im-
plementation of both the launcher and the client
APIs. We envision that this should be possible
for many other standard Java-based agent sys-
tems also. To incorporate the reference Mobili-
tyServer implementation into the EMAA agent
system, we embedded it with an EMAA Server
that was started by the EMAA Dock.

We tested the delivery of all three types of
EMAA agents via the GMAS. However, we took
two separate approaches: one for the simplest
EMAA agents (which merely implement the
Agent interface), another for the SequentialA-
gent and ComposableAgent. The latter two are
classes that a user configures with tasks rather
than fully coding on the spot.

In the case of the simplest agent, we con-
structed a class implementing both EMAA’s
Agent and GMAS’ GridMobileAgent interfaces.
As an implementor of the GridMobileAgentIn-
terface, the agent class was able to generate
metadata describing its run method, the machine
to move to, etc. Using the GridMobileAgentSys-
tem wrapper class, the agent obtained a class
implementing MobilityServicelnterface and re-
quested it to move the agent to another ma-
chine as described by an array of Entries. When
received by a Launcher, the metadata was un-

packed from XML, and the run method specified
therein was called on the agent object.

In the cases of the SequentialAgent and Com-
posableAgent, we proceeded differently, because
these agents are implemented as EMAA classes
rather than interfaces. As such, they expect to
use the EMAA CommunicationServer to move
themselves. For these agents, it becomes ob-
vious that either the agents themselves must
be modified to become “GMAS-aware”, or the
EMAA CommunicationServer must be provided
with back-end “shims” to a GMAS-compliant
MobilityServicelnterface. To move the Sequen-
tialAgent using the GMAS, we encapsulated it
within a class that implemented the GridMo-
bileAgent and Serializable interfaces. This class
in turn obtained a class implementing Mobility-
Servicelnterface, and requested it to move the
encapsulated SequentialAgent to the desired lo-
cation. On the other end, the wrapper GridMo-
bileAgent class called the run() method of the
EMAA agent and ran it. We followed the same
process for the ComposableAgent.

3.4 NOMADS

NOMADS [11] is a mobile agent system devel-
oped at the University of West Florida’s Insti-
tute for Human and Machine Cognition (IHMC).
Both strong security and mobility were funda-
mental design goals of this system. As Java was
chosen as NOMADS language for its interoper-
ability, and security and strong mobility were
things that could not be affected by Sun’s imple-
mentation of the Java VM, IHMC chose to im-
plement their own Java VM, Aroma. NOMADS
provides strong security for the host platform in
that individual agents resource consumption can
be monitored and limited or curtailed as required
by the policy of the host.

The persistent NOMADS environment that
actually executes on a given host is called an ’Oa-
sis’ and can host multiple agents concurrently,
with each running its own (Aroma) VM. Strong
mobility requires that the execution state of an
agent (i.e., the thread state) be captured and
moved from one host to another across a network
so that the agent can take up execution right
where it left off.. NOMADS relies on Aroma’s



state capture capabilities to provide strong mo-
bility. As with D’Agents, NOMADS is limited
to weak mobility when participating in the inter-
operable system.

As the Aroma VM does not support Jini, we
did not implement the CoABS Grid API within
NOMADS itself. As with D’Agents, we created
a bridge agent to the Grid. This bridge runs on
Sun’s VM and allows NOMADS agents to use
the Name Service and Communications features
of the Grid. So, when a NOMADS Agent moves
from system to system using the interoperabil-
ity mechanism, the agent sends its message to
the bridge first, which passes it through to the
destination launcher via the Grid. In a NO-
MADS destination, the Launcher contacts the
NOMADS Oasis environment, and passes the
agent in for launching. As the agent is still an
XML message, the Launcher submits an instance
of a utility class that extracts the agent metadata
and agent variable state information from the
XML message. The Agent’s class is loaded by
the utility from the URL specified in the meta-
data, and the agent is then invoked at the entry
method specified within the metadata. In the
serialized case, the agent’s class file is retrieved
from the specified URL, the agent is deserialized
or reconstituted, with its previous state intact,
and then the agent’s entry method is invoked.

4 Cost Benefit Analysis
4.1 System Development

Our goal in creating this inter-agent mobil-
ity is to design an elegant, scalable, and suf-
ficiently flexible infrastructure that will allow
agents from many systems to have, essentially,
universal transport across all mobile agent sys-
tems. What we have done, on a smaller scale,
is get D’Agents, NOMADS and EMAA working
together with the underlying structure provided
by the CoABS Grid, Jini and Java. The actual
cost of designing and developing the GMAS in-
frastructure involved roughly six person-weeks of
effort. The majority of the time was spent in
developing the reference implementation, and a
shorter time was required by each agent team to
adapt the individual agent systems to the APIL.

Each of our systems had pre-existing support
and understanding of the CoABS Grid.

Now that the design and reference implemen-
tation are in place, it would be easy to adapt
another mobile agent system to use GMAS and
the CoABS Grid.

As agent systems evolve and mature, their ef-
ficacy will, to some extent, be predicated upon
their ability to inter-operate with other exist-
ing mobile agent systems, and to accomplish the
tasks for which they are designed as efficiently as
possible. The effectiveness of the entire technol-
ogy of mobile agents will be affected by the de-
velopment of an interoperability standard, which
will enable all of the adopting systems to commu-
nicate, locate diverse services, and quickly travel
from platform to platform irrespective of under-
lying hardware, software, or Mobile Agent Sys-
tem.

Most mobile agent systems are research sys-
tems, and therefore do not endure all of the rig-
ors of commercial software development. Conse-
quently, it is difficult to quantify the cost/benefit
tradeoffs of a proof of concept system such as
GMAS. The potential long-term benefit of mov-
ing the mobile agent community closer to a com-
mon standard of interoperability is high, how-
ever, and should be a key goal for mobile agent
system developers.

4.2 Agent Development

Once the APIs have been defined and melded
into each mobile agent system, the incremental
cost to the agent programmer is small. To use
the non-serializable method of mobility requires
some effort to explicitly pack up the agent’s data
prior to requesting the move, and to unpack and
restore it upon arrival. If one can use Java seri-
alization, the effort required is considerably less.

4.3 Agent Migration Times

We measured three types of system-to-system
jumps for each agent system. Each agent car-
ried a common cargo of specifically identified
data types, i.e., the same size payload. The
first set of measurements were based on the na-



Figure 2: Comparison of Native vs. Interopera-
ble Mobility Operations
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tive mobile agent system running on each host®.
The round-trip times were recorded as the native
agent jumped back and forth, using the mobil-
ity provided by its mobile agent system. Sec-
ond, SelfSerializable GMAS agents were mea-
sured and finally Java-serializable agents were
measured. In all cases, we measure the aver-
age round-trip time over 100 round trips. The
results are summarized in Figure 2.

Both the reference implementation and
EMAA use Sun’s Java VM; NOMADS uses an
internally developed, unoptimized VM written
to the Java Specification. EMAA showed that its
native jump was considerably faster than a jump
utilizing GMAS, by a factor of between 5 and
6, depending upon the type of GMAS Mobility.
NOMADS showed even more distinction, with a
factor of 10. This difference is attributable to
some extent to the fact that the Aroma VM is
restarted upon the agents arrival at each sys-
tem, and the agent’s class must be retrieved via
a URLClassLoader each time. This retrieval is
not necessary in systems that use Sun’s VM. NO-
MADS also showed a significantly slower overall
time due to the unoptimized VM. We discov-
ered that the CoABS Grid has significant startup

“Each host was a Gateway 9300XL laptop computer
with a Pentium IIT 500MHz processor, 128 MB of RAM, 6
GB hard disk drive and a Wavelan Gold 11 Mbps wireless
network adapter. All hosts ran Slackware Linux version
7 with the 2.2.13 kernel, JDK v1.3rcl, Jini v1.1, and the
CoABS Grid v2.0.0beta.

overhead. Running an experiment with a freshly
started Grid system added between 2 and 6 sec-
onds to the first round-trip time.

The launchAgent() operation in the D’Agents
environment is almost 100 times slower than na-
tive calls. Like NOMADS, D’Agents cannot di-
rectly communicate via the Grid so we had to use
a communication bridge to manage the transla-
tion. While this accounts for some of the per-
formance penalty, the D’Agents implementation
suffered in other areas. In the GMAS implemen-
tation, we used the URLClassLoader to handle
the transfer of the agent. This mechanism was
not available in JDK 1.0.2 so we were forced
to use a less efficient means. Also due to com-
patibility problems, we could not use our XML
parser and were forced to use slower string ma-
nipulation methods to convert between GMAS
messages and internal objects. Improvements in
these areas should significantly cut the overhead
cost for inter-operable D’Agents.

So, it is apparent that there is a cost, not in-
significant in some cases, for interoperability. If
it takes your agent an extra 3 or 400 milliseconds
to move between platforms, of which at least one
is a foreign mobile agent system, and provided
some service or benefit to your agent that cannot
be obtained on your native systems, that seems a
small price to pay for this increase in utility. Of
course, after tuning these implementations, the
performance will improve.

5 Related Work

Here we explain why we propose an interoper-
ability standard, and how GMAS differs from
the standards defined by the Object Manage-
ment Group (OMG) and the Foundation for In-
telligent Physical Agents (FIPA).

The OMG Mobile Agent Facility (MAF) [9]
builds on the CORBA naming, life cycle, exter-
nalization, and security services. It is intended to
establish standards that support interoperabil-
ity among heterogeneous mobile agent systems.
This facility promises a degree of interoperability
through common interfaces to two basic mobile
agent system components: the MAFAgentSys-
tem and the MAFFinder. A MAFAgentSystem



implementation provides agent management and
transfer. The MAFFinder interface defines op-
erations for registering and locating agents and
agent systems.

The specification assumes, however, that it is
rare that two different agent systems can receive
and execute agents from each other. Indeed, the
operation get_nearby_agent_system_of_profile() is
provided to find only those migration targets
that are running compatible agent systems. In
contrast, our GMAS approach directly addresses
the issue, providing a standard to enable par-
ticipating mobile agent systems to receive and
launch each other’s agents.

Like OMG MAF, GMAS leaves it up to the
compliant agent system implementations to ad-
dress security issues specific to mobile agent sys-
tems and does not provide standard interfaces or
implementations yet. Like OMG MAF, GMAS
does not specifically address transferring agents
between agent systems written in different pro-
gramming languages. This is true for MAF
despite the fact that the underlying CORBA
standard supports remote procedure calls among
objects written in different programming lan-
guages. Mobility across heterogeneous program-
ming languages is much more complicated, since
mobile agents must execute their code on the
heterogeneous platform directly.

GMAS defines a rich, declarative represen-
tation of the the mobile agent in transit, be-
cause the receiving agent system need not
be forced to make unnecessary assumptions
about the incoming agent.  This contrasts
with the minimal representation used by the
MAF consisting of agent_name, agent_profile,
agent, place_name, class_name, code_base, and
agent_sender. GMAS adds agent meta data
that are unnecessary in the more homogeneous
environment assumed by OMG MAF, such as
the name of the start method, and explicit
agent state in the case of self-serializing mo-
bility. GMAS structures the agent in tran-
sit as an XML message to facilitate interpreta-
tion by heterogeneous implementations instead
of a set of method call parameters. The ad-
ditional metadata and the XML representation
take GMAS a big step towards language inde-
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pendence. We have shown GMAS-enabled inter-
operability among three agent systems running
on three different versions and implementations
of the Java virtual machine.

FIPA defined a set of standards that represent
a blueprint for constructing agent systems [1].
A few compliant agent system implementations
are listed on the FIPA Web page®, but FIPA’s
standards have not been universally accepted.

The FIPA mobility specification recognizes
two extreme cases of the mobility protocol. At
one end of a spectrum, agents using Simple
Mobility Protocols communicate a single move
request to their local agent platform and the
agent platform (system) takes care of moving the
agent. At the other end of the spectrum, agents
using the Full Mobility Protocols communicate
with both the remote and the local agent plat-
form and direct every stage of the move from re-
mote request to local termination. Our GMAS
model allows a spectrum of migration protocols
that fall between the Simple and the Full Mobil-
ity Protocols.

GMAS aspires neither to provide standards as
broad as FIPA nor to comply with a particular
standard at a time when no universally accepted
standard has emerged. For example, when an
agent wants to find a remote peer, FIPA spec-
ifies a directory service, MAF its MAFFinder,
and GMAS uses the CoABS Grid agent look-up
service that is based on Sun’s Jini. GMAS does
not regulate communications protocols among
agents but it assumes that heterogeneous agents
are able to communicate through the CoABS
Grid.

The mobile agent description specified by
FIPA is closer to our GMAS representation than
the OMG MAF. It contains a parameter specifi-
cally designed to hold the agent’s state. It does
not address the needs of the two types of itiner-
ant agent representations for Type 1 and 2 mo-
bility as defined above.

GMAS appears to be unique in its ability
to enable agent migration among heterogeneous
host agent systems. GMAS addresses precisely
the issues of packing, transferring, and unpack-

Ssee http://www.fipa.org/resources/livesystems.html



ing an agent in a platform independent manner,
and translation between APIs of different mobile
agent systems.

6 Future Work

This section briefly discusses our future antici-
pated work in the areas of security, resource con-
trol, and agent management.

The current GMAS implementation com-
pletely ignores security. We expect that se-
cure communication and secure agent transmis-
sion is provided by the communication trans-
port layer. GMAS, for example, can take ad-
vantage of the secure messaging features of the
CoABS Grid, while a CORBA-based implemen-
tation could exploit CORBA’s security infras-
tructure. We do plan to incorporate basic agent
authentication mechanisms into the Interoper-
ability API. Mobile-agent systems have different
security models however, so we expect that pro-
viding interoperability in terms of security will
be difficult.

While most mobile agent systems recognize
the need for resource control, once again differ-
ent systems have different models and capabili-
ties. For example, D’Agents supports a market-
based approach to resource allocation and con-
trol whereas NOMADS supports a policy-based
approach. NOMADS provides fine-grained con-
trol over resource usage (based on capabilities in
the Aroma VM) whereas D’Agents and EMAA
are constrained by the capabilities in the stan-
dard Java VMs. Therefore, coming up with in-
teroperability mechanisms will be challenging.
Our first step towards this goal is to make ex-
plicit the resource requirements of agents and to
provide mechanisms that allow agents to query
resource availability.

Agent management and system management
are important in large-scale agent systems. Here
again, current agent systems support different
models and capabilities making it difficult to
manage heterogeneous agent systems as a sin-
gle administrative unit. In NOMADS, we are
exploring the domain management capabilities
of the KAoS agent architecture [3, 2], which is
scalable to multiple agent systems.
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The next phase of development, underway,
provides translation layers between native agent
platform APIs and the interoperability API. The
translation layers make it easier for a new mo-
bile agent platform to become compatible with
the set of existing platforms by providing just
two translators: from the new native API to
the interoperability API and vice-versa. We are
currently implementing such translators for our
three agent systems.

Lessons

7 Conclusion and

Learned

This paper describes our design for dynamic run-
time interoperability of mobile-agent systems.
The first stage, described here, involved defin-
ing an interoperability API that supported agent
migration and agent messaging.

The current implementation operates over the
DARPA CoABS Grid, which provides the ba-
sic registration, lookup, and messaging infras-
tructure. The performance for the three mobile-
agent systems are slower by a factor of 10, but
the system proves that interoperability is possi-
ble.

The distinguishing feature of our approach has
been not to force a common APT on all mobile
agent platforms. We recognize that past efforts
using this approach have failed. Instead, our
goal is to embrace the diversity of the different
platforms and to create the necessary transla-
tion mechanisms to allow the systems to inter-
operate. While we have successfully demon-
strated interoperability for agent messaging and
agent migration, we also recognize that several
tricky issues remain to be solved.

The limitations to interoperability stem from
the wide range of models and features of differ-
ent mobile agent systems. Mobile agent systems
are still at the stage where each system stresses
different capabilities while ignoring others. One
system difference for which we have no solution
is strong versus weak mobility.

Another lesson learned was the incompatibili-
ties in the Java API. For example, D’Agents cur-
rently uses JDK 1.0.2 whereas EMAA and NO-
MADS support Java 2. Therefore, although we



can move an agent from NOMADS or EMAA to
D’Agents, the agent may fail to execute because
of the differences at the level of the Java APL.
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