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Abstract

Many distributed systems provide a “single-system image” to their users, so the user has
the illusion that they are using a single system when in fact they are using many distributed
resources. It is a powerful abstraction that helps users to manage the complexity of using
distributed resources. The goal of the Snowflake project is to discover how single-system images
can be made to span administrative domains. Our current prototype organizes resources in
namespaces and distributes them using Java Remote Method Invocation. Challenging issues
include how much flexibility should be built into the namespace interface, and how transparent
the network and persistent storage should be. We outline future work on making Snowflake
administrator-friendly.

1 Introduction

When networks of microcomputers were novel, cluster software made the individual machines work
together to give users the appearance of a single-system image; that is, users saw the cluster of
processors as a single mainframe, which was a convenient conceptual model.

As computing systems become more ubiquitous, more and more users find themselves accessing
multiple computer systems, often in different administrative domains, that is, in different depart-
ments or at different organizations. Cluster software requires central administration, so each cluster
can be no bigger than a single administrative domain. Thus users find themselves using multiple
single-system images, which defeats the purpose of the single-system image abstraction.

The goal of Snowflake is to let users build personalized single-system images that span ad-
ministrative domains. Notice we said that users do the building. That is because each user’s
single-system image will vary according to the set of administrative domains that user accesses.
Therefore, the most natural way to construct the image is per-user. To that end, Snowflake gener-
alizes previous work in single-system-image clusters, and applies a philosophy of giving end users
control over how resources are distributed.
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In Section 2, we describe the design of Snowflake. We describe the current prototype in Sec-
tion 3. In Section 4, we discuss some lessons we have learned. Section 5 discusses performance
characteristics of Snowflake. In Section 6, we outline our future work. Section 7 describes related
work that set the stage for this project, and Section 8 summarizes the presentation.

2 Design characteristics

The Snowflake architecture is designed around modularized applications capable of communicating
transparently across the network. Modules (objects) discover one another using names in a ubiq-
uitous namespace. In Snowflake, the user has complete control over the namespace seen by the
applications she runs. Modular applications retrieve configuration information and acquire external
resources by resolving names in a namespace. Therefore, by remapping names to point to private
configuration information or distributed resources, the user can arrange for applications and data
to be transparently shared between administrative domains.

Naming is the organizing element of a distributed system. Hence, a namespace interface is
central to Snowflake’s design. In UNIX, the file system’s namespace unifies naming of many system
resources, including storage, devices, sockets, and in some cases, processes and other abstractions.
Like such conventional systems, but to a greater degree, Snowflake unifies resource naming with
a single namespace; unlike conventional systems, Snowflake decouples naming from storage. The
naming graph can be cyclical, so there is no requirement that a subtree of names reside on common
storage (such as a UNIX mount). There are many possible implementations of the namespace
interface: trivial namespaces simply hash names to object references; proxy namespaces can hide
distribution by returning remote proxy objects; emulation namespaces can provide a Snowflake
view on an external service such as a database or a UNIX file system.

In a conventional system, the name given to a resource determines where the resource is stored
or implemented. Because Snowflake names are decoupled from storage, we also define a container
interface that exposes storage decisions to the user. Container interfaces can be invoked to create
new resources (of a type appropriate to the container), or to copy resources from some other
container. The advantage of a decoupled container interface is that a user can uniformly exploit all
of her storage resources in multiple administrative domains, while ignoring the storage locations of
her resources in her day-to-day work. For example, an object can be moved from a distant container
to a nearby container for better performance, without changing its name. Similarly, a namespace
can be used to map names into nearby replicas, or perhaps distant replicas if local replicas are
unavailable.

Snowflake allows system administrators to retain desired control over local resources, to enforce
local security and resource-allocation policies. Sometimes administrative requirements will conflict
with the realization of transparent single-system images. The goal of the Snowflake architecture,
then, is to enable transparency wherever possible. The administrative domain boundaries of existing
systems artificially destroy transparency; Snowflake is designed to avoid that problem.

3 Current implementation

In this section, we present the interfaces and implementations of namespaces and containers. Then
we describe how Snowflake interoperates with existing conventional systems. Finally, we discuss
some applications available inside the prototype environment.

Snowflake is designed around modularized application components that communicate across
the network. Many researchers have worked on architectures for modular applications, and in
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Snowflake, we take the presence of such an architecture as a given. For our current prototype,
then, we use Java objects and Remote Method Invocation as a substrate for distributed applications
[WRW96, Fla97].

3.1 Namespaces and containers

We have defined a Java Namespace interface, which is simple as one might expect:

Object lookupName(String name)
Object lookupPath(String path)
String[] listAllNames()
void bind(String name, Object objRef)

There are many possible implementations of the namespace interface. Simple namespaces are
implemented using hash tables. Fancier namespaces translate requests into lookups in existing
services (such as a UNIX directory, or a web-accessible database). A “proxy” namespace provides
a symbolic link by passing all requests through to another Snowflake namespace.

In any system, names resolve to some underlying addressing scheme. Design decisions include
whether that addressing scheme should implement features such as network transparency or ob-
ject replication. Snowflake names currently resolve to Java objects, which may be RMI remote
stubs. The result is that the underlying address layer can include network transparency and object
replication.

The container interface lets users allocate new objects of a given type, or copy an existing object
into a container’s storage:

Object allocate(String name, String className)
Object store(Serializable name, Object objRef)

Classes are passed by name to allocate, because Class objects cannot be Serializable or
Remote. The store method copies the referenced object into the container using object serializa-
tion, and returns a reference to the new object. Containers are always namespaces, so namespace
operations apply to containers as well. The namespace operation bind(name, null), for example,
is used to free a resource from a container. The listAllNames() operation can be used to discover
how the storage in a container is being used. The resulting list names each object in the container
as it is known to the container; the objects may also be referenced by more symbolic names from
other namespaces.

We provide persistent storage by running a simple implementation of the Container interface
inside a Java virtual machine that has been made orthogonally persistent using our Icee process
checkpointer [How98]. The checkpointer snapshots the entire Java process, so that if the machine
crashes, the JVM can be completely restored from a checkpoint file. Icee provides hooks so that a
Container can involve itself in the checkpointing and recovery process, if desired.

3.2 Communicating with conventional systems

To exploit the body of applications and resources available from conventional operating systems, we
have implemented some emulation services. First, UNIX files can be accessed from the Snowflake
world by UnixContainer, an implementation of Container that resolves lookup requests in a UNIX
directory. Looking up the name of a file returns an object that has getInputStream() and
getOutputStream()methods. Looking up the name of a directory returns another UnixContainer.
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Going in the opposite direction, we can access Snowflake objects from UNIX programs as if
they were UNIX files. We can, for example, use vi to edit a Snowflake object that has file input
and output methods. We used the technique designed by Alexandrov et al. for their UFO user-
level file-system extension [AISS97]. We invoke vi from a monitor program that interposes on vi’s
system calls using the /proc debugging interface. File-system directory operations are transformed
into Namespace lookups and Container operations, and file accesses are rerouted to the resulting
objects inside the Snowflake environment.

We created a third emulation technique to reuse existing Java code. Although Java has a nice
object model, its class libraries still reek of conventional file-system architecture, and map well
only to conventional file systems, with their notion of current working directory and assumption
that a given system has only one root directory, rather than a namespace configured by each
user. We wished to reuse Sun’s javac Java compiler inside Snowflake, reading code from arbitrary
Namespaces, and writing class files to arbitrary Containers. The first challenge was just to replace
the functionality of library classes such as java.io.File and java.io.InputStream. If Java’s
class library used the Factory design pattern to instantiate file and file stream objects, we could
simply alter the factory to return objects of our own devising. Unfortunately, Java’s design and
implementation are not so modular. Worse yet, if we simply replace the FileInputStream class (for
example), we lose access to the UNIX file space provided by the original implementation. If we
rename the class to preserve its functionality, sockets still break because the native methods of the
java.io.Socket class depend on the internal representation of FileInputStream. Our solution was
to modify client classes to instantiate our replacement class. We wrote a tool that filters class files,
replacing references to FileInputStream with references to Snowflake’s SFFileInputStream. We so
modified all of the classes relevant to javac. The technique is unsavory, but it is a consequence of
poor modularity in the Java class libraries.

3.3 Experimental services

Our current prototype has internal storage, a cp command for moving data into and out of the
environment, and a version of the javac compiler that can read and write objects in the Snowflake
namespace. Class files stored in a Snowflake container can be loaded into the Java Virtual Machine
by a custom ClassLoader. The ClassLoader looks up the class file with the lookupName() operation,
casts the resulting object to a stream, reads the stream into an array, and passes the array to Java
for verification and loading.

We built a distributed calendar as an example of an application that benefits from seamlessly
spanning administrative domains. In our calendar, individual event records are Remote, Serializable
objects. A namespace stores a pool of events to be viewed by a user interface. Other namespaces
can perform union, filter, and query operations on namespaces, presenting another namespace as
output. A user can use a union namespace to join calendars from work, home, and school. In
the prototype, he uses a shell1 to create a Union namespace object and pass the Union a list
of namespaces, after which the Union object acts like a namespace containing the union of the
mappings in the given list. The user may next install a filter object to extract only those events
that match his current interests. Finally, he views the resulting namespace with a user-interface
tool that formats the event objects as a calendar.

The calendar represents the sort of service Snowflake provides. The user is free to arrange the
distribution of his calendar’s events by composing namespace objects and operations; the result

1In the prototype, the shell is textual. We envision graphical tools that manipulate namespace operators, and even
tools that provide namespace operators tailored to specific applications. The important point is that the distribution
mechanism is never hidden inside the application, out of the user’s control.
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is a single image of distributed event records. The mode of distribution is not defined by either
administrators or the application programmer, but by the user. Intermediate tools may assist users
in managing distribution, but distribution is decoupled from specific applications. In the same way
that UNIX text programs naturally compose to produce useful pipelines, applications that follow
Snowflake conventions naturally compose to produce user-configurable distributed applications.

4 Lessons learned and open questions

Our first prototype of the Snowflake design led to some lessons learned and suggested some questions
about the nature of a user-configured distributed system.

• Explicit interfaces are helpful. Snowflake objects have explicit interfaces (an object can be
queried by a meta-interface to discover what interfaces are available), and a given object can
implement multiple interfaces.2 This is valuable because it allows tools to discover the type(s)
of objects, and it allows objects to be available to more tools by offering multiple interfaces.
In the calendar example, a query object implements both a query interface, to specify the
query that will select calendar events, and a namespace interface, to present the results of
the query.

UNIX files have only one interface, reading and writing a stream of bytes. Programmers
circumvent this by encoding richer interfaces implicitly into file formats and stream protocols.
The result is that a given resource can only have one interface, and in the absence of prior
knowledge, a program can only guess at the format of a file. In contrast, Snowflake’s explicit
interfaces allow resources to expose multiple interfaces (to interoperate automatically with
more tools), and avoid the guesswork of discovering what interface(s) a resource actually
provides. Snowflake objects can always implement a stream interface when it is appropriate.

• What context should Namespaces be coupled to? In traditional systems, the namespace is
coupled to the machine or the cluster: any process running in the cluster sees the same
namespace root. In Plan 9, namespaces are per-process [PPD+95, PPT+93]. This allows
per-user namespaces, in that each user’s collection of processes can share the user’s custom
namespace. Currently in our prototype, objects must be passed a namespace that they store
for later use. The FileInputStream replacement code uses one namespace for any callers in
the virtual machine (it is stored in a static class variable). Perhaps the right model, emulating
Plan 9, is to have one namespace per thread.

• Are string names enough? What if names could be arbitrary objects? Namespaces with
such bindings would not necessarily be useful to browsing humans, but perhaps it would
help the user organize his resources. For example, in the calendar application, a database
of events could be represented by a namespace that, when given a special query object as
a name to resolve, replies with another namespace containing matching events. However,
allowing arbitrary objects as names may be overloading the namespace interface to provide
functionality that should be left to other explicit interfaces. It may make caching namespaces
even more difficult (See Section 5).

• Can namespaces be arbitrary mappings? Currently, namespaces are strictly functions by the
definition of the Namespace interface: a name lookup operation can return only one object.
What if namespaces could return duplicate keys? This would stray even farther from the

2This is a Snowflake specification, but the use of Java remote objects provides the implementation for free.
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usual semantics associated with namespaces, but relaxing the unique key constraint would
allow database schemas (such as our calendar example) without unique keys to map nicely
into the namespace interface.

• How transparent can we make the network? Another question is how transparent the network
should be to object implementations. A single-address space (SASOS) implementation would
allow the network communication to be totally transparent, but would bring with it the known
scalability problems of SASOS designs, as well as the likely difficulty of scaling SASOSes across
administrative domains (see Section 7). Barring a shared-memory system, we expect that no
system can hide the difference in copy versus reference semantics. Java certainly does not; it
requires classes to declare themselves Serializable (providing network copy semantics), Remote
(providing network reference semantics), or both (providing network reference semantics by
default). Opal’s designers point out that while a SASOS design saves copies inside the cluster,
structure-copying code must still be written for the times when users want to move data off the
cluster [CLFL94]. Waldo et al. have argued that network transparency is not even desirable
[WWWK94].

• How transparent can we make persistence? Our system provides orthogonal persistence, which
saves great programmer effort in applications with pointer-rich data structures that would
otherwise need to provide flattening and parsing I/O code. However, should the programmer
want copy semantics for some subset of his pointer-rich data, he cannot evade the same issues:
determining how deeply a copy operation dives, and deciding when referential integrity should
be preserved versus when a duplicate object should be made.

5 Performance

The performance of Snowflake is dependent upon the object reference layer that it is built upon. In
our prototype, that layer is Java RMI. The actual impact on system performance is mostly related
to whether the Snowflake design conflicts with caching. User-configurable namespaces allow a user
(or a program operating on her behalf) to insert caching proxies to reduce network latency; in this
regard the Snowflake organization lends itself to caching. On the other hand, because Snowflake
objects can have arbitrary types, each with arbitrary consistency semantics, no single caching
strategy will be appropriate for all object types. The alternative is a conventional distributed file
system that can cache aggressively and preserve consistency, but bears the limitation of a strict
interface.

One component of Snowflake, our container mechanism Icee, can be directly measured. Figure 1
shows the performance of Icee checkpointing a trivial process (a class with an empty main method)
and a process containing a Java compiler, with all of its attendant classes and data structures. In
each case, we show the results of synchronously writing the process image to disk, and copying the
image in memory. The maximum coefficient of variation was 0.08. The dominating factor is I/O
latency, which is not surprising considering that even the trivial process has a five-megabyte image.
Icee does not yet incorporate well-known optimizations, including incremental and asynchronous
checkpointing.

Icee incurs run-time overhead while recording system calls that may need to be replayed during a
checkpoint recovery. This overhead is currently about 7%, measured with a maximum coefficient of
variation of 0.04. We could reduce the overhead by exploiting new features of Solaris 2.6 that make
it possible to obtain the same information directly at checkpoint time, rather than by interposing
on system calls during program execution.
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Figure 1: Checkpointer delay is reduced with memory copies.

6 Future directions

Our work to-date has focused on how to allow users to transparently access resources that span
administrative domains. We have not addressed how the administrators that provide those resources
will be able to control how those resources are used.

To export resources for use by Snowflake users, administrators will require varying degrees of
control over the use of those resources. Some administrators will want to set local standards of
authentication for users, to reduce the risk of their resources being stolen by imposters. Some
administrators will want to be able to discourage their users from sharing resources with other
outsiders. Some administrators will want detailed audit trails, to facilitate prevention and detection
of unauthorized use.

Our future work on Snowflake will address how to deliver these features to administrators while
minimizing the inconvenience seen by users. In some situations, administrative requirements will
directly conflict with user convenience; in these instances Snowflake must side with the adminis-
trator, or the administrator will simply refuse to offer resources using the Snowflake model. But to
the extent possible, our goal is to hide administrative boundaries from the users’ experience.

7 Related work

Three categories of related work are especially relevant to our project. First, we examine single-
system-image cluster software. Next, we look at worldwide systems. Finally, we discuss systems
that give users greater configuration control than do conventional systems.

Single-system-image (SSI) cluster software allows administrators to unite a network of work-
stations into a single-system image. SSI clusters are centrally administered, and often do not scale
well beyond local area networks. Important cluster systems based on kernel-to-kernel remote pro-
cedure call include MOS, Sprite, and Amoeba [BL85, OCD+88, TvRvS+90, MvRT+90]. Plan 9
uses a remote file protocol to distribute resources, with all sorts of resources mapped into the file
(read/write) interface [PPD+95]. Spring is an object-oriented cluster system, with a sophisticated
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remote-method-invocation architecture that can hide the implementation of services such as repli-
cation in the method-invocation layer [MGH+94]. Solaris MC was an effort to merge the Spring
cluster architecture with a commercial operating system [KBM+95]. The OSF Distributed Com-
puting Environment (DCE) represents the standardization of several de facto distributed resource
managers, also generally based on RPC [Joh91].

An important class of single-system-image clusters are those based on a Single Address Space
Operating System (SASOS) architecture. In a SASOS, every process in the system shares a common
address space, so that communication, replication and persistence can be hidden in the implemen-
tation of distributed shared memory. Significant examples of SASOS clusters include Opal, Angel,
Mungi, and Brevix [CLFL94, MWSK94, HEV+98, FCH+93]. The SASOS architecture is a use-
ful form of transparency, but to scale across arbitrary administrative domains a single address
space would have to span the global Internet; that would introduce allocation and administrative
problems [KC96].

Other systems aim to provide a world-wide distributed system. The worldwide approaches
involve aggregating all resources into one large system, then partitioning that system among its
users. Such a system would provide a single-system image across all administrative domains for
all users. Examples include Legion, GLOBE, and Millenium/Borg [GWtL97, HST96, BDF+97,
Ham98]. In Prospero, each user creates his own worldwide distributed file-system image. Prospero
names refer to files of the conventional interface, and naming is coupled to storage [Neu92].

Another class of related systems provide users with extended control over resource configuration
and distribution. Bershad and Pinkerton’s watchdogs and 4.4BSD portals are kernel services that
redirect file-system operations to user-mode processes [BP88, SP95]. UFO allows a user process to
supply other processes with an alternate view of the file system namespace by interposing on those
processes’ system calls via the /proc debugging interface [AISS97].

In a Sprite cluster, every file and device is automatically remotely accessible, and user processes
can implement pseudo-devices that look like files to clients of the file system [WO88]. Every Plan 9
process has its own mount table, allowing Plan 9 users to freely configure and distribute their
resources around the cluster [PPT+93, PPD+95].

The SPACE “kernel-less system” and the Exokernel push large amounts of functionality out of
the kernel into user-mode, where users can provide alternate abstractions [PB95, EK95, KEG+97].
In Fluke, the system is composed of recursive virtual machines. Therefore, rather than allocate
resources from the administrator, users receive a complete virtual machine, and configure it as they
please [FS96, FHL+96].

8 Summary

We have described the design and implementation of a distributed computing environment, called
Snowflake, that allows users to construct and enjoy single-system images that span administrative
domains. We discussed how Snowflake interacts with conventional systems, and described two
applications currently available inside Snowflake: the Java compiler and a distributed calendar.

We discussed some lessons learned and some open questions, and outlined our directions for
future work in security and administrative issues. While many questions remain to be answered, we
feel that the premise behind Snowflake is sound. Putting distribution under user control will allow
users to construct convenient, personal single-system images that span administrative domains, a
necessity as computing resources become ever more ubiquitous and distributed.
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