Transportable Agents Support Worldwide Applications

David Kotz Robert Gray Daniela Rus

Department of Computer Science
Dartmouth College

Hanover, NH 03755
{dfk,rgray,rus}@cs.dartmouth.edu

Abstract

Worldwide applications exist in an environment that is inherently distributed, dynamic, heteroge-
neous, insecure, unreliable, and unpredictable. In particular, the latency and bandwidth of network
connections varies tremendously from place to place and time to time, particularly when considering
wireless networks, mobile devices, and satellite connections. Applications in this environment must be
able to adapt to different and changing conditions. We believe that transportable autonomous agents
provide an excellent mechanism for the construction of such applications. We describe our prototype
transportable-agent system and several applications.

1 Transportable autonomous agents

A transportable autonomous agent is a named program that can migrate from machine to machine in a
heterogeneous network. The program chooses when and where to migrate. It can suspend its execution,
move its code and state to another machine, and resume execution on the new machine. Transportable
autonomous agents are well suited for the construction of worldwide applications for two reasons:

e They are transportable. In the traditional client-server paradigm, the client code communicates
with the server code to access data and resources on the server’s machine. For many applications, however,
it makes more sense to move the code to the data. Moving the code to the data is particularly helpful if the
client needs to sift through a lot of data or control a low-latency device, especially if the server’s interface does
not support the client’s needs exactly. In information-retrieval applications, for example, the client’s search
function can be uploaded to the back-end database server. In user-interface applications, the application’s
interaction routines can be downloaded to the user’s workstation. A transportable agent can jump to the
remote machine and interact with the desired services much more efficiently than over the network.

Mobile code is especially useful when machines are poorly connected, such as in wireless networks, certain
long-haul networks, and laptop computing. A transportable agent, for example, can jump off of a laptop
and roam the Internet in service of its user, even if the user later powers down or disconnects her laptop.
When the laptop reconnects (perhaps at a different location), the transportable agent jumps back with the
results of its travels.

e They are autonomous. For a transportable agent to interact with other agents and systems, which
are often far away from its owner and its “home” machine, 1t must be able to act autonomously. Indeed, its
owner may have logged off, or the “home” machine may be temporarily disconnected or unreachable. Ideally,
the agent should be able to autonomously and adaptively formulate plans for navigation, error handling, and

This research was supported by ONR contract number N00014-95-1-1204 and AFOSR contract number F49620-93-1-0266.

Copyright 1996 ACM. doi:10.1145/504450.504458.
Appeared in Seventh SIGOPS European Workshop, 1996, pp. 41-48.
THIS COPY IS THE AUTHORS’ PRE-PUBLICATION VERSION; it may differ slightly from the official published version.



so on. In this respect we can borrow from the extensive experience of the artificial-intelligence and robotics
communities. To be able to make plans and adapt to changing conditions, agents must be able to sense
their environment, such as the current state of networks, the load on the computer, and the location of other
agents.

2 Dartmouth’s Agent Tcl project

At Dartmouth we are applying a unique combination of operating systems, artificial intelligence, and robotics
experience to the design of a transportable autonomous agent system and several demonstration applications.
The keystone of our work has been the development of Agent Tl [Gra9s, Gra96, GKCRI6], an extension
of the Tcl scripting language [Ous94]. An Agent Tcl program (agent) can simply “jump” from machine to
machine, with the interpreter saving and transferring the state to the remote machine, which restarts the
agent from that state in a new interpreter. We are currently extending the concept to a second language,
Agent Java.

We have several auxiliary projects underway involving agent communications, navigation, disconnected
operation, security, resource allocation, and graphical interfaces. We describe each briefly.

2.1 Communication

Agent Tecl provides the ability for agents to communicate through direct connections and through message
passing. We have two higher-level agent communication mechanisms on top of these primitives.

Agent remote procedure call (ARPC) [NCK96] allows server agents (i.e., those which wish to
advertise a service) to register with a “name server” agent by specifying their interface using a flexible
definition language. Client agents specify the desired service by providing a similar specification. The name
server matches the two specifications and provides a list of server agents that “speak” the interface. As
a result, agents can find and communicate with other agents simply by agreeing on a common functional
interface. By naming and typing all parameters and return values, allowing servers to specify default values
for some parameters, and allowing partial matches, a single client can connect to servers implementing a
wide variety of interfaces. We expect to define a few minimal interfaces that all agents support.

A paging mechanism allows one agent to locate and communicate with another agent even if the latter
agent has moved around the network. Our current solution depends on the destination agent registering its
position with its “home” machine after each jump. Other agents then find the agent by asking the home
machine.

2.2 Navigation

Agents can jump around the network, but where do they go? How can they find places to visit and adapt
to a changing network? We are focusing on three related services.

A hierarchical set of navigation agents maintain a database of service locations [Gil96]. Services register
with these navigation agents. An agent looking for a service queries a navigation agent, which suggests a
list of services (based on a keyword match) and possibly other navigation agents (that may be specialists in
listing services on the requested topic). Later, the agent provides feedback about which services were useful,
which the navigation agent uses to adjust its database to provide a better response to future queries.

A set of network sensing tools allow an agent to determine whether its host is connected and to
estimate the latency or bandwidth to remote hosts. The simplest tool uses ping to the local IP broadcast
address as a way of determining whether the local host is connected. The other tool, a traffic monitor
agent, attempts to provide estimates of latency or bandwidth to remote hosts by tracking information about
all recent communications (bytes moved, time required). Currently, our traffic monitor agent monitors
only agent jumps, and uses a simple weighted heuristic to form an estimate. Observations are weighted
according to their distance from the desired destination, both in time (more recent observations being given
more weight) and in space (observations involving the destination machine being given more weight than



observations involving another machine in the destination domain). We are still tuning our heuristic; we
expect that our estimates will be rough but usable for large-grain decisions (e.g., using the estimates, and
a greedy strategy, an agent would likely visit all sites in Furope before hopping to Australia to visit sites

there [RGK96]).

2.3 Disconnected operation

Agents are ideal for partially disconnected environments, such as laptops, modem-connected home com-
puters, and personal digital assistants, because they can travel the network while their “home” machine is
disconnected or unreachable. For agents trying to jump into or out of the laptop, however, the traditional
approach (try, timeout, sleep, retry, ...) can often fail, particularly if the agent does not happen to retry
its jump during a brief reconnection period. To overcome these problems, our laptop docking system
[GKNT96] pairs each laptop with a permanently connected dock machine (Figure 1). While not all machines
act as docks, all machines have a dock-master agent.

MACHINE3

LAPTOP2 g !
o)

PERMANENTLY
CONNECTED NETWORK

MACHINE1L g
LAPTOP1_dock
LAPTOP2_dock =

MACHINE2
LAPTOP3_dock

LAPTOP1

Figure 1: Laptop-docking system

Consider an agent wishing to jump to a disconnected laptop named D (Figure 2). To do so, it executes
the command agent_jump D. When the command completes; the agent will be running on D; the process is
transparent. The agent_jump implementation attempts to contact D, which fails because D is disconnected.
So it then attempts to contact the dock-master agent on the laptop’s dock. By convention, the dock for host
D 1s named D_dock. Internet host naming allows a single permanently connected machine to have many
aliases, which allows one host to act as a dock for many laptops. Once the agent is transferred to D_dock,
it is not restored into a running agent, but stored on disk under the control of the dock-master at D_dock.
When D reconnects, its dock-master agent contacts the dock-master at D_dock so that all waiting agents
can be transferred to the laptop D, where they are restored. In the process, D_dock learns of any change in
the address for D. Thus, agents trying to reach D will fail to reach it at its old address, jump to D_dock,
and eventually reach D at the new address.



X - WAITING AGENTS BEGIN JUMPING AN

V. N
5 AN
N AN
\
3 g CONNECTION NOTIFICATION g 2 g
-
—_— 4
NETWORK = NEW IP ADDRESS OF D ) el
STATUS UPDATE s
D \/’ D_dock
- 11T

]]]]] TRANSFER SLEEPING AGENTS

QUEUE OF QUEUE OF
SLEEPING AGENTS SLEEPING AGENTS
WAITING TO JUMP FROM D WAITING TOJUMPTO D

Figure 2: Jumping to or from the laptop

Now consider an agent trying to leave the disconnected laptop D). Again the agent executes ageni_jump,
which detects that the laptop is disconnected, saves the state of the agent to disk, and informs the local dock-
master agent. The dock-master continually monitors the network status; when the network is connected, the
dock-master immediately transfers all waiting agents off of the laptop (Figure 2). This scheme has several
advantages: the agents leave the laptop as soon as possible; the agents do not miss any opportunities to leave;
the agents are saved on disk, where they survive crashes and shutdowns, and do not occupy precious memory
and CPU time; and their state is captured and ready for transfer as soon as the network is connected.

Thus, agents wishing to jump on or off the laptop move quickly as soon as the laptop is connected,
minimizing the connection time necessary. Again, the entire process is transparent to the agent.

Note that an agent may jump from laptop to laptop, and both laptops need not be connected at the
same time. In addition, if an Internet problem makes D_dock inaccessible when S happens to connect, the
agent may jump from S to S_dock, then to D_dock when that becomes reachable; then finally to DD when it
reconnects.

2.4 Security

Agents can be encrypted and digitally signed using PGP. A host authenticates an incoming agent using
the digital signature. Resource manager agents are long-lived agents that must be consulted by an agent
desiring access to a resource. A resource manager implements the access policy for each critical resource,
such as the file system, the screen, the speaker, and the keyboard [Gra96]. Agents must negotiate with
the appropriate resource manager before they can access the resource; the resource managers determine
the allowable access based on the agent’s authentication. The Agent Tcl interpreter uses Safe Tel [LO95]
to ensure that an agent can neither bypass the negotiation step nor violate the restrictions provided by
the resource managers. In effect, Safe Tcl divides the interpreter into two separate interpreters, a “user”
interpreter and a “kernel” interpreter. The agent executes in the user interpreter; all negotiation and access
routines are in the kernel interpreter and can only be called through an ezported procedural interface. The
decisions of the resource manager are cached within the kernel interpreter so that the agent does not have
to negotiate for every access (e.g., for every read or write to a file). The strength of this security scheme
is the clear separation between the policy providers (resource managers) and the policy enforcer (Safe Tecl).
This separation allows the rapid introduction of new security polices and makes it much easier to integrate
a new language. When Java is added to the system, for example, the standard Java security mechanisms
will be used to enforce the same policy provided by the same resource manager.

In addition to the resource managers, each machine may have a console agent, which serves two purposes.
First, it tracks all of the agents that are arriving or executing on the machine, and allows the user to terminate



or deny entry to a particular agent. Second, it serves as a central point through which the resource managers
ask the user if a particular access request should be allowed; eventually the user should be able to specify
exactly those situations in which she should be asked.

The current security mechanisms successfully protect a machine from a malicious agent. Work is underway
to protect an agent from a malicious machine (to the extent possible) and to protect groups of machines
from a malicious agent. Our approach for protecting machine groups controls global resource allocation
using electronic currency.

2.5 Resource allocation

In a dynamic and distributed system, it is often difficult to control resource usage, particularly when the
processes are agents that migrate from host to host. In particular, we wish to prevent “runaway” agents
that, intentionally or unintentionally, roam the network forever.

We propose to use a currency model of resource allocation in which agents “buy” needed resources
using some universal currency units (which may or may not be tied to legal currency units). Needed resources
include CPU time, memory, disk space, network bandwidth, screen space, database access, and information.
When an agent is created, it is given a fixed amount of currency from its creator’s own finite currency
reserves. The agent then chooses how to best spend the currency to meet its goals. When it runs out of
currency, it is sent back to the home site, which either provides more currency or terminates the agent.

Resource managers collect the currency spent on their resources. This accumulated currency may be
spent by the owner of the resources, perhaps the person or organization owning that workstation, by giving
the currency to its own agents.

Our hypothesis is that the effects of supply and demand will control prices, and that currency will
allow the easy sharing of diverse resources without a complex policy controlled by a central machine or
organization. We have embedded an auction-based negotiation model into a module that can be used by
both client and server agents when negotiating prices.

Our currency is represented as cryptographically-protected digital cash, issued by one of a collection of
banks. An agent trusts its bank, and banks trust each other. An agent normally has a “wallet” containing
numerous cash “bills” of different sizes, which it can give to another agent with no bank involvement. The
bank must be involved if a bill must be split into smaller bills, or if an agent wishes to verify that a bill is
valid and has not already been spent.

2.6 Graphical interfaces

Agents can use Tcl’s Tk toolkit [Ous94] to create graphical interfaces and interact with the local user. In
addition, we plan to develop an agent-composition tool that allows programmers to build new agents by
visually combining existing agent components. The tool would combine the code for the existing components
with the appropriate glue code. This idea is similar to popular visual-programming languages.

3 Related work

Our work builds on previous work in agents [Age94], primarily in the AT community, and in transportable
code, primarily in the systems community.

Mobile agents can be viewed as an extension of the remote procedure call and remote programming
paradigms. Remote procedure call (RPC) allows a client to invoke a server operation using the standard
procedure call mechanism [BN84]. Remote programming allows a client to send a subprogram to a server. The
subprogram executes on the server and sends its result back to the client. Variants of remote programming
include the Network Command Language (NCL) [Fal87], Remote Evaluation (REV) [SG90], and SUPRA-
RPC [Sto94]. Agents generalize remote programming to allow arbitrary code movement. Our system allows
agent programmers to choose between a remote conversation (with RPC, message-passing, or stream) or a
jump followed by a local conversation.



Systems such as Java [GM94], Safe Tcl [BR95], and Omniware [ATLLW96], are concerned with the safe
execution of untrusted code fragments. Safe Tcl is limited to Tcl scripts but Java and Omniware can work
with any program (as long as the program is compiled into the bytecodes of the appropriate virtual machine).
These three systems do not directly support mobile agents, although there are some very recent Java-based
transportable-agent systems' ? 3.

The best-known mobile-agent system is Telescript from General Magic [Whi94]. Telescript supports
mobile computers and is used primarily on Personal Digital Assistants (PDA) such as the Sony Magic Link.
The details of how Telescript agents jump between mobile hosts and handle disconnected operation are
unclear. The Mobile Service Agent (MSA) system from ECRC [TLKC95] is another mobile-agent system
supporting mobile computers, but it uses a less general mechanism than described in this paper. There
are several other research projects that are building infrastructure for mobile agents. The most notable are
Tacoma [JvS95], Ttinerant Agents [CGH195], Sodabot [Coe94], and ARA [Pei96]. New transportable-agent
systems appear every day.*

Some database systems allow “stored SQL procedures” where you can define complex SQL commands
and store them on the server [BP88]. The stored commands are executed at the server end during a user
transaction. Some distributed file systems support disconnected operation, including Coda [KS92, MES95],
Ficus [RHRT94], and others [HH95]. In these systems, applications on the laptop access the local file
cache while the laptop is disconnected. On reconnection, the file system reconciles any differences with the
appropriate file servers. The Bayou file system [TTPT95] internally uses a form of mobile code (but not
agents) to handle reconciliation.

The Rover system [JdT195] supports disconnected operation through queued RPC and relocatable dy-
namic objects (RDO). Queued RPC allows asynchronous RPC requests to be queued and then sent when
the laptop connects; an asynchronous reply is delivered later. Relocatable dynamic objects (RDO) allow
objects (code and data) to be downloaded from the server into the client, where they can execute closer to
the user and, potentially, while disconnected. These RDOs are not true mobile agents because they do not
move after they have begun execution.

Noble et al. [NPS95] describe the Odyssey system, in which applications on mobile computers can request
upcalls whenever a change in resource state, such as network bandwidth or battery power, exceeds some
threshold. This feature enables applications on mobile computers to change their behavior according to their
environment, and would be a helpful substrate for an agent system.

There are of course many papers on mobile IP and packet forwarding. Perhaps the best background
source is [Joh95]. Although a mobile-TP system would eliminate the need for our docking system to handle
address changes, it would not provide the same support for disconnected operation, which is the primary
benefit of our docking system.

4 Status

Agent Tcl has been publically released and is in active use at several sites in various information-management
applications. The public version provides migration, communication, and access to the local screen and disk.
Our internal version includes preliminary implementations of all of the support services described above
(except for the agent-composition tool). The RPC mechanism, navigation services, and security mechanisms
are the most complete. We are currently testing and evaluating these implementations. More information
about Agent Tcl and our current research can be found at http://www.cs.dartmouth.edu/~agent/. A
programmer’s view of the system, including source code on CD-ROM, will be published soon [GKCR96].

Thttp://www.ibm.co.jp/trl/projects/aglets/
“http://ptolemy.eecs.berkeley.edu/ wli/group/java2go/java-to-go.html
Shttp://www.ftp.com/cyberagents/
*http://wuw.cs.umbc.edu/agents/technology/asl.shtml



References

[Age94]
[ATLLW96]

[BN84]

[BP8S]

[BR95)

[CGH*95]

[Coed4]

[Fal87]

[Gil96]

[GKCRI6]

[GKN+96]

[GM94]

[Gra95]

[Gra96]

[HH95]

Intelligent agents. Communications of the ACM, 37(7):18-147, July 1994. Special issue.

Ali-Reza Adl-Tabatabai, Geoff Langdale, Steven Lucco, and Robert Wahbe. Efficient and
language-independent mobile programs. In Proceedings of the ACM SIGPLAN Conference on
Programmaing Language Design and Implementation, pages 127-136, 1996.

Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls. ACM Trans-
actions on Computer Systems, 2(1):39-59, February 1984.

Andrea J. Borr and Franco Putzolu. High performance SQL through low-level system integra-
tion. In Proceedings of the ACM SIGMOD International Conference on Management of Data,
pages 342-349, 1988.

N. S. Borenstein and M. Rose. Safe  Tel. Available  at
ftp://ftp.fv.com/pub/code/other/safe-tcl.tar.Z, 1995.

David Chess, Benjamin Grosof, Colin Harrison, David Levine, Colin Parris, and Gene Tsudik.
Itinerant agents for mobile computing. Technical Report RC 20010, IBM T. J. Watson Research
Center, March 1995. Revised October 17, 1995.

Michael D. Coen. SodaBot: A software agent environment and construction system. In Yannis
Labrou and Tim Finin, editors, Proceedings of the CIKM Workshop on Intelligent Information
Agents, Third International Conference on Information and Knowledge Management, Gaithers-
burg, Maryland, December 1994.

Joseph R. Falcone. A programmable interface language for heterogeneous distributed systems.
ACM Transactions on Computer Systems, 5(4):330-351, November 1987.

Mark Giles. Navigation for transportable agents. Senior Honors Thesis, Dartmouth College
Computer Science, June 1996.

Robert Gray, David Kotz, George Cybenko, and Daniela Rus. Agent Tcl. In William Cockayne
and Michael Zyda, editors, Itinerant Agents: Explanations and Framples with CD-ROM. Man-
ning Publishing, 1996. Imprints by Manning Publishing and Prentice-Hall. To appear in late
1996.

Robert Gray, David Kotz, Saurab Nog, Daniela Rus, and George Cybenko. Mobile agents for
mobile computing. Technical Report PCS-TR96-285, Dept. of Computer Science, Dartmouth
College, May 1996. Submitted to ACM MobiCom ’96.

James Gosling and Henry McGilton. The Java language: A white paper. Sun Microsystems,
1994.

Robert S. Gray. Agent Tcl: A transportable agent system. In Proceedings of the CIKM Work-
shop on Intelligent Information Agents, Fourth International Conference on Information and
Knowledge Management (CIKM 95), Baltimore, Maryland, December 1995.

Robert S. Gray. Agent Tcl: A flexible and secure mobile-agent system. In Proceedings of the
1996 Tel/Tk Workshop, July 1996.

L. B. Huston and P. Honeyman. Partially connected operation. Computing Systems, 8(4):365-
379, Fall 1995.



[JdT+95]

[Joh95]

[IvS95]

[KS92]
[LOYS5]

[MES95]

[NCK96]
[NPS95]
[Ous94]
[Pei96]

[RGK96]

[RHR*94]

[SG90]
[Sto94]
[TLKC95]

[TTP+95]

[Whi94]

Anthony D. Joseph, Alan F. deLespinasse, Joshua A. Tauber, David K. Gifford, and M. Frans
Kaashoek. Rover: A toolkit for mobile information access. In Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles, pages 156-171, December 1995.

D. B. Johnson. Scalable support for transparent mobile host internetworking. Wireless Net-

works, 1:311-321, October 1995.

Dag Johansen, Robbert van Renesse, and Fred B. Schneider. Operating system support for
mobile agents. In Proceedings of the Fifth Workshop Hot Topics in Operating Systems (HotOS),
pages 42-45, May 1995.

James J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda file system. ACM
Transactions on Computer Systems, 10(1):3-25, February 1992.

Jacob Y. Levy and John K. Qusterhout. A Safe Tcl toolkit for electronic meeting places. In
Proceedings of the First USENIX Workshop on Electronic Commerce, pages 133-135, July 1995.

Lily B. Mummert, Maria R. Ebling, and M. Satyanarayanan. Exploiting weak connectivity
for mobile file access. In Proceedings of the Fifteenth ACM Symposium on Operating Systems
Principles, pages 143-155, December 1995.

Saurab Nog, Sumit Chawla, and David Kotz. An RPC mechanism for transportable agents. In
preparation. Expanded version currently available as Dartmouth PCS-TR96-280, March 1996.

Brian B. Noble, Morgan Price, and M. Satyanarayanan. A programming interface for
application-aware adaptation in mobile computing. Computing Systems, 8(4):345-363, Fall
1995.

John K. Ousterhout. Tecl and the Tk Toolkit. Addison-Wesley, Reading, Massachusetts, 1994.

Holger Peine. The ARA project. WWW page http://www.uni-k1.edu/AG-Nehmer/Ara, Dis-
tributed Systems Group, Department of Computer Science, University of Kaiserlautern, 1996.

Daniela Rus, Robert Gray, and David Kotz. Autonomous and adaptive agents that gather
information. In AAAI 96 International Workshop on Intelligent Adaptive Agents, August
1996. To appear.

Peter Reiher, John Heidemann, David Ratner, Greg Skinner, and Gerald Popek. Resolving file
conflicts in the Ficus file system. In Proceedings of the 1994 Summer USENIX Conference,
pages 183-195, 1994.

James W. Stamos and David K. Gifford. Remote execution. ACM Transactions on Programming

Languages and Systems, 12(4):537-565, October 1990.

Alexander D. Stoyenko. SUPRA-RPC: SUbprogram PaRAmeters in Remote Procedure Calls.
Software—Practice and Erperience, 24(1):27-49, January 1994.

Bent Thomsen, Lone Leth, Frederick Knabe, and Pierre-Yves Chevalier. Mobile agents. ECRC
external report, European Computer-Industry Research Centre, 1995.

Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers, Mike J. Spreitzer, and
Carl H. Hauser. Managing update conflicts in a weakly connected replicated storage system. In
Proceedings of the Fifteenth ACM Symposium on Operating Systems Principles, pages 172-183,
December 1995.

James E. White. Mobile agents make a network an open platform for third-party developers.

IEEE Computer, 27(11):89-90, November 1994.



