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Abstract be too simple; a recent article EEE Commu-
nicationswarns that “An opinion is spreading that
All analytical and simulation research on ad hQ§he cannot re|y on the majority of the pub||shed re-
wireless networks must necessarily model radigits on performance evaluation studies of telecom-
propagation using simplifying assumptions.  Almunication networks based on stochastic simulation,
though it is tempting to assume that all radios ha¥ghce they lack credibility” PJLOZ. It then pro-
circular range, have perfect coverage in that rangeeded to survey 2200 published network simulation
and travel on a two-dimensional plane, most reesults to point out systemic flaws.
searchers are increasingly aware of the need to repyye recognize that the MANET research commu-
resent more realistic features, including hills, obstﬁ'rty is increasingly aware of the limitations of the
cles, link asymmetries, and unpredictable fading. Albmmon simplifying assumptions. Our goal in this
though many have noted the complexity of real rgaper is to make a constructive contribution to the
dio propagation, and some have quantified the eff@gaANET community by a) quantitatively demon-
of overly simple assumptions on the simulation @frating the weakness of these assumptions, b) com-
ad hoc network protocols, we provide a comprehegaring simulation results to experimental results to
sive review of six assumptions that are still part gfientify how simplistic radio models can lead to mis-
many ad hoc network simulation studies. In particurbading results in ad hoc network research, c) con-
lar, we use an extensive set of measurements frormguting a real dataset that should be easy to incor-
large outdoor routing experiment to demonstrate thgrate into simulations, and d) listing recommenda-

weakness of these assumptions, and show how th@s§gs for the designers of protocols, models, and sim-
assumptions cause simulation results to differ signjfrators.

icantly from experimental results. We close with a

series of recommendations for researchers, wheter Radios in Theory and Practice
they develop protocols, analytic models, or simula-

tors for ad hoc wireless networks. The top example in Figurgprovides a simple model
of radio propagation, one that is used in many simu-
1 Motivation lations of ad hoc networks; contrast it to the bottom

. : example of a real signal-propagation map, drawn
Mobile ad hoc networking (MANET) has become gt random from the web. Measurements of Berke-

lively field within the past few years. Since it is dlffl-ley Motes demonstrate a similar non-uniform non-

cult to conduct experiments with real mobile com: . . behavior GKW*02, ZHKS04. The sim-

puters and wireless networks, nearly all publishe del is based ian di .
MANET articles are buttressed with simulation ré? € model is based on Cartesian distance in an X-¥
lane. More realistic models take into account an-

sults, and the simulations are based on common sjm-

lifvin mptions. Man h mptions m enna height and orientation, terrain and obstacles,
plifying assumptions. Many such assumptions Wirface reflection and absorption, and so forth.

Note to readers who may have read the 2003 version of thisOf course, not every simulation study needs to use
paper as a TRYNEOJ]: this revised version of the paper has athe most detailed radio model available, nor explore

entirely new data set collected from a live ad hoc network exy o, \ariation in the wide parameter space afforded
periment, a simulation study to demonstrate the impact of these

axioms on three ad hoc routing protocols, and a new list of rédy @ complex model. The level of detail necessary
ommendations for routing protocol designers. for a given analytic or simulation study depends on
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the characteristics of the study. The majority of re-

sults published to date use the simple models, how-
ever, with no examination of the sensitivity of results

to the (often implicit) assumptions embedded in the
model.

There are real risks to protocol designs based on
overly simple models of radio propagation. First,
“typical” network connectivity graphs look quite dif-
ferent in reality than they do on a Cartesian grid. An
antenna placed top of a hill has direct connectivity
with all other nearby radios, for example, an effect
that cannot be observed in simulations that represent
only flat plains. Second, it is often difficult in real-
ity to estimate whether or not one has a functioning
radio link between nodes, because signals fluctuate
greatly due to mobility and fading as well as inter-
ference. Broadcasts are particularly hard-hit by this
phenomenon as they are not acknowledged in typical
radio systems. Protocols that rely on broadcasts (e.g.,
beacons) or “snooping” may therefore work signifi-
cantly worse in reality than they do in simulation.

Figure 2 depicts one immediate drawback to the
over-simplified model of radio propagation. The
three different models in the figure, the Cartesian
“Flat Earth” model, a three-dimensional model thﬁigure 1: Real radios, such as the one at the bot-
includes a single hill, and a model that includesm, are more complex than the common theoretical
(absorptive) obstacles, all produce entirely differenfodel at the top. Here different colors, or shades of
connectivity graphs, even though the nodes are in fhawy, represent different signal qualities.
same two-dimensional positions. As all the nodes
move, the ways in which the connectivity graph
changes over time will be different in each scenarighen a link between two nodes is no longer usable

Figure3 presents a further level of detail. At th@nd should be torn down. In the figure, suppose that a
top, we see a node’s trajectory past the theoretical {Tk quality of 50% or better is sufficient to consider
and practical (P) radio range of another node. Bé&e nodes to be neighbors. In the diagram, the prac-
neath we sketch the kind of change in link qualifjcal model would lead to the nodes being neighbors
we might expect under these two models. The tHefiefly, then dropping the link, then being neighbors
oretical model (T) gives a simple step function iagain, then dropping the link.
connectivity: either one is connected or one is not.In addition to spatial variations in signal quality,
Given a long enough straight segment in a trajectosyradio’s signal quality varies over time, even for a
this leads to a low rate of change in link connectivitgtationary radio and receiver. Obstacles come and
As such, this model makes it easy to determine whga: people and vehicles move about, leaves flutter,
two nodes are, or are not, “neighbors” in the ad hooors shut. Both short-term and long-term changes
network sense. are common in reality, but not considered by most

In the more realistic model (P), the quality of theractical models. Some, but not all, of this variation
link is likely to vary rapidly and unpredictably, evercan be masked by the physical or data-link layer of
when two radios are nominally “in range.” In thesthe network interface. Link connectivity can come
more realistic cases, it is by no means easy to @d go; one packet may reach a neighbor success-
termine when two nodes have become neighbors falty, and the next packet may fail.

Typical theoretical model

Source: Comgate Engineering
http://www.comgate.com/ntdsign/wireless.html
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simulation to evaluate the impact of those character-
istics on ad hoc routing protocols.
In summary,“good enough” radio models are quite

Although the theoretical model may be easy to ulfgPortant in simulation of ad hoc networks. The
lat Earth model, however, is by no means good

when simulating ad hoc networks, it leads to an i ) ) )
correct sense of the way the network evolves o@f0Ugh. In the following sections we make this ar-
time. For example, in Figur, the link quality (and 9Ument more precise.
Itlink conngctmty) varies much more rapidly in praclg Models used in research

ce than in theory. Many algorithms and protocols
may perform much more poorly under such dynamile surveyed a set of MobiCom and MobiHoc pro-
conditions. In some, particularly if network conneceedings from 1995 through 2002. We inspected
tivity changes rapidly with respect to the distributetthe simulation sections of every article in which RF
progress of network-layer or application-layer protorodeling issues seemed relevant, and categorized
cols, the algorithm may fail due to race conditiorthe approach into one of three birfldat Earth, Sim-

or a failure to converge. Simple radio models fagle, andGood This categorization required a fair
to explore these critical realities that can dramatimount of value judgment on our part, and we omit-
cally affect performance and correctness. For exatad cases in which we could not determine these ba-
ple, Ganesan et al. measured a dense ad hoc netvsizKacts about the simulation runs.

of sensor nodes and found that small differences inFigure 4 presents the results. Note that even
the radios, the propagation distances, and the tim-the best years, the Simple and Flat-Earth pa-
ing of collisions can significantly alter the behavigpers significantly outnumber the Good papers. A
of even the simplest flood-oriented network protéew [TMBO1, JLW'96] deserve commendation for
cols [GKW02]. Others [5C04 ZHKS04] have re- thoughtful channel models.

cently used two-node experiments to quantify spe-Flat Earth models are based on Cartesian X-Y
cific characteristics of radio propagation, and usedoximity, that is, nodesA and B communicate if

Figure 2: The Flat Earth model is overly simplistic
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ulations. It has been reasonably accurate for predict-
B Good ~ing large-scale signal strength over distances of sev-
[ Simple " eral kilometers for cellular telephony systems using
B Flat Earth " tall towers (heights above 50m), and also for line-
' of-sight micro-cell channels in urban environments.
~ Neither is characteristic of typical MANET scenar-
| ios. In addition, while this propagation model does
| take into account antenna heights of the two nodes, it
| assumes that the earth is flat (and there are otherwise
' no obstructions) between the nodes. This may be a
plausible simplification when modeling cell towers,
but not when modeling vehicular or handheld nodes
because these are often surrounded by obstructions.
Thus it too is a “Flat Earth” model, even more so if

Figure 4: The number of papers in each year of Mghe modeler does not explicitly choose differing an-
bicom and MobiHoc that fall into each category. tenna heights as a node moves.

More recently, ns-2 added a third channel

and only if nodeA is within some distance of nodé’nodel—the “shadowing” model described earlier by
B Lee [Lee83—to account for indoor obstructions and

. . outdoor shadowing via a probabilistic modeM02).
Simple models are, almost without excep—The roblem withns-2 s shadowina model is that
tion, ns-2 models using the CMU 802.11 radiq b withns- s wing !

model FV02].t This model provides what has some € model does not consider correlations: a real shad-

. o o : . owing effect has strong correlations between two lo-
times been termed a “realistic” radio propagation

model. Indeed it is significantly more realistic thaCatlons that are close to each other. More precisely,

the “Flat Earth” model, e.g., it models packet delaﬁ]e shadow fading should be modeled as a two-

: %mensional log-normal random process with expo-
and loss caused by interference rather than assum- 9 P P

ing that all transmissions in range are received p%e_ntlally decaying spatial correlations (sé€up9]

: e . r details). To our knowledge, only a few simulation

fectly. We still call it a “simple” model, however, . . .
. . . studies include a valid shadowing model. For exam-
because it embodies many of the questionable ax

ioms we detail below. In particular, the standard Bie, WIPPET considers using the correlated shadow-

. ) Ing model to compute a gain matrix to describe radio
lease ofns-2 provides a simple free-space model

: . N : )
(1/r%), which has often been termed a “Friis-freeqr()pa(‘:]atIon scenarioXEM™00]. WIPPET, how

, ) . ever, only simulates cellular systems. The simula-
space” model in the literature, andveo-ray ground- . .

. . . tion model we later use for this study considers the
reflection model Both are described in thes-2

shadowing effect as a random process that is tempo-
document packagéy02]. rally correlated; between each pair of nodes we use
The free-space model is similar to the “Flat Eart Ay ' P

) . , e same sample from the log-normal distribution if
model described above, as it does not include I? P 9

) . ‘f3hé two packets are transmitted within a pre-specified
fects of terrain, obstacles, or fading. It does, how- P 3 pre-sp
ever, model signal strength with somewhat finer dt(lar_ne period.

’ 9 g Zhou et al. recently explored how signal strength

tail than just “present” or “absent.” . , ;
: P varied with the angle between sender and receiver,

The two-ray ground-reflection model, which “Oetween different (supposedly identical) senders,

siders both the direct and ground-reflected propagda, i battery level. They developed a modifi-
tion path between transmitter and receiver, is better, '

but not particularly well suited to most MANET sim-  2gee also Lundberd-in02, Sections 4.3.4—4.3.5, for addi-
tional remarks on the two-ray model’s lack of realism.
0other network simulators sometimes have better radio mod- ®A recent study by Yuen et al. proposes a novel approach to

els. OpNet is one commercial example; see opnet.com. Moshuddeling the correlation as a Gauss-Markov proc¥s\D2].
the research literature, however, uses ns-2. We are currently investigating this approach.

i
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cation to path loss models that adds some randdm Common MANET axioms
variation across angles and across senders, and 1if—J(()ernthe sake of clarity, let us be explicit about some
show how these better models lead to different sim- Y b

ulation results than the original models. DifferenqaSIC axioms” upon which most MANET research

routing algorithms react differently to the more ret=:'xplicitly or implicitly relies. These axioms, not all
g alg y of which are orthogonal, deeply shape how network

alistic radio model, leading a better understandin .
o R?otocols behave. We note that all of these axioms
of each algorithm’s strengths and weaknesses. Al-

. . . are contradicted by the actual measurements reported
though they motivate their work with 2-node experi- cted by u u P
ments, they do not have the ability to compare lar m_the next section.

» Ny Y P 98: The world is flat.

scale experiments with their simulation results as vxeA radio’s transmission area is circular

do. ) ) 2: All radios have equal range.
Good modelshave fairly plausible RF propagaxz. i¢| can hear you, you can hear me (symmetry).

tion treatme_nt. In general, these models are used4'!r]f | can hear you at all, | can hear you perfectly.
papers coming from the cellular telephone commy: Signal strength is a simple function of distance.
nity, and concentrate on the exact mechanics of RFThere are many combinations of these axioms

pl”’paga“on- hTO give afﬂavor of theie good r.nOds'een in the literature. In extreme cases, the combi-
els, witness this quote from one such paERQQ: nation of these axioms leads to a simple model like

that in the top diagram in Figurk Some papers as-

In our simulations, we use a model for
the path loss in the channel developed by
Erceg et al. This model was developed
based on extensive experimental data col-
lected in a large number of existing macro-
cells in several suburban areas in New
Jersey and around Seattle, Chicago, At-
lanta, and Dallas.... [Equation follows
with parameters for antenna location in 3-
D, wavelength, and six experimentally de-
termined parameters based on terrain and
foliage types.] ...In the results presented
in this section, ...the terrain was assumed
to be either hilly with light tree density
or flat with moderate-to-heavy tree density.
[Detailed parameter values follow.]

sume Axioms 0—4 and yet use a simple signal prop-
agation model that expresses some fading with dis-
tance; a threshold on signal strength determines re-
ception. Some papers assume Axioms 0-3 and add a
reception probability to avoid Axiom 4.

In this paper we address the research community
interested in ad hoc routing protocols and other dis-
tributed protocols at the network layer. The net-
work layer rests on the physical and medium-access
(MAC) layers, and its behavior is strongly influenced
by their behavior. Indeed many MANET research
projects consider the physical and medium-access
layer as a single abstraction, and use the above ax-
ioms to model their combined behavior. We take this
network-layer point of view through the remainder of
the paper. Although we mention some of the individ-
ual physical- and MAC-layer effects that influence

Of course, the details of RF propagation are ngl[e behavior seen at the network layer, we do not at-

always essential in good network simulations; m

o

t&npt to identify precisely which effects cause which

(lj’)ehaviors; such an exercise is beyond the scope of
I1 is paper. In the next two sections we show that

changes in connectivity (Are there hills? Are the the ab . q t ad telv d ibe th
walls?). Along these lines, we particularly liked th% € above ?xpms 0 hot adequately describe the
network-layer’s view of the world, and that 2) the

simulations of well-known routing algorithms pre- . . .
sented by Johansson et dlLH+99], which used rel- YS€ of thgse axioms Iea_lds simulations to results that
atively detailed, realistic scenarios for a conferengéﬁcer radically from reality.

room, event coverage, and disaster area. Althouygh :
this paper employed thes-2 802.11 radio model,l{% The Rea“ty

it was rounded out with realistic network obstacldgnfortunately, real wireless network devices are not
and node mobility. nearly as simple as those considered by the axioms in

critical is the overall realism of connectivity an



the preceding section. Although Gaertner and CahillEach Linux laptop had a wireless cafdoperat-
explicitly explore the relationship between link quakng in peer-to-peer mode at 2 Mb/s. This fixed rate
ity and radio characteristics or environmental comade it much easier to conduct the experiment, since
ditions, they do so with only two nodes and witlve did not need to track (and later model) automatic
no evaluation of the impact on simulation or impleshanges to each card’s transmission rate. Most cur-
mented routing protocolsgC04. Similarly, Zhou rent wireless cards are multi-rate, however, which
et al. use two-node experiments to motivate th&iould lead toAxiom 6: Each packet is transmit-
study of the impact of radio irregularity on simulated at the same bit rate.We leave the effects of this
tion results ZHKSO04], but explore only that issueaxiom as an area for future work.
and do not validate their simulation study with ex- To reduce interference from our campus wireless
perimental data. network, we chose a field physically distant from
In this section, we use data collected from a lar§@mpus, and we configured the cards to use wireless
MANET experiment in which forty laptops withchannel 9, for maximum possible separation from the
WiFi and GPS capability roamed a field for over agfandard channels (1, 6 and 11). In addition, we con-
hour while exchanging broadcast beacons. Althoufiiured each laptop to collect signal-strength statis-
our experiment represents just one environment, itigs for each received packétFinally, each laptop
not unlike that used in many simulation-based studiad a Garmin eTrex GPS unit attached via the serial
ies today (a flat square field with no obstacles af@rt. These GPS units did not have differential GPS
randomly moving nodes). For the purposes of tHtgpabilities, but were accurate to within thirty feet
paper, it serves to demonstrate that the axioms 8k#ing the experiment.
untrue even in a simple environment, and that fairly Each laptop recorded its current position (latitude,
sophisticated simulation models were necessary fongitude and altitude) once per second, synchro-
reasonable accuracy. nizing its clock with the GPS clock to provide sub-
At different times during the field test, the |apsecond, albeit not millisecond, time synchronization.

tops also tested the costs and capabilities of differ&teTy three seconds, tieacon service programn
routing algorithms. A companion papeBKN+04] each laptopbroadcasta beacon containing the cur-
explores that experiment and compares four routifgt laptop position (as well as the last known po-
protocols, in what is to our knowledge the large§ttions of the other laptops). Each laptop that re-

outdoor experiment with a mobile ad hoc wirele&€gived such a beacon updated its internal position ta-

network? ble, and sent anicast acknowledgmetud the beacon
We begin with a description of the experimentaﬁender via UDP. Each laptop recorded al incoming
" and outgoing beacons and acknowledgments in an-
conditions and the data collected. : o
other log file. The beacons allowed us to maintain a

continuous picture of network connectivity, and, for-

o.1 Experlmental data A Gateway Solo 9300 running Linux kernel version 2.2.19

. . with PCMCIA Card Manager version 3.2.4
The outdoor routing experiment took place on a rect- ®We used a Lucent (Orinoco) Wavelan Turbo Gold 802.11b.
angular athletic field measuring approximately 22%though these cards can transmit at different bit rates and can
(north-south) by 365 (east-west) meters. This fieddto-adjust this bit rate depending on the observed signal-to-

can be roughly divided into four flat, equal-sized Seec_)ise ratio, we used an ad hoc mode in which the transmission
’ rate was fixed at 2 Mb/s. Specifically we used firmware version

tions, three of which are at the same altitude, and ong, .4 the proprietary ad hoc “demo” mode originally devel-
of which is approximately four to six meters lowefkped by Lucent. Although the demo mode has been deprecated
There was a short, steep slope between the upper'arfd/or of the IEEE 802.11b defined IBSS, we used it to en-
lower sections. sure consistency with a series of ad hoc routing experiments of
which this outdoor experiment was the culminating event. Our
general results, which revolve around signal-strength measure-
“Lundgren et al.ILLN T 02] briefly describes a slightly larger ments and beacon-reception probabilities, do not depend on a
experiment, but indoors, with a limited mobility pattern, angarticular ad hoc mode.
with only a brief comparison of two routing algorithms. "We used thevvlan _cs, rather tharorinoco _cs, driver.




tunately, also represent network traffic that would lveas simple, but still provided continuous movement
exchanged in many real MANET applications, sudb which the routing algorithms could react, as well
as our earlier work@ra0Q where soldiers must seeas similar spatial distributions across each algorithm.
the current locations of their fellows. Finally, ev- During the experiment, seven laptops generated no
ery second each laptop queried the wireless drivemetwork traffic due to hardware and configuration is-
obtain the signal strength of the most recent pacleetes, and an eighth laptop generated the position bea-
receivedfrom every other laptop, and recorded thisons only for the first half of the experiment. We
signal strength information in a third ISgQuerying use the data from the remaining thirty-two laptops
every second for all signal strengths was much mdretest the axioms, although later we simulate thirty-
efficient than querying for individual signal strengththree laptops since only seven laptops generated no
after each received packet. network traffic at all. In addition, STARA gener-
These three logs provide all the data that waged an overwhelming amount of control traffic, and
need to examine the axioms. Much more was goe excluded the STARA portion of the experiment
ing on in the experiment, however, since the ovdrom our axiom tests. The final axiom dataset con-
all goal was to compare the performance of fotains fifty-three contiguous minutes of beacons and
routing algorithms, APRLKK98], AODV [PR99, acknowledgments for thirty-two laptops.
ODMRP [LSGO03, and STARA [GK97]. The lap- .
tops automatically ran each routing algorithm for 1%'2 Axiom 0
minutes, generating random UDP data traffic for thir- The world is flat.
teen out of the fifteen minutes, and pausing for two
minutes between each algorithm to handle cleanugcommon stochastic radio propagation models as-
and setup chores. The traffic-generation parans¢ime a flat earth, and yet clearly the Earth is not
ters were set to produce the traffic volumes oflat. Even at the short distances considered by most
served in our prototype situational-awareness appANET research, hills and buildings present obsta-
cations [Gra0Q, approximately 423 outgoing bytesles that dramatically affect wireless signal propa-
(including UDP, IP and Ethernet headers) per lagation. Furthermore, the wireless nodes themselves
top per second, a relatively modest traffic volumare not always at ground level; indeed, Gaertner and
We do not describe the algorithms further here, sing@hill noted a significant change in link quality be-
the routing and data traffic serves only as anotH#een ground-level and waist-level nod€xj04.
source of collisions from the standpoint of the ax- Even where the ground is nearly flat, note that
ioms. Note, however, that each transmitted packiireless nodes are often used in multi-story build-
was destined for only a single recipient, reduciriggs. Indeed two nodes may be found at exactly the
ODMRP to the unicast case. samer, y location, but on different floors. (This con-
Finally, the laptops moved continuously. At théition is common among the WiFi access points de-
start of the experiment, the participants were dividé@pyed on our campus.) Any Flat Earth model would
into equal-sized groups of ten each, each particip@&ssume that they are in the same location, and yet
given a laptop, and each group instructed to raifpey are not. In some tall buildings, we found it was
domly disburse in one of the four sections of thgpossible for a node on the fourth floor to hear a
field (three upper and one lower). The participanf®de in the basement, at the samg location.
then walked continuously, always picking a section We need no data to “disprove” this axiom. Ulti-
different than the one in which they were currentipately, itis the burden of all MANET researchers to
located, picking a random position within that se@ither a) use a detailed and realistic terrain model, ac-
tion, walking to that position in a straight line, angounting for the effects of terrain, or b) clearly con-

then repeating. This approach was chosen sincdlition their conclusions as being valid only on flat,

obstacle-free terrain.
8For readers familiar with Linux wireless services, note that

we increased the IWSPY limit from 8 to 64 nodes, so that we

could capture signal-strength information for the full set of lap-

tops.




5.3 Axioms1land?2 we compute the orientation of the antenna (wireless
card) at the time it sent or received a beacon. Then,
_ we compute two angles for each beacon: the an-

All radios have equal range. gle between the sender’s antenna and the receiver’s
The real-world radio map of Figuré makes it location, and the angle between the receiver's an-

clear that the signal coverage area of a radio is fgpna and the sender’s location. Figarélustrates

from simple. Not only is it neither circular nor conthe first of these two angles, while the second is the

vex, it often is non-contiguous. same figure except with the labels Source and Desti-
We combine the above two intuitive axioms into 2tion transposed. Figufeshows how the beacon-

more precise, testable axiom that corresponds to [REEPtion probability varied with both angles.

way the axiom often appears (implicitly) in MANET To compute Figuré, we consider all possit_)le val-
research. ues of each of the two angles, each varying from

. . [-180,180). We divide each range into buckets of
Testable Axiom 1. The success of a transmissioig geqgrees, such that bucket 0 represents angles in
from one ra_dlo to another deper_mds only on the [0,45), bucket 45 represents angles|is, 90), and
distance between radios. so forth. Since we bucket both angles, we obtain the
Although it is true that successful communicawo-dimensional set of buckets shown in the figure.
tion usually becomes less likely with increasing dis¥e use two counters for each bucket, one account-
tance, there are many other factors: (1) All radios arg for actual receptions, and the other for potential
not identical. Although in our experiment we userkceptions (which includes actual receptions). Each
“identical” WiFi cards, there are reasonable applicime a node sends a beacon, every other laptop is a
tions where the radios or antennas vary from nogetential recipient. For every other laptop, therefore,
to node. (2) Antennas are not perfectly omnidireese add one to the potential-reception count for the
tional. Thus, the angle of the sender’'s antenna, tigcket representing the angles between the sender
angle of the receiver’s antenna, and their relative land the potential recipient. If we can find a received
cations all matter. (3) Background noise varies witheacon in the potential recipient’s beacon log that
time and location. Finally, (4) there are hills and olmatches the transmitted beacon, we also add one to
stacles, including people, that block or reflect wir¢he actual-reception count for the appropriate count.
less signals (that is, Axiom O is false). The beacon reception ratio for a bucket is thus the
From the point of view of the network layer, thesaumber of actual receptions divided by the number
physical-layer effects are compounded by MAG potential receptions. Each beacon-reception prob-
layer effects, notably, that collisions due to transbility is calculated without regard to distance, and
missions from other nodes in the ad hoc network (thrus represents the reception probability across all
from third parties outside the set of nodes formirgjstances. In addition, for all of our axiom analyses,
the network) reduce the transmission success in wayes considered only the western half of the field, and
that are unrelated to distance. In this section, we useremented the counts only when both the sender
our experimental data to examine the effect of aand the (potential) recipient were in the western half.
tenna angle, sender location, and sender identity By considering only the western half, which is per-
the probability distribution of beacon reception ovdectly flat and does not include the lower-altitude sec-
distance. tion, we eliminate the most obvious terrain effects
We first demonstrate that the probability of a be&om our results. Overall, there were 40,894 beacons
con packet being received by nearby nodes depetr@dssmitted in the western half of the field, and after
strongly on the angle between sender and receiwaitching and filtering, we had 275,176 laptop pairs,
antennas. In our experiments, we had each student21,250 of which the beacon was received, and in
carry their “node,” a closed laptop, under their arb3,926 of which the beacon was not received.
with the wireless interface (an 802.11b device in PC-Figure6 shows that the orientation of both anten-
card format) sticking out in front of them. By examnas was a significant factor in beacon reception. Of
ining successive location observations for the nodmurse, there is a direct relationship between the an-

A radio’s transmission area is circular.
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Figure 5: The angle between the sending laptop’s c... Destinaton to Sender

tenna (wireless card) and the destination laptop. We _ -~ )
express the angles on the scale of -180 to 180, rathiéure 6: The probability of beacon reception (over

than O to 360, to better capture the inherent symn?él— distances) as a funct|o,n of the two _angle_s, the
try. -180 and 180 both refer to the case where tfRgle between the sender's antenna orientation and

sending antenna is pointing directly away from tH8€ receivers location, and the angle between the
intended destination receiver's antenna orientation and the sender’s loca-

tion. In this plot, we divide the angles into buckets
of 45 degrees each, and include only data from the

tenna angles and whether the sender or receiver (Wgstern half of the field.
man or laptop) is between the two antennas. With a

sender angle of 180, for example, the receiver is @any possible explanations for this quadrant-based
rectly behind the sender, and both the sender’s baghiation, whether physical terrain, external noise, or
and laptop serves as an obstruction to the signal.tithe-varying conditions, the difference between dis-
different kind of antenna, extending above the levg|putions is enough to make it clear that the location
of the participants’ heads, would be needed to sepgthe sender is not to be ignored.
rate the angle effects into two categories, effects duerpe beacon-reception probability in the western
to human or laptop obstruction, and effects due to thgif of the field also varied according to the identity
irregularity of the radio coverage area. of the sender. Although all equipment used in every
Although the western half of our test field wasode was an identical model purchased in the same
flat, we observed that the beacon-reception prdbt and configured identically, the distribution was
ability distribution varied in different areas. Walifferent for each sender. FiguBeshows the mean
subdivided the western half into four equal-sizeghd standard deviation of beacon-reception proba-
guadrants (northwest, northeast, southeast, soudiity computed across all sending nodes, for each
west), and computed a separate reception probabitcket between 0 and 300 meters. The buckets be-
ity distribution for beacons sent from each quadween 250 and 300 meters were nearly empty. Al-
rant. Figure7 shows that the distribution of beaconthough the mean across nodes, depicted by the boxes,
reception probability was different for each quadrans, steadily decreasing, there also is substantial varia-
by about 10-15 percent for each distance. We bution across nodes, depicted by the standard-deviation
eted the laptop pairs according to the distance lmrs on each bucket. This variation cannot be ex-
tween the sender and the (intended) destinatiorplained entirely by manufacturing variations within
the leftmost bar in the graph, for example, is thbe antennas, and likely includes terrain, noise and
reception probability for laptop pairs whose sepather factors, even on our space of flat, open ground.
ration was in the rang@, 25). Although there are It also is important to note, however, that there are

90 135 g9
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T area of a radio is not circular, it is difficult to even

' f— define the “range” of a radio.

— | Zhou et al. FHKS04 also note that signal

”””” ] | strength varies with the angle between sender and re-
———————— ceiver, angle between receiver and sender, and sender
identity, using two-node experiments.
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54 Axiom3

If I can hear you, you can hear me (symmetry).

0

L
0 25 50 75 100 125 150 175 200 275 300

Distance In Meters

. . . . More precisely,
Figure 7: The probability of beacon reception varied

from quadrant to quadrant within the western half 0f'|'estab|e Axiom 3: If an unacknow|edged message
the field. from A to B succeeds, an immediate reply frdsn
to A succeeds.

y % | This wording adds a sense of time, since it is
clearly impossible (in most MANET technologies)
} for A and B to transmit at the same time and result

% in a successful message, and sidcand B may be

0.6

04 {} moving, it is important to consider symmetry over a
%J{ | brief time period so thatl and B have not moved
[T

1

Beacon Reception Probability

°? apart.
There are many factors affecting symmetry, from
0 25 50 75 100 125 150 175 200 225 250 275 300 . . . .

Distance in Meters the point of view of the network layer, including the
physical effects mentioned above (terrain, obstacles,

Figure 8: The average and standard deviation of fgtative antenna angles) as well as MAC-layer colli-

ception probability across all nodes, again for thgons. It is worth noting that the 802.11 MAC layer
western half of the field. includes an internal acknowledgment feature, and a
limited amount of re-transmission attempts until suc-

only 500-1000 data points for each (laptop, destinZ€Ssful acknowledgment. Thus, the network layer
tion bucket) pair. With this number of data point§l0€s not perceive a frame as successfully delivered
statistical-significance issues come into play. In paf?l€ss symmetric reception was possible. Thus, for
ticular, if a laptop is moving away from most othef€ PUrposes of this axiom, we chose to examine
laptops, we might cover only a small portion of thihe broadcast beacons from our experimental dataset,
possible angles, leading to markedly different resufi$1C€ the 802.11 MAC has no internal acknowledg-
than for other laptops. Overall, the effect of identit'€nt for broadcast frames. Since all of our nodes
on transmission behavior bears further study with e3éNt @ beacon every three seconds, we were able to
periments specifically designed to test it. identify symmetry as follows: whenever a node
In other work, Ganesan et al. used a netwofRCeVed a beacon from nodk we checked to see

of Berkeley “mc’)tes" to measure signal Strengep{hetherB’s next beacon was also received by node
of a mote’s radio throughout a mesh of mote" - N
nodes GKW+02].2 The resulting contour map is Figure9 shows the conditional probability of sym-
not circular, nor convex, nor even monotonically d&netric beacon reception. If the physical and MAC

creasing with distance. Indeed, since the coverdg¥er Pehavior was truly symmetric, this probability
would be 1.0 across all distances. In reality, the prob-

The Berkeley mote is currently the most common resear@®ility was never much more than 0.8, most likely
platform for real experiments with ad hoc sensor networks. due to MAC-layer collisions between beacons. Since
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metric link had a “good” link in one direction (with
high probability of message reception) and a “bad”
P R | link in the other direction (with a low probability of
message reception). [They do not have a hame for a
link with a “mediocre” link in either direction.]
04l | Zhou et al. also found through simulation that the
use of angular variations in signal strength naturally
led to asymmetric links in simulation, and that some

‘ protocols were unable to adapt gracefully to asym-
0 25 50 75 100 Dlisztsancisig Melzer:s 200 225 250 275 300 metry EHKSOZH.

Overall, it is clear that reception is far from sym-

Figure 9: The conditional probability of symmetrienetric. Nonetheless, many researchers assume this
beacon reception as it varied with the distance kexiom is true, and that all network links are bidirec-
tween two nodes, again for the western half of thienal. Some do acknowledge that real links may be
field. unidirectional, and usually discard those links so that
the resulting network has only bidirectional links. In
a network with mobile nodes or in a dynamic envi-
ronment, however, link quality can vary frequently
08 | _ B ~ | andrapidly, so a bidirectional link may become uni-
B directional at any time. It is best to develop protocols
| that do not assume symmetry.

5.5 Axiom4
If I can hear you at all, | can hear you perfectly.

0.6

Probability of Beacon Reception

0.2

0

0.6

Probability

0.4

0.2

0 5 10 ® ; 20 25 3 Testable Axiom 4: The reception probability
distribution over distance exhibits a sharp cliff; that

Figure 10: The conditional probability of symmetridS, under some threshold distance (the “range”) the
beacon reception as it varied across individual nodégception probability is 1 and beyond that threshold
again for the western half of the field. the reception probability is O.

Looking back at Figur®, we see that the beacon-

this graph depends on the joint probability of a beEgception probability does indeed fade with the dis-
con arriving fromA to B and then another fror to tance between the sender and the receiver, rather than
A, the lower reception probability of higher distancd§maining near 1 out to some clearly defined “range”
leads to a lower joint probability and a lower cond@nd then dropping to zero. There is no visible “cliff."
tional probability. Figurel0 shows how the condi- The commonns-2 model, however, assumes that
tional probability varied across all the nodes in tHgame transmission is perfect, within the range of a
experiment. The probability was consistently clog@dio, and as long as there are no collisions. Al-
to its mean 0.76, but did vary from node to node witlifoughns-2  provides hooks to add a bit-error-rate
a standard deviation of 0.029 (or 3.9%). Similarl¢{BER) model, these hooks are unused. More sophis-
when calculated for each of the four quadrants (ni#tated models do exist, particularly those developed
shown), the probability also was consistently clo&¥ Qualnet and the GloMoSim proje€that are be-

to its mean 0.76, but did have a standard deviationiB@ used to explore how sophisticated channel mod-
0.033 (or 4.3%). els affect simulation outcomes.

In other work, Ganesan et alGKW+02] noted Takai examines the effect of channel models on
that about 5-15% of the links in their ad hoc sens%'rmmat'on outcomesfBTGO1], and also concluded

network were asymmetric. In that paper, an asym-http://www.scalable-networks.com/pdf/mobihocpreso.pdf
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that different physical layer models can have dra- 5 | «

matically different effect on the simulated perfor- T Oheenved
mance of protocolsTMBO01], but lack of data pre- _ Bl - - = Linear
vented them from further validating simulation re<? 181 AW

sults against real-world experiment results, whicf ,,, | \ .

they left as future work. Zhou et al. also did not valif SIS

idate their simulation results against real-world exs ' | .
periment results. We compared the simulation réﬁ} 175 1 N
sults with data collected from a real-world experi-.;% 173 > “'/\
ment, and recommend below that simple models of
radio propagation should be avoided whenever com-*"* \
paring or verifying protocols, unless that model is 169
known to specifically reflect the target environment.

125 375 625 87.5 1125 1375 1625 187.5 2125 2375

Distance (meters)

5.6 Axiom5

) ) ) ) ) Figure 11: Linear and power-curve fits for the mean
Signal strength is a simple function of distance.

signal strength observed in the western half of the

9 hat th . field. Note that we show the signal strength as re-
Rappaport Rap9g notes that the average Slgna[Lorted by our wireless cards (which is dBm scaled

strength should fade with distance according ;3 5 positive range by adding 255), and we plot the

power-law mpdel. While f[h'_s IS t_rue, one ShQUIpnean value for each distance bucket at the midpoint
not underestimate the variations in a real enviroPr v ot bucket

ment caused by obstruction, reflection, refraction,
and scattering. In this section, we show that there
is significant variation for individual transmissions.Power curves. The power curve is a good fit and val-
idates Rappaport’s observation. When we turn our
Testable Axiom 5: We can find a good fit betweenaitention to the signal strength of individual beacons,
simple function and a set of (distance, signal however, as shown in Figuré2and13, there clearly
strength) observations. is no simple (non-probabilistic) function that will ad-
equately predict the signal strength of an individual
To examine this axiom, we consider only receivéeeacon based on distance alone.
beacons, and use the recipient’s signal log to ob-The reason for this difficulty is clear: our envi-
tain the signal strength associated with that beacomnment, although simple, is full of obstacles and
More specifically, the signal log actually containsther terrain features that attenuate or reflect the sig-
per-second entries, where each entry contains tt&, and the cards themselves do not necessarily ra-
single strength of the most recent packet receivaite with equal power in all directions. In our case,
from each laptop. If a data or routing packet arrivése most common obstacles were the people and lap-
immediately after a beacon, the signal-log entry aiops themselves, and in fact, we initially expected to
tually will contain the signal strength of that secondiscover that the signal strength was better behaved
packet. We do not check for this situation, since tl@€ross a specific angle range (per FigGjethan
signal information for the second packet is just @sross all angles. Even for the seemingly good case
valid as the signal information for the beacon. f both source and destination angles between 0 and
is best, however, to view our signal values as tho4g degrees (i.e., the sender and receiver roughly fac-
observed within one second of beacon transmissiorg each other), we obtain a distribution (not shown)
rather than the values associated with the beacoesarkably similar to Figuré2. Other angle ranges
themselves. also show the same distribution as Figt&
As a starting point, Figurglshows thaneanbea-  Overall, noise-free, reflection-free, obstruction-
con signal strength observed during the experimdreae, uniformly-radiating environments are simply
as a function of distance, as well as best-fit linear andt real, and signal strength of individual transmis-
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Figure 12: A scatter plot demonstrating the poor cor-
relation between signal strength and distance. We
restrict the plot to beacons both sent and receivedfogure 13: Same as Figui@ except that it shows the
the western half of the field, and show the mean sig-mberof observed data points as a function of dis-
nal strength as a heavy dotted line. tance and signal strength. There is significant weight

relatively far away from the mean value.

107.5

Distance

sions will never be a simple function of distance. Re-

searchers must be careful to consider how sensitwbether those assumptions are reasonable within the
their simulation results are to signal variations, sineentext of their study, and c) clearly identify any lim-
their algorithms will encounter significant variatioritations in the conclusions they draw.

once deployed. While others have used simulation to explore
the impact of different radio propagation mod-
6 Impact els [TMB01, ZHKS04], we use the identical imple-

. entation of the routing protocol in both the simula-
We demonstrate above that the axioms are untrue, but . N

. . . or and the experimentYNT04], use a large num-
a key question remains: what is the effect of thels)e

. ) . . bér of nodes in an outdoor experime@KN*04],
axioms on the quality of simulation results? In this ) . :

. . . and are able to compare our simulation results with
section, we begin by comparing the results of qure actual experiment
outdoor experiment with the results of a best-effort '
simulation mode_l, and then progregswely weaken tge1 our simulator
model by assuming some of the axioms. The purpose
of this study is not to claim that our simulator can a®ur SWAN simulator for wireless ad hoc networks
curately model the real network environment, but iprovides an integrated, configurable, and flexible en-
stead to show quantitatively the impact of the axiomgonment for evaluating ad hoc routing protocols,
on the simulated behavior of routing protocols.  especially for large-scale network scenarios. SWAN

Clearly, analytical or simulation research in wiresontains a detailed model of the IEEE 802.11 wire-
less networking must work with an abstraction of réess LAN protocol and a stochastic radio channel
ality, modeling the behavior of the wireless networnkodel, both of which were used in this study.
below the layer of interest. Unfortunately, overly We used SWAN's direct-execution simulation
simplistic assumptions can lead to misleading or itechniques to execute within the simulator gzsme
correct conclusions. Our results provide a counteouting code that was used in the experiments from
example to the notion that these axioms are sufficieghe previous sectionLfN T04]. We modified the
for research on ad hoc routing algorithms. We deal routing code only slightly to allow multiple
not claim to validate, or invalidate, the results of aripstances of a routing protocol implementation to
other published study. Indeed, our point is that tlmen simultaneously in the simulator’s single address
burden is on the authors of past and future studiessfgace. We extended the simulator to read the node
a) clearly lay out their assumptions, b) demonstratebility and application-level data logs generated by
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the real experiment. In this way, we were able to re- Experiment| Simulation| Error
produce the same network scenario in simulation as AODV 42.3% 46.8% | 10.5%
in the real experiment. Moreover, by directly run-  APRL 17.5% 17.7%| 1.1%
ning the routing protocols and the beacon service ODMRP 62.6% 56.9%| -9.2%

program, the simulator generated the same types of _ _ _
logs as in the real experiment. Table 1: (_:omparmg packet_dellvery ratios between

In the next few sections, we describe three sim{Ea! experiment and simulation.
lation models with progressively unrealistic assump-
tions, and then present results to show the impact.

log normal standard. These values, which must be

6.2 Our best model different for different types of terrain, produce sig-
We begin by comparing the results of the outdoor emal propagation distances consistent with our obser-
periment with the simulation results obtained withiations from the real network. Finally, for the 802.11
our best signal propagation model and a detailetbdel, we chose parameters that match the settings
802.11 protocol model. The best signal propagatioh our real wireless cards. We then conducted the
model is a stochastic model that captures radio sigsathulation of the wireless network with 40 nodes,
attenuation as a combination of two effects: smaf¥ which 7 did not generate any network traffic, but
scale fading and large-scale fading. Small-scale fadlere available for selection as potential packet des-
ing describes the rapid fluctuation in the envelopi@ations. This duplicated the 7 crashed nodes from
of a transmitted radio signal over a short period tiie real experiment, and allowed us to reproduce the
time or a small distance, and primarily is causeshme traffic pattern.
by multipath effects. Although small-scale fading Tablel shows the difference in the overall packet
is in general hard to predict, wireless researchelslivery ratio (PDR)—which is the total number of
over the years have proposed several successful ptkets received by the application layer divided by
tistical models for small-scale fading, such as tikee total number of packets sent—between the real
Rayleigh and Ricean distributions. Large-scale faexperiment and the simulation. The simple propa-
ing describes the slowly varying signal-power leveglation model produced relatively good results: the
over a long time interval or a large distance, and hadative errors in predicted PDR were within 10%
two major contributing factors: distance path-loder all three routing protocols tested. We caution,
and shadow fading. The distance path-loss modetsvever, that one cannot expect consistent results
the average signal power loss as a function of dighen generalizing the simple stochastic radio propa-
tance: the receiving signal strength is proportionghtion model to deal with all network scenarios. Af-
to the distance between the transmitter and the ter all, this model assumes some of the axioms we
ceiver raised to a given exponent. Both the free-spdwve identified, including flat earth, omni-directional
model and the two-ray ground reflection model meradio propagation length, and symmetry. Thus this
tioned earlier can be classified as distance path-lossdel, our best, nonetheless assumes some of the
models. The shadow fading describes the variatissame axioms we discount in the preceding section!
in the receiving signal power due to scattering; it carhis ironic situation is testimony to the difficulty of
be modeled as a zero-mean log-normal distributiatetailed radio and environment modeling; in situa-
RappaportlRap9§ provides a detailed discussion ofions where such assumptions are clearly invalid—
these and other models. for example, in an urban area—we should expect the

For our simulation, given the light traffic used inmodel to deviate further from reality. On the other
the real experiment, we used a simple SNR thredtand, this approximation is sufficient for the pur-
old approach instead of a more computational ipeses of this paper, because we can still demonstrate
tensive BER approach. Under heavier traffic, thimow the other axioms may affect performance.
choice might have substantial impadtiB01]. For On the other hand, since the model produced good
the propagation model, we chose 2.8 as the distanesults amenable to our particular outdoor experi-
path-loss exponent and 6 dB as the shadow fadimgnt scenario, we use it in this study as the base-
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line to quantify the effect of the axioms on simulation

studies. As we show, these assumptions can signif
icantly undermine the validity of the simulation re-g o | . %=,
sults. ’

100% [

60% -

6.3 Simpler models

40% r

eacon reception rati

Next we weakened our simulator by introducing & s | o vl experiment ™
simpler signal propagation model. We used the dis- T bestmode :
tance path-loss component from the previous model, o -——PTEREE et
but disabled the variations in the signal receiving Distance (in meters)

power introduced by the stochastic processes. Note

that these variations are a result of two distinct rahigure 14: The beacon reception ratio at different
dom distributions: one for small-scale fading arfdistances between the sender and the receiver. The
the other for shadow fading. The free-space modefobability for each distance bucket is plotted as a
the tWO_ray ground reflection modeL and the geneﬁ@int at the mldeInt of its bUCket; this format is eas-
distance path-loss model with a given exponent—#gf to read than the boxes used in earlier plots.

used commonly by wireless network researchers—

differ primarily in the maximum distance that a Sigg e iens the simulator by assuming that the radio
nal can travel. For example, if we assume that the,,, ation channel iserfect That is, if the dis-
signal transmission power is 15 dBm and the Iy, .o petween the sender and the recipient is below
ceiving threshold is -81 dBm, the free-space model e tain threshold, the signal is received success-
has a maximum range of 604 meters, the tWO-Tgyy, with probability 1; otherwise the signal is al-
ground reflection model a range of 251 meters, afifly .« |55t The perfect-channel model represents an
the generic path-loss model (with an exponent of 2. 8o me case where the wireless network model in-
arange of only 97 meters. Indeed, the SWAN authqf§j ces no packet loss from interference or colli-
also noted that the receiving range plays an impQia,  and the reception decision is based solely on
tant role in ad hoc routing: longer distance shorteg& i nce. To simulate this effect, we bypassed the
the data path and can drastically change the routigge go 11 protocol layer within each node and re-
maintenance cost¥N " 04 placed it with a simple protocol layer that calculates

In this study, we chose to use the two-ray grourgh ) reception based only on the transmission dis-
reflection model since its signal travel distangg,ce

matches observations from the real experintént.
This weaker model assumes Axiom 4: “If I canhegf 4 The Results
you at all, | can hear you perfectly,” and specifically
the testable axiom “The reception probability distrfFirst, we look at the reception ratio of the beacon
bution over distance exhibits a sharp cliff” Withmessages, which were periodically sent via broad-
out variations in the radio channel, all signals travefsts by the beacon service program on each node.
the same distance, and successful reception is sYM§-calculate the reception ratio by inspecting the en-
ject only to the state of interference at the receivéii€s in the beacon logs, just as we did for the real ex-
In other words, the signals can be received succeRgtiment. Figurd4plots the beacon reception ratios
fully with probability 1 as long as no collision occur§luring the execution of the AODV routing protocol.
during reception. The choice of routing protocol is unimportant in this
Finally, we consider a third model that furtheptudy since we are comparing the results between the
real experiment and simulations. We understand that
"When we consider the full experiment field, which provideghe control messages used by the routing protocol

possible reception ranges of over 500 meters, we see almos : : :
receptions beyond 250 meters. The 251-meter range of the 2h§3y slightly skew the beacon reception ratio due to

model is computed from a well-known formula, using a fierh competition at the wireless channel.
transmit power (15 dBm) and antenna height (1.0 meter). Compared with the two simple models, our best
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Figure 15: Packet delivery ratios for AODV. Figure 16: Packet delivery ratios for APRL.
. - . ODMRP
model is a better fit for the real experiment results. s : - -
It does, however, slightly inflate the reception ratios 7os =
at shorter distances and underestimate them at longep» ¢
. . . . [
distances. More important for this study is the drasso% r

matic difference we saw when signal power varias “*
tions were not included in the propagation modeg ***

& 20%

real experiment s
- best models .

The figure shows a sharp cliff in the beacon recep-

tion ratio curve: the quality of the radio channel el

changed abruptly from relatively good reception to **so 10 3 . 03
zero reception as soon as the distance threshold was Averaqe packet inter-arivaltime at each node (sec)
crossed. The phenomenc_)n is more prominent fgr theFigure 17: Packet delivery ratios for ODMRP.
perfect channel model. Since the model had no inter-

ference and collision effects, the reception ratio was

100% within the propagation range. find routers to their intended destinations. The per-
Next, we examine the effect of different simulaformance of the perfect-channel model remained in-
tion models on the overall performance of the rouensitive to the traffic load since the model did not
ing protocols. Figure45-17 show the packet deliv-include collision and interference calculations at the
ery ratios, for the three ad hoc routing algorithmseceiver, explaining the divergence of the two simple
as we varied the application traffic intensity by adnodels as the traffic load increases. For ODMRP,
justing the average packet inter-arrival time at eaole cannot make a clear distinction between the per-
node. Note the logarithmic scale for theaxes in formance of the best model and of the no-variation
the plots. The real experiment’s result is representeddel. One possible cause is that ODMRP is a
by a single point in each plot. multicast algorithm and has a more stringent band-
Figures15-17 show that the performance of routwidth demand than the strictly unicast protocols. A
ing algorithms predicted by different simulatiofioute invalidation in ODMRP triggers an aggressive
models varied dramatically. For AODV and APRL{oute rediscovery process, and could cause signifi-
both simple models exaggerated the packet delivégnt packet loss under any of the models.
ratio significantly In those models, the simulated In summary, the assumptions embedded inside the
wireless channel was much more resilient to erraréreless network model have a great effect on the
than the real network, since there were no spatialsimulation results. On the one hand, our best wire-
temporal fluctuations in signal power. Without variess network model assumes some of the axioms, yet
ations, the signals had a much higher chance tothe results do not differ significantly from the real
successfully received, and in turn, there were fewexperiment results. On the other hand, one must be
route invalidations, and more packets were able éatremely careful when assuming some of the ax-

10% [

Ok x @

16



ioms. If we had held our experiment in an envihe set of common assumptions used in MANET re-
ronment with more hills or obstacles, the simulaticsearch, and presented a real-world experiment that
results would not have matched as well. Even gtrongly contradicts these “axioms.” The results cast
this relatively flat environment, our study shows thaoubt on published simulation results that implic-
proper modeling of the lossy characteristics of thily rely on these assumptions, e.g., by assuming
radio channel has a significant impact on the routew well broadcasts are received, or whether “hello”
ing protocol behaviors. For example, using our bgstopagation is symmetric.

model, one can conclude from Figut® and Fig- . , .

e 17 that ODVIRP perfomed bt han AGDY 0TS e M1t 8 Seres o rcommencatons

with light traffic load (consistent with real experi-
ment), but that their performance was comparallle Choose your target environment carefully, clearly
when the traffic was heavy. If we use the model with- list your assumptions about that environment,
out variations, however, one might arrive at the oppo- choose simulation models and conditions that
site conclusion, that AODV performed consistently match those assumptions, and report the results of
no worse than ODMRP. The ODMRP results are the simulation in the context of those assumptions
interesting by themselves, since the packet-deliveryand conditions.

dggradation as the traffic load i_ncreases_ Is more t_%rbse a realistic stochastic model when verifying a
might be expected for an algorithm designed to find protocol, or comparing a protocol to existing pro-

redundant paths (through the formation of appropri- tocols. Furthermore, any simulation should ex-
ate fo_rwgr_dlng groups)._ Bae has shown,. howeve_r,plore a range of model parameters since the effect
that significant degradation can occur as mtermedl-Of these parameters is not uniform across differ-
ate nodes move, paths to targets are lost, and rout%nt protocols. Simple models are still useful for

redi_spovery competes With other affisl{Go0]. In the initial exploration of a broad range of design
addition, the node density was high enough that each

. . - options, due to their efficiency.
forwarding group could have included a significant _ ) , _ _
fraction of the nodes, leading to many transmitteq Consider three-dimensional terrain, with moder-

copies of each data packet. An exploration of this &€ hills and valleys, and corresponding radio
issue is left for future work. propagation effects. It would be helpful if the

community agreed on a few standard terrains for

. . comparison purposes.
7 Conclusions, recommendations : o
4, Include some fraction of asymmetric links (e.g.,

In recent years, dozens of Mobicom and Mobihoc whereA can hear3 but not vice versa) and some
papers have presented simulation results for mobiletime-varying fluctuations in whethet’s packets
ad hoc networks. The great majority of these paperscan be received by3 or not. Here thens-2
rely on overly simplistic assumptions of how radios “shadowing” model may prove a good starting
work. Both widely used radio models, “flat earth” point.

andns-2 “802.11" models, embody the followingg \se real data as input to simulators, where possi-
set of axioms: the world is two dimensional; a radio’s ble. For example, using our data as a static “snap-

transmission area is roughly circular; all radios have shot” of a realistic ad hoc wireless network with

equal range; if | can hear you, you can hear me; if gjonificant link asymmetries, packet loss, elevated

I can hear you at all, I can hear you perfectly; and ,qqeg with high fan-in, and so forth, researchers

signal strength is a simple function of distance. should verify whether their protocols form net-
Others have noted that real radios and ad hocygrks as expected, even in the absence of mobil-

networks are much more complex than the Sim- j The dataset also may be helpful in the devel-
ple models used by most researchd?sLf03, and  5yment of new, more realistic radio models.
that these complexities have a significant impact

on the behavior of MANET protocols and algo-
rithms [GKWT02]. In this paper, we enumerated
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...for simulation and model designers: col tested indoors may work very differently out-

1.

. Develop a simulation infrastructure that encour-

doors. Designers should consider developing pro-
tocols that make few assumptions about their en-
vironment, or are able to adapt automatically to
different environmental conditions.

Allow protocol designers to run the same code
in the simulator as they do in a real sys-
tem [LYNT04], making it easier to compare ex-

perimental and simulation results. _ _
3. Explore the costs and benefits of control traffic.

Both our experimental and simulation results hint
that there is a tension between the control traffic
needed to identify and use redundant paths and
Develop a range of propagation models that suit the interference that this extra traffic introduces
different environments, and clearly define the as- when the ad hoc routing algorithm is trying to re-
sumptions underlying each model. Models en- act to a change in node topology. The importance
compassing both physical and data-link layer of reducing interference versus identifying redun-
need to be especially careful. dant paths (or reacting quickly to a path loss)
Support the development of standard terrain and Might appear significantly different in real exper-
mobility models, and formats for importing real iments than under simple simulations, and proto-

terrain data or mobility traces into the simulation. €Ol designers must consider carefully whether ex-
tra control traffic is worth the interference price.

ages the exploration of a range of model parame-
ters.

...for protocol designers:

1.

Consider carefully your assumptions of lower |ayAvaiIabiIity. We will make our simulator and our
ers. In our experimental results, we found thgftaset available to the research community upon
the success of a transmission between radios 8empletion of the camera-ready version of this pa-
pends on many factors (ground cover, antenR&- The dataset, including the actual position and
angles, human and physical obstructions, badi@nnectivity measurements, would be valuable as in-
ground noise, and competition from other nodegut to future simulation experiments. The simulator
most of which cannot be accurately modeled, préontains several radio-propagation models.

dicted or detected at the speed necessary to make

per-packet _routing decisions. A routing pr.oto cknowledgements
col that relies on an acknowledgement quickly

making it from target or source over the reversge gre extremely grateful to the many people that
path, that assumes that beacons or other broggied make this project possible.

cast traffic can be reliably received by most or all 3 Baker supplied a floorplan for every build-
transmission-range neighbors, or that uses an |Wg with AP locations marked. Gurcharan Khanna,
stantaneous measure of link quality to make Siggmes Pike, and the FO&M department supplied the
nificant future decisions, is likely to function Sig'campus base map. Erik Curtis, a Dartmouth under-
nificantly differently outdoors than under SimU|agraduate, painstakingly mapped each floorplan to the
tion or indoor tests. campus base map.

Develop protocols that adapt to environmental Qun Li, Jason Liu, Ron Peterson, and Felipe Per-
conditions. In our simulation results, we foundone all provided invaluable feedback on early ver-
that the relative performance of two algorithmsions of this paper.

(such as AODV and ODMRP) can change sig- Dr. Jason Redi loaned us his collection of Mobi-
nificantly, and even reverse, as simulation asem proceedings.

sumptions or model parameters change. AlthoughThis project was supported in part by a grant from
some assumptions may not significantly affect thiee Cisco Systems University Research Program, the
agreement between the experimental and sinidartmouth Center for Mobile Computing, DARPA
lation results, others may introduce radical digeontract N66001-96-C-8530), the Department of
agreement. For similar reasons, a routing protdustice (contract 2000-CX-K001), the Department
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of Defense (MURI AFOSR contract F49620-97-1-
03821), and the Office for Domestic Preparedness,
U.S. Department of Homeland Security (Award No.
2000-DT-CX-K001). Additional funding provided
by the Dartmouth College Dean of Faculty office in
the form of a Presidential Scholar Undergraduate Re-
search Grant, and a Richter Senior Honors Thesis
Research Grant. Points of view in this document are

those of the author(s) and do not necessarily repfeKW*02]

sent the official position of the U.S. Department of
Homeland Security, the Department of Justice, the
Department of Defense, or any other branch of the
U.S. Government.
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