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Abstract

Wireless local-area networks (WLANs) are increasingly
common, but little is known about how they are used.
A clear understanding of usage patterns in real WLANs
is critical information to those who develop, deploy, and
manage WLAN technology, as well as those who develop
systems and application software for wireless networks.
This paper presents results from the largest and most com-
prehensive trace of network activity in a large, production
wireless LAN. For eleven weeks we traced the activity of
nearly two thousand users drawn from a general campus
population, using a campus-wide network of 476 access
points spread over 161 buildings. Our study expands on
those done by Tang and Baker, with a significantly larger
and broader population.

We found that residential traffic dominated all other
traffic, particularly in residences populated by newer stu-
dents; students are increasingly choosing a wireless laptop
as their primary computer. Although web protocols were
the single largest component of traffic volume, network
backup and file sharing contributed an unexpectedly large
amount to the traffic. Although there was some roam-
ing within a network session, we were surprised by the
number of situations in which cards roamed excessively,
unable to settle on one access point. Cross-subnet roams
were an especial problem, because they broke IP connec-
tions, indicating the need for solutions that avoid or ac-
commodate such roams.

1 Introduction

Wireless local-area networks (WLANs) are increasingly
common on university and corporate campuses, in pub-
lic spaces such as airports and hotels, and even in many
personal residences. Although technology such as IEEE
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802.11b (“Wi-Fi”) is broadly deployed and usage is in-
creasing dramatically, little is known about how these net-
works are used. A clear understanding of usage patterns
in real WLANs is critical information to those who de-
velop, deploy, and manage WLAN technology, as well as
those who develop systems and application software for
wireless networks.

This paper presents results from the largest and most
comprehensive trace of network activity in a large, pro-
duction wireless LAN. Dartmouth College has 11 Mbps
802.11b coverage for nearly every building on campus,
including all administrative, academic, and residential
buildings, and most athletic facilities. We collected exten-
sive trace information from the entire network throughout
the Fall term of 2001.

Our work significantly expands upon the WaveLAN
study by Tang and Baker [TB00], which traced 74
computer-science users in one building for 12 weeks. Our
study traces nearly two thousand users drawn from a gen-
eral campus population, across 161 buildings for one aca-
demic term (11 weeks). It also expands upon the Metri-
com study by Tang and Baker [TB99, TB02] which traced
a metropolitan-area network for seven weeks. Although
that trace covers a wide geographical area and almost
25,000 users, our trace includes much more detailed in-
formation about amount and nature of the network traffic.
The size, population diversity, and detail of our data col-
lection offers extensive insight into wireless network us-
age. Although every environment is different, our study
has characteristics common to both residential and enter-
prise deployments.

We next describe the environment of our study, the
campus of Dartmouth College, and then detail our trac-
ing methodology in Section3. In Section4 we present
and discuss the most interesting characteristics of the re-
sulting trace data. Section5 compares our results with
those of earlier studies, and Section6 concludes.
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2 The test environment

Our study examines usage of an 802.11b “Wi-Fi” network
on the campus of Dartmouth College. The campus is rel-
atively compact, with over 161 buildings on 200 acres,
including administrative, academic, residential, and ath-
letic buildings. Every building is wired to the campus
backbone network. Every office, dorm room, and lecture
hall, and in some places every seat in a lecture hall, has
wired Ethernet. In 2001 Dartmouth installed 476 access
points from Cisco Systems, each an Aironet model 3501,
to provide 11 Mbps coverage to nearly the entire campus.
Each access point (AP) has a range of about 130–350 feet
indoors, so there are several APs in all but the smallest
buildings. All APs share the same network name (SSID),
allowing wireless clients to roam seamlessly from one AP
to another. On the other hand, a building’s APs are con-
nected through a switch or hub to the building’s existing
subnet. The 161 covered buildings span 81 subnets, so in
many cases a wireless client roaming from one building to
another will be forced to obtain a new IP address. (Dart-
mouth chose not to construct a separate campus-wide sub-
net for the wireless network, unlike the Wireless Andrew
project [BB97].)

Dartmouth College has about 5,500 students and 1,215
full-time professors. Most of the approximately 4,200 un-
dergraduate students live on campus. Each is required to
own a computer. Each year, approximately 1000 under-
graduate students enter Dartmouth College, and most pur-
chase a computer through the campus computer store. Of
those purchases, laptops have become increasingly domi-
nant in recent years: 27% in 1999, 45% in 2000, and 70%
in 2001. Assuming that that students obtaining computers
elsewhere choose laptops in the same fraction, and that
in 1998 (for which no data is available) about 15% pur-
chased laptops, about 40% of current undergraduates own
laptops. All laptops purchased in 2001 had Wi-Fi built
in, and over 1000 Wi-Fi cards have been sold over the
past year to other users. In addition, all business-school
students, and most engineering-school graduate students,
own laptops. Clearly there is a large and growing popula-
tion of mobile and wireless users.

3 Trace collection

We began collecting data in April 2001, when the first
access points were installed. After preliminary study of
the data in May 2001 [Ste01], and further tuning of the
data-collection scripts in Summer 2001, we began full-
scale data collection when students returned to campus
in September 2001. In this paper we focus on the data
collected during the eleven-week Fall 2001 term, Tuesday

1www.cisco.com/warp/public/cc/pd/witc/ao350ap/prodlit/a350ads.htm

September 25 through Monday December 10, inclusive.
Although we have data for about a week prior and about
a month after, there was significantly less usage during
vacation periods and so we limit our analysis to the active
period.

At the beginning of the trace period there were 465 ac-
cess points (APs). Eleven more APs were installed in the
first month to bring the total to 476 by October 21. As
we discuss below, it appears that some of the “installed”
APs were not completely or correctly configured during
the tracing period, however, which resulted in fewer APs
represented in our data.

We used three techniques to collect data about wireless-
network usage: syslog events, SNMP polling, and tcp-
dump sniffers.

3.1 Syslog

We configured the Cisco Aironet 350 access points used
on the Dartmouth campus to transmit a syslog message
for various events of interest. The APs published a sys-
log message every time a client (specifically, an 802.11b
network interface card) authenticated, associated, reasso-
ciated, disassociated, or deauthenticated with the access
point (see definitions below). The syslog messages ar-
rived via UDP at a server in our lab, which recorded all
3,533,352 of them for later analysis.

Most APs contributed to the syslog trace as soon as
they were configured and installed. Of the 476 APs, only
430 were represented in our trace. Although some ap-
pear never to have been used, many were misconfigured
and did not send syslog messages. Furthermore, we have
incomplete data for a few dates when the campus experi-
enced a power failure, or when a central syslog daemon
apparently hung up. Finally, since syslog uses UDP it is
possible that some messages were lost or misordered. As
a result of these spatial and temporal holes in the trace,
some of our statistics will undercount actual activity.

Our syslog-recording server added a timestamp to each
message as it arrives. Each message contained the AP
name, the MAC address of the card, and the type of mes-
sage:

Authenticated. Before a card may use the network, it
must authenticate. Our network is currently configured to
authenticate any card. We ignore this message.

Associated. After authentication, a card chooses one of
the in-range access points and associates with that AP; all
traffic to and from the card goes through that AP.

Reassociated.The card monitors periodic beacons from
the APs and (based on signal strength or other factors)
may choose to reassociate with another AP. This feature
supports roaming. It appears that the firmware in many
cards aggressively reassociates with new APs whenever
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conditions are not good at the current AP. We saw many
situations in which a card jumps back and forth among a
small set of APs, as often as once per second. In some
cases, where the APs were from multiple subnets, it is
doubtful the user had much luck using the network!

Unfortunately, cards from some vendors apparently
never use the “reassociate” protocol, and always use “as-
sociate” [Chr].

Roamed. Sent by the old AP when a card reassociates
with a new AP. We ignore this message; because it de-
pends on an inter-AP protocol below the IP layer, it only
occurs when a card roams to another AP within the same
subnet.

Disassociated.When the card no longer needs the net-
work, it disassociates with its current AP. We found,
however, that the syslog contained almost no such mes-
sages. More common were messages indicating that the
AP chose to disassociate a card due to an error, such as
a card’s attempt to use an AP with which it was not cur-
rently associated.

Deauthenticated. The card’s authentication status ends.
While it is possible for the card to request deauthentica-
tion, this almost never happened in our log. In the nor-
mal case, the associated AP deauthenticates the card after
30 minutes of inactivity. In our log it is common to see
several deauthentication messages from a widely roaming
card, one message from each subnet visited in the session.
In some cases an AP deauthenticates a card as a result
of an error, such as a card attempting to use an AP with
which it is not authenticated.

Note that although the APs emit an “authentication”
message for each card, there is no user authentication;
our network does not use MAC-layer authentication in the
APs, or IP-layer authentication in the DHCP server. Any
card may associate with any access point, and obtain a
dynamic IP address. We thus do not know the identity of
users, and the IP address given to a user varies from time
to time and building to building. We make the approx-
imating assumption to equate cards with users, although
some users may have multiple cards, or some cards may
be shared by multiple users. Throughout this paper we use
the term “card” for precision, although with the intention
that cards approximate users.

3.2 SNMP

Two Linux hosts in our lab used the Simple Network Man-
agement Protocol (SNMP) to periodically poll the APs;
451 of the 476 APs responded to our polls. We chose
to poll every 5 minutes to obtain information reasonably
frequently, within the limits of the computation and band-
width available on our two polling workstations. Our

trace period includes approximately 193,111,734 of these
SNMP records. Unfortunately, we have incomplete data
for the following dates: October 7, 9, and 12 (maintenance
of our server), November 19 (unknown causes), and De-
cember 5 (a campus-wide power failure). We chose to
entirely exclude those dates from our analysis, because
most of our SNMP-based plots examine traffic per day, a
number that would be polluted by “short” days.

Each poll returned the MAC addresses of recently asso-
ciated client stations, and the current value of two coun-
ters, one for inbound bytes and one for outbound bytes.
The AP does not reset the counters when polled, so we
compute the difference between the values retrieved by
one poll and the values retrieved by the next poll. The
counters are 32-bit unsigned integers, and our computa-
tion properly handles counter roll-over. We ignore the
result, however, in two instances: a) when the time be-
tween successful polls is more than 12 minutes (twice the
polling interval plus a little slack); b) when the resulting
number of bytes is more than the wireless interface could
have sent or received in the time since the last poll. In
the former case, the AP was unreachable for more than
one poll, and we were unsure how many times the counter
may have rolled during those missed polls. In the latter
case, the AP (and its counters) were likely reset due to
maintenance or a power failure.

Although each SNMP record contains a list of cards
associated with the AP, we chose to use the syslog data for
tracking cards because the syslog data provides the exact
series of events for each card, whereas the SNMP polling
data was less precise. We do use the list to compute
per-card traffic statistics, and to help in our analysis of the
sniffer data (below).

3.3 Sniffers

The syslog and SNMP traces allowed us to compute basic
statistics about traffic, users, and mobility. To get a bet-
ter picture of what the users were doing with the network,
we used tcpdump to capture all of the packet headers on
a selection of the APs around campus. Because of the
volume of data, and privacy concerns, we recorded only
packet headers. Because of the number and geographic
distribution of APs, the structure of our network (many
subnets, and switched Ethernet), and the volume of traf-
fic, it was not possible to capture all of the wireless traffic.
We placed a tiny Linux computer in each of four wiring
closets around campus. In each case we attached this
“sniffer” and the building’s APs to a common hub, and
attached the hub’s uplink to a switch port on the campus
network. With the sniffer in promiscuous mode, we used
tcpdump to record the header of every packet passing by;
in our later analysis, we focus only on the wireless packets
(those with a wireless MAC as source or destination; the
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list of such MACs was obtained from the SNMP data).
We chose four representative locations:
Sudikoff: the Department of Computer Science

(6 APs). There is a hole in the data on December 5.
Brown: a dormitory with many first-year students

(2 APs). There are holes in the data on September 28
through October 3, October 8, 20–24, 26, 28, 29, and 31,
November 1–2, 4–5, and December 5.

Berry: the main campus library. Due to the size of the
building and the switched nature of its network, were only
able to sniff 5 of the 13 APs. There were holes in the data
on October 26–31 and December 5.

Collis/Thayer: two buildings, the student center and
dining hall, containing five cafes, several lounge areas,
several meeting rooms, and some offices (total 9 APs).
There were holes in the data on October 26, November
8–12, and November 26 through December 5.

Many of the holes were caused by power outages, in
which case the sniffer lost power, but so did the the access
point and nearby networking hardware. Thus there was no
traffic to sniff during the power failure. Since, after power
was restored, the sniffer no doubt took more time to boot
than the access point and network hardware, we probably
missed a small amount of data. Thus our statistics will
slightly undercount the traffic on that date. The Collis
sniffer, unfortunately, was more seriously affected by the
power failures and required several days to repair.

Again, for any day in which there was a gap in the data,
we discarded all data for that day before analysis.

3.4 Definitions

One goal of this study is to understand user behavior. We
imagine user “sessions” in which a user (card) joins the
network, uses the network, possibly roams to other APs,
and leaves the network. We must work with the data avail-
able, however, and we need precise definitions:

Card: a wireless network interface card, identified by
MAC address.

Active Card: a card involved in a session (see below),
during the hour, during the day, or at the place, in ques-
tion.

Mobile Card: an active card that roams (see below) dur-
ing the hour, during the day, or at the place, in question.

Session:The period between a session’s begin time and
session’s end time (below).

Session length:the length of a session, in seconds: ses-
sion end time minus session start time.

Session start time:when a card associates with an access
point. Exception 1: any Associate messages that arrive

less thanSessionThresholdafter the the preceding Asso-
ciate or Reassociate message are treated as if they were
a Reassociate message rather than starting a new session.
Thus they may indicate a Roam (see below). Exception 2:
for any card that never used Reassociate during our trace,
we assumed that card is of the variety that uses Associate
(within a session) to mean Reassociate, so we counted as
roams any Associate arriving within an existing session.

Session end time:determined by one of three cases:

1. If a Deassociate or Deauthenticate message is re-
ceived from the last access point used by the card
(other such messages are ignored), the session is
clearly over. If the reason is “Inactivity,” and this
message arrived more than 30 minutes after the ses-
sion start time, we compute the session end time to
be 30 minutes prior to this message’s time. Other-
wise, the session end time is this message’s time.

2. As mentioned above, we treat some Associate mes-
sages arriving during an existing session as marking
a new session. The time of this Associate message
defines the end time of the current session and the
start time of the new session. This rule was neces-
sary because it appeared that many sessions did not
end with a Disassociate or Deauthenticate message,
either because the AP did not send the message or
we did not receive it.

3. The end of the trace is reached. When this occurs, all
ongoing sessions end at the last AP being used by the
client and the session is assumed to end at the time
of the last log in the entire trace.

Roam: a card switches access points within a session,
identified by a Reassociate message to a new AP, or by
an Associate message that is treated as a roam (as de-
scribed above). We ignore roams that occur sooner than
RoamThresholdafter the session start, or the previous
roam. Specifically, a rapid sequence of roams is reduced
to one roam, with the time of the first reassociate but the
AP of the last reassociate.

Extra-subnet roam: a roam to an AP in another subnet.

Intra-subnet roam: a roam to an AP in the same subnet.

Stationary session:a session containing no roams.

Mobile session:a session containing roams.

Extra-subnet session: a session containing an extra-
subnet roam.

Intra-subnet session: a mobile session containing no
extra-subnet roams.

Inbound: traffic sent by the card to the access point.
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Outbound: traffic sent by the access point to the card.
These network-centric definitions of “in” and “out” are
the reverse of Tang and Baker [TB00].

A note about theSessionThresholdmentioned above.
On occasion, a card would Associate rather than Reasso-
ciate, apparently because the state machine on the card
was out of sync with that on the AP [Chr]. It is difficult
to identify precisely which of these Associate messages
should define a new “session,” and which really repre-
sent a roam within the current session. We setSession-
Thresholdto 30 seconds, under the assumption that any-
thing shorter is certainly not a new “session” in the eyes
of the user.

A note about the timestamps in the syslog. Although
the messages may be delayed or reordered as they pass
through the campus network to our server, the delays are
small relative to our timestamp granularity (one second)
and that any reordering that affects causality is rare.

4 Results

We collected an enormous amount of data, and can
present only a subset of the interesting characteristics in
this paper. We begin with a few fundamental statistics:

• Days in trace: 77

• Cards: 1706

• APs: 476 (installed), 430 (syslog), 451 (SNMP), or
22 (tcpdump).

• Buildings: 161, which we divide into five categories:
82 Residence, 32 Academic, 6 Library, 19 Social,
and 22 Administrative.

The residential buildings are mostly undergraduate dormi-
tories and fraternities, but also include some Dartmouth-
owned housing for faculty and staff, and a residential fa-
cility for the business school. All business-school students
have laptops and (as the data shows) many are busy wire-
less users. The social buildings include dining facilities,
the arts center, and athletic facilities (including a lodge at
the ski area and a boathouse on the river).

In the rest of this section we present a series of ques-
tions about the network’s usage, and our analysis based
on the data. For each figure or table, we identify the data
source as [syslog], [SNMP], or [tcpdump].2

4.1 Traffic

Perhaps the most fundamental questions about a new net-
work involve how much it is used, and when:

2Readers using Acrobat with the PDF file can click on a figure or
bibliographic reference to jump directly to that location.

Figure 1: [SNMP] Daily traffic . A date’s bar appears to the
right of its ticmark. Gaps in the plot represent holes in our data.
Note that there is typically more outbound than inbound traffic.
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Figure 2:[SNMP] Daily traffic, distribution across days.
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• How much traffic does the network handle?

• How much traffic per card?

• How does traffic vary across hours, days, weekdays?

Over the course of our study period we measured 4 ter-
abytes of total traffic, although the daily traffic varied con-
siderably. Figure1 is a time series, and Figure2 is acumu-
lative distribution function; we use the CDF format in all
of our distribution graphs. On the busiest day the network
moved over 240 GB, whereas the median daily traffic was
53 MB. There is a clear dip around the Thanksgiving hol-
iday. Although there was usually less inbound traffic than
outbound traffic, given the nature of the protocols used
(Section4.6), there were days where inbound data dom-
inated: the proportion of inbound data varied daily be-
tween 18 and 89%.

In Figure 3 we normalize the data by the number of
cards active in that day. This presentation flattens the
curve somewhat, although there is still a wide variation
in daily activity.

These figures show a reasonably strong weekly pattern
with some surprising peaks on Mondays. In Figure4 we
see the weekly patterns more clearly. Friday and Saturday
are the quietest days, as students relax, but Sunday picks
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Figure 3:[SNMP] Daily traffic per card.
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Figure 4:[SNMP] Average daily traffic, by weekday.
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up as students begin their homework. Monday’s average
is skewed by some some especially busy Mondays; these
peaks are likely a result of weekly actions, such as back-
ups (inbound) or software updates (outbound).

We further our speculation in Figure5 that this regu-
lar Monday activity occurs between 9–11am, when we
see high maximum traffic. Otherwise Figure5 shows
relatively constant traffic throughout the afternoon and
evening, tailing off through the night when students fi-
nally go to sleep, and rising again as employees return to
work. Other than the 10am spike, we do not see the clas-
sic diurnal bell curve that one might see in a typical work-
place, because our environment is a mixture of residential
and academic uses.

4.2 Users and user mobility

As mentioned in Section3, we did not (and could not)
trackusers, but since for the most part each card is associ-
ated with one user, and most users have just one card, we
examined cards as if they represent users. We ask:

• How many cards are there? From which vendors?

• How many days is each card active?

• How many APs does a card visit?

Figure 5:[SNMP] Average hourly traffic, by hour.
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Table 1: [syslog]Common vendorsof network interface
cards, as identified by the vendor component of the MAC
addresses.

Number Vendor
624 Lucent/Agere
536 Apple Computer
489 Cisco/Aironet
57 Other (15 brands)

1706 Total

• How many buildings does a card visit?

There were 1706 unique MAC addresses seen in our
syslog trace, most from a few common vendors (Table1).
Dartmouth’s campus computing store resells exclusively
Apple and Dell computers, and as of 2001 all laptops sold
to first-year students have wireless cards built-in: Agere
(part of Lucent) cards in the Dell laptops, and Apple Air-
port cards in the Apple laptops. The store also sells Cisco
(Aironet) wireless PC cards, an option for those with older
laptops.

Users varied in the number of days that they used their
cards, from only once to every day in the 77-day trace
(Figure 6). Many users are students, living on campus,
and it is not surprising to see some with wireless laptops
on their dorm-room desk, always on-line. Interestingly,
the distribution is roughly uniform between one and 77
days, with a median of 28 days.

The graph also shows that few cards move around
much, with a median of five buildings and nine APs, and
no card visiting even half of the entire network. Indeed,
18% of the cards spent all their time in one building.
Clearly, most users limit their activity to a few key sites in
their daily routine. We expect to see this pattern change
as more small devices, such as PDAs with Wi-Fi installed
on a CompactFlash card, ease mobility.
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Figure 6: [syslog] Activity per card, distribution across
cards. Maximums: 77 days, 62 buildings, and 147 APs. Medi-
ans: 28 days, 5 buildings, and 9 APs.
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4.3 Card activity

Now that we have seen the network from the card’s per-
spective, we examine the cards from the network’s per-
spective:

• How many cards are active?

• When are cards active?

• How long are sessions?

• How many sessions are started each day?

• How are sessions distributed among buildings?

• How many sessions are mobile? extra-subnet?

• How often do cards roam per session?

Although there were 1706 cards seen in our traces, not
all were active every day. Figure7 shows the number of
cards active in each day of our trace period. Clearly vis-
ible are the Thanksgiving holiday, weekly cycles, and a
tail-off at the end of the term. Also visible is a slow trend
toward more active cards per day, as more users obtain
wireless capability and choose to use it more often. Here
we define “active” to mean any card that is associated with
an access point, regardless of whether the user is actually
using the computer or network. The plot also shows mo-
bile cards: an active card is “mobile” in a day if it roams
during any session that day. (Note that a card may visit
several APs during a day, in separate sessions, but not be
“mobile” unless it roamsduringone of those sessions.)

In another view, Figure8 shows the distribution of the
number of active cards and mobile cards in any given day.
Almost half of our card population was active on a typical
day, and about a third of those were mobile.

The visible weekly cycle of Figure7 is reinforced in
Figure9, which we believe reflects a typical student pat-
tern of activity, hustling to complete their work early in
the week, relaxing on Friday and Saturday, and picking
up again on Sunday.

Figure 7: [syslog] Number of active and mobile cards per
day. A date’s data appears to the right of its tick-mark.
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Figure 8:[syslog]Number of active or mobile cards per day,
distribution across days. Medians are 780 (all) and 278 (mo-
bile).
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Figure10 shows diurnal patterns. Again, this pattern
matches a mixture of workplace and residential patterns,
with the bulk of the activity during the weekday, particu-
larly the afternoon, substantial activity during the evening,
and a slow decline in activity through the wee hours of the
morning. With most office workers away on weekends,
the weekend mid-day activity is lower, but due to the resi-
dential population the evening and overnight hours remain
about the same on weekends and weekdays. We reach
similar conclusions about mobile cards, not shown.

Figure11 demonstrates the different patterns, and rela-
tive activity, of different categories of buildings on cam-
pus. Residential activity dominates. Residences and so-
cial spaces tend to be used more in the evening hours,
whereas academic and administrative buildings are ac-
tive during the work-day, and libraries are somewhat in-
between. Figure12 shows far fewer mobile cards, partic-
ularly during the overnight hours.

Sessions. We are interested in when, and for how long,
users choose to use the wireless network. In the preceding
section we define a “session,” intuitively, to be the period
of activity with the network, although it is difficult to ac-
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Figure 9: [syslog] Number of active or mobile cards per
weekday.The curve shows the mean, while the bars show min-
imum and maximum. The two curves are slightly offset so the
bars are distinguishable.
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Figure 10: [syslog] Number of active cards per hour. The
number of active cards for each hour of the day, separately for
weekdays and weekends. The curve shows the mean, while the
bars show minimum and maximum. The two curves are slightly
offset so the bars are distinguishable.
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curately detect the beginning and end of all sessions given
the syslog data. We believe that our results are a reason-
able approximation of the notion of a user session.

Our data (Figure13) shows that most sessions are short.
The median session length was 16.6 minutes, and 71% of
sessions finish in less than one hour. Given that students
move frequently from class to class to dining to dorm,
and like to check email in between, these numbers are
reasonable.

On the other hand, there were a few sessions that
were very long (69 days in one case). These extremely
long sessions are likely artifacts of holes in the sys-
log data, in which we lost the session-ending message.
There are many short sessions: 27% of sessions last less
than a minute. Despite our 30-second SessionThreshold,
our session-begin definition was apparently too liberal.
Nonetheless, this data begs the question about why the
cards associate so quickly and frequently. Examination
of sample sessions show many instances in which a card

Figure 11:[syslog]Mean active cards per hour, by category.
A card visiting multiple building categories within an hour was
counted once for each category it visits.
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Figure 12: [syslog] Mean mobile cards per hour, by cate-
gory. A card visiting multiple building categories within an hour
was counted once for each category it visits.
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Associates with an AP despite (from our reading) the fact
that it is already associated, an indication that the state
machine in the card and in the AP are out of sync [Chr].
Although further study is necessary, it appears that there
is substantial room for improvement in the card firmware
and possibly in the card-AP protocols.

Although most (83%) sessions are non-mobile, mobile
sessions do include one or more roams. Figure14 shows
the distribution of the number of roams during mobile ses-
sions. Most mobile sessions were short and roamed infre-
quently (the median is two roams). Nearly 60% of mobile
sessions roamed only within one subnet. Unfortunately
that means that over 40% roamed across a subnet bound-
ary, which breaks connections and forces the user to ob-
tain a new IP address. Some sessions roamed extremely
frequently: one session roamed over 9,000 times!

So, why do cards reassociate so frequently? The cards
aggressively search for a strong signal, and in an envi-
ronment with many APs and overlapping cells, cards will
roam frequently [Chr]. Either card firmware needs to be
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Figure 13:[syslog]CDF of session duration (truncated to 1
day). The longest session measured 69 days, although that is
probably an error due to holes in our data. The median is 16.6
minutes.
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Figure 14: [syslog] Roams per mobile session, distribution
across sessions.This graph is truncated. The maximum is
9,343 roams. About 17% of sessions were mobile.
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less aggressive, or our environment needs to reduce cell
overlap, to reduce the roaming, reduce the resulting load
on the network, and give better service to the user. Fur-
thermore, since it is expensive to deploy a single campus-
wide subnet for the wireless network [Hil99, HJ96], Mo-
bile IP [Per99] or similar services are required to support
seamless roaming.

We experimented with theRoamThresholdparam-
eter, which ignores any roam if it occurs less than
RoamThresholdseconds after the session start or a pre-
vious roam, and the results are in Figure15. Clearly, this
parameter filters out many roams. It is not clear, how-
ever, whatRoamThresholdwould be appropriate for gen-
eral use in our analysis. If we set the threshold too high,
we may mask roams caused by real user movement. If we
set it too low, our data represents the “jumpy” nature of
the real cards. For the purposes of this paper, we chose
threshold 3, because of the step at that point in the fig-
ure. As it turns out, within the range 0–30 seconds, the
choice has little effect on the graphs presented in this pa-
per. Perhaps most significant is the measure of roams per

Figure 15: [syslog] Number of roams, by RoamThreshold.
Over the entire trace period. Notice they scale.
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Figure 16:[syslog]Number of session starts per day, distri-
bution over days.
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session (Figure14). This truncated plot does not change,
but the maximum value drops to 1574 for threshold=30
rather than 19,902(!) for threshold=0. In short, the thresh-
old removes the short-term jumpiness but does not affect
the conclusions drawn from Figure14.

Figure16 is another view of daily network activity, in
which we count the number of sessions started in each
day, and here present the count as a distribution across
days. The median is 3582 sessions, or 570 mobile ses-
sions. Given the number of short sessions, these num-
bers are not surprising. Although most session starts are
in the dominant category (residence), it is more interest-
ing to examine the relative mobility of users in different
building categories. Figure17 shows that sessions in aca-
demic or administrative buildings tend to be more station-
ary, and that those in libraries tend to have slightly more
extra-subnet roams. The latter may have more to do with
the configuration of the libraries and subnets than any real
physical mobility.
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Figure 17: [syslog] Number of session starts (normalized),
by category.
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4.4 AP activity

We now examine network activity in terms of the APs:

• How many APs are there?

• When are APs active?

• How does activity vary across APs, and which are
most active?

• How does traffic vary across APs, and which have
most traffic?

There were 476 APs installed by the end of the study.
The data in this section are based on the 430 APs in the
syslog trace and the 451 responding to our SNMP polls.

A detailed identification of the busiest APs is perhaps
only of internal interest at Dartmouth College, and in any
case we examine the related question about the busiest
buildings in the next subsection. The APs with the most
active cards in their busiest hour, were those located near
large lecture halls; in its busiest hour, the busiest AP had
71 active cards. The traffic was elsewhere, however: the
APs with the largest maximum and average daily traffic
were from residences.

Figures18–20show the ten “busiest” access points, for
three different definitions of busy. Figure18: Moore1 is
the access point covering three large lecture halls in the
basement of Moore. Figure19: Gile is a dorm, and appar-
ently one or more of its users occasionally caused a lot of
traffic. Figure20: Brown is a dorm with many first-year
students (recall that 70% of first-year students own wire-
less laptops), and Whittemore is the residential facility in
the business school (where students are required to own
laptops).

Figure21shows the variation in the number of APs ac-
tive each day. Clearly visible are the weekly cycle, the
Thanksgiving holiday, and a general trend to use more
APs, as the number of cards increased and as people used

Figure 18:[syslog]Maximum cards per hour, for the busiest
APs. Ranked by their busiest hour, in terms of active cards.
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Figure 19: [SNMP] Maximum daily traffic, for the busiest
APs. Ranked by their busiest hour, in GB.
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the network more. In another view (Figure22), we see
that of the 430 access points never were fewer than 168,
or more than 350, active in any one day. A typical day
saw 291 active access points.

In Figures23 and 24 we see that the number of ac-
tive APs follows a pattern similar to the number of active
cards.

Over the life of the trace, the APs varied widely in the
amount of traffic they handled (Figure25), with the me-
dian AP handling an average of only 39 MB per day, while
the busiest AP handled an average of over 2 GB per day.

4.5 Building activity

An examination of buildings allows us to classify the most
active locations on campus.

• How many buildings are there?

• When are buildings active?

• How does activity vary across buildings, and which
are most active?

• How does traffic vary across buildings, and which
have most traffic?
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Figure 20:[SNMP] Average daily traffic, for the busiest APs.
Ranked by their busiest day, in GB.
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Figure 21:[syslog]Number of active APs per day.A date’s
data appears just to the right of its tick-mark.
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• How does activity vary across building categories?

• How does traffic vary across building categories?

There were 161 buildings with installed APs, ranging
widely from huge central libraries to tiny houses, and even
a shed at the tennis courts. Although Figure26shows that
the bulk of the traffic was seen in the residential buildings
(averaging 48 GB per day), when normalized by popula-
tion size (active cards, in Figure27) or by building size
(number of APs, in Figure28) we see somewhat more
balanced traffic. Residential users spend more hours in
residences than most people spend in other buildings, ac-
counting for some of this difference.

The building with the largest average daily traffic (Fig-
ure29) was, by far, the business-school residence Whitte-
more. About a third of the residents have a wireless lap-
top, and there is clearly a culture that encourages wireless
usage. Cummings is the engineering school, McCullouch
is another business-school building, and Murdough is the
library between the two. The other buildings are dormito-
ries with large populations of first-year undergraduates.

Figure30 normalizes by the number of APs, to reduce
the importance of larger buildings, but Whittemore still
dominates. The others are all undergraduate dormitories,

Figure 22: [syslog] Number of active APs, distribution
across days.Note thex-axis is not based at zero.
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Figure 23:[syslog]Mean active APs by hour, by category.
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particularly those full of first-year students. On the other
hand, when we normalize traffic by the number of active
cards (Figure31), a sorority and several academic and ad-
ministrative buildings (Strasenburgh, Sls, Silsby, Gilman,
Kiewit) top the list. Gile and Smith are dorms.

Examining the busiest day for each building (Fig-
ure 32), the business school (Whittemore and McCul-
lough) clearly dominates, but some academic buildings
(Rockefeller and Silsby) and administrative buildings
(Sls) appear. The others are dorms.

In Figure 33, the buildings with the busiest hour, in
terms of the number of active cards, are mostly build-
ings with large lecture halls (Moore, Murdough, Tuck,
Byrne, and Cummings), the main campus library (Berry),
and some residences (Whittemore, Hinman, McLane, and
Buchanan). Clearly network designers need to plan care-
fully for such large concentrations of usage.

Finally, in Figure34, we see the buildings with the
largest number of cards visiting over the entire trace.
These are all large buildings where you expect a diverse
population: libraries (Baker, Berry, Murdough, and San-
born), social and dining spaces (Hop, Collis, and Thayer),
and three buildings with large lecture halls (Gerry, Dart-
mouth, and Bradley) frequented by students in introduc-
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Figure 24: [syslog] Number of active APs per hour, dis-
tinguishing weekdays from weekends.The curve shows the
mean, and the bars show the minimum and maximum. The two
curves are slightly offset so the bars are distinguishable.
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Figure 25:[SNMP] Average daily traffic, distribution across
APs. Median is 39 MB.
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tory courses. Figure35 shows, though, that half of the
buildings saw fewer than 64 users over the life of the trace,
less than Moore saw in a single hour.

The number of active buildings followed a pattern sim-
ilar to the number of active APs and number of active
cards, as seen in Figure37, although the variation is
dampened somewhat as we consolidate the activity into
buildings. Figure36 demonstrates a similar effect. Inter-
estingly, of the 82 residences only about half are active in
any given hour.

4.6 Protocols

Although the sniffer data covers only four buildings and
22 APs, it covers a variety of populations (library, dor-
mitory, student center, and academic computer science).
Above, we examine questions about where, when, and
how much people use the wireless network; now, we ask
abouthowthey used the network:

• Which protocols are the most commonly used?

• Which protocols consume the most traffic?

Figure 26:[SNMP] Average daily traffic, by category.
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Figure 27: [SNMP] Average daily traffic per card,by cate-
gory.
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• For each protocol, how much data flows each way?

We collected data about only IP-based protocols.3 We
monitored nearly 183 GB of traffic in all four sniffers,
100 GB of which was from the dormitory (recall from
Figure29 that Brown is one of the busiest buildings on
campus, and was a fortuitous choice for sniffing). Al-
though we saw a tiny amount of PIM, RSVP, IGMP, and
ICMP, the bulk of the traffic was UDP (3.3%) and TCP
(94.8%). Table2 shows the details. Although Brown saw
only 55 cards, and Sudikoff (Computer Science) saw only
110 cards, the Collis student center saw 434 and Berry Li-
brary 556, as they are larger, public spaces with a diverse
population.

We were able to identify 82 different TCP or UDP pro-
tocols in the IP packets we sniffed, by recognizing well-
known port numbers. This technique is an approximation,
of course, since it is possible that some applications use
a “well-known” port for other purposes, but it provides a
good overall estimate. Ten protocols account for 97.8%
179 GB of the total 183 GB traffic, as shown in Figure38.

3Although our campus does include many Appletalk users, we expect
nonetheless that IP dominates the wireless traffic. We hope to trace non-
IP protocols in a future study.

12



Table 2: [tcpdump]Common IP protocolsseen in our four sniffers. RSVP appears to be zero due to rounding.
Protocol Total GB Berry Brown Collis Sudikoff
PIM 0 0.0% 0.000 0.0% 0.001 0.0% 0.000 0.0% 0.000 0.0%
RSVP 0 0.0% 0.000 0.0% 0.000 0.0% 0.000 0.0% 0.000 0.0%
IGMP 0 0.0% 0.001 0.0% 0.000 0.0% 0.000 0.0% 0.000 0.0%
ICMP 0 0.0% 0.014 0.1% 0.006 0.0% 0.025 0.1% 0.012 0.0%
UDP 6 3.3% 2.819 12.0% 0.857 0.9% 0.275 1.3% 2.042 5.2%
TCP 178 96.7% 20.650 87.9% 98.322 99.1% 21.167 98.6% 37.530 94.8%
Total GB 183.720 100% 23.484 100% 99.185 100% 21.467 100% 39.584 100%

Figure 28: [SNMP] Average daily traffic per AP, by cate-
gory.
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Figure 29: [SNMP] Average daily traffic, for the busiest
buildings. Ranked by daily traffic, in GB.
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The symmetry of this traffic is explored in Figures39and
40. These protocols were:

http (90 GB), including both http and https, and some
other common http ports (such as 8000). Clearly, web
browsing is a significant fraction of any network traf-
fic today. It is not dominant everywhere, however: out-
side Brown, there was less http traffic than “dantz” or all
unidentified protocols (see below). Although most http
traffic is outbound, there is substantial inbound traffic in
Brown, indicating that some residents may be running a
web server on a wireless computer.

Figure 30:[SNMP] Average daily traffic per AP,for the bus-
iest buildings. Ranked by daily traffic, per AP, in GB.
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Figure 31: [SNMP] Average daily traffic per card, for the
busiest buildings.Ranked by daily traffic per card (GB).

0 0.05 0.1 0.15 0.2 0.25

Kappa−theta

Sas

Strasenburgh

Whittemore

Sls

Silsby

Gilman

Brown

Smith

Kiewit

Daily traffic per active card (GB)

unidentified (45 GB): all packets involving port numbers
not identified in/etc/services are lumped into this
category. We were surprised by the volume of traffic not
clearly attributable to well-known ports. We intend to in-
vestigate the distribution of port numbers in this category,
to determine whether there may be a few common (but
unknown to us) protocols.

dantz (30 GB),a protocol for the Retrospect backup prod-
uct from Dantz corp., in common use here for office Mac-
intosh computers. Collis and Sudikoff have several such
offices, and the “dantz” protocol dominates the traffic seen
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Figure 32: [SNMP] Maximum daily traffic, for the busiest
buildings.
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Figure 33:[syslog]Maximum cards per hour, for the busiest
buildings. Ranked by their busiest hour (in number of active
cards).
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by those sniffers. The traffic is dominantly inbound, of
course, as wireless clients are backed-up to a wired server.
While it was an unexpected frontrunner, a few backups
conducted periodically can easily account for its volume.
Indeed, we saw weekly spikes in the sniffed data, likely
caused by these backups.

blitzmail (3.9 GB): BlitzMail is a locally developed email
client, with a custom protocol, in ubiquitous use outside
Sudikoff (computer scientists tend to use more traditional
mail clients). The high volume is no doubt the result of
large enclosures.

ftp (3.7 GB), including all variants of the common file-
transfer protocol, including ftp, ftp-data, ftplog, bftp, tftp,
and sftp. Curiously, there was nearly an even split be-
tween inbound and outbound data, although in each snif-
fer (not shown) it is more skewed toward either inbound
(Collis and Berry) or outbound (Brown and Sudikoff).

netbios-ssn (3.0 GB),a Windows session protocol that
supports Windows print and file sharing, including
Samba.

Figure 34: [syslog] Number of active cards per building,
for the ten most popular buildings. Ranked by the number
of unique cards visiting that building, over the whole trace.
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Figure 35:[syslog]Number of active cards per building, dis-
tribution over buildings.
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ssh (1.4 GB),a secure-shell protocol that supports inter-
active logins, secure remote file copy, secure X-windows
sessions, and other secure tunnels. Most of this traffic oc-
curred in the computer-science building where these ac-
tivities are more common than in the general population.
The dominance of inbound traffic suggests that scp is of-
ten used for uploading files.

snmp (0.89 GB),the Simple Network Management Pro-
tocol. We are uncertain why there would be significant
use of this protocol among personal laptops. Most of the
outbound traffic was in Berry library, and most of the in-
bound traffic was in Sudikoff.

afpovertcp (0.87 GB),a tunnel for AppleTalk Filing Pro-
tocol over TCP, allowing Macintosh computers to mount
other Macintosh disks, over TCP/IP. Mostly used for
downloading files, it appears.

instsrv (0.62 GB),seen mostly in Brown (with 34 users).
Although instsrv is listed as a protocol used by the “net-
work install service,” its port number (1234) is also used
by several Trojan-horse programs. It is possible that this
traffic represents clients that have been hacked.
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Figure 36: [syslog] Number of active buildings per day. A
date’s data appears just to the right of its tick-mark.
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Figure 37:[syslog]Mean active buildings per hour, by cate-
gory.
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With the exception of SNMP, all of the above protocols
are commonly used for file transfer, which accounts for
their dominance in this ranking based on volume. We are
preparing an analysis of the number of connections made
for each protocol, regardless of the amount of data trans-
ferred, which should give another interesting perspective
on how people use this network.

While the details of our protocol distribution may be
specific to Dartmouth, we expect that others in academic
environments will see approximately the same set of ac-
tivities dominating: web, email, backup, file transfer, and
file sharing.

5 Related work

Our study is the largest and most comprehensive charac-
terization of wireless LAN users to date. In three sep-
arate studies, Tang and Baker have previously charac-
terized wireless-network usage. In 1998 they used tcp-
dump in a limited study of eight laptops over eight days
[LRT+98], focusing on the number of times the laptops
switched between wired and wireless, and on the latency

Figure 38:[tcpdump]Total traffic, by TCP or UDP protocol.
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Figure 39:[tcpdump]Total traffic, by TCP or UDP protocol.
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encountered by packets. They note that users did tend
to behave differently on the wireless network than on the
wired network, due to extremely high latencies. In 1999
they characterized the users of the Metricom Ricochet
network, a wireless metropolitan-area network (MAN)
service [TB99, TB02] This study is notable for its size
(24,773 clients and 14,053 access points) and duration
(about seven weeks). Due to the limitations of the data
available, their analysis focuses on network activity and
client mobility. Finally, in 2000 they use tcpdump and
SNMP records to characterize the activity of 74 wireless
users in the Stanford Computer Science Department, over
a 12-week period [TB00]. While this study is similar to
our own, our population is much larger and more diverse,
the roaming patterns are more complex than a single sub-
net in a single building. We have syslog data that al-
lows more precise measurements of roaming, but we do
not have DHCP data that allow us to associated MAC ad-
dresses with users. Although we do not have sniffer data
for the entire population, we do have it for four buildings
rather than one. We do not have any way to measure
latency, and so far have not analyzed geographic mobility
analysis or clustered users.

The Wireless Andrew project at Carnegie-Mellon Uni-
versity created the first large WaveLAN installation, and
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Figure 40:[tcpdump]Total traffic, by TCP or UDP protocol,
normalized.
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their papers discuss the design and deployment of that net-
work [BB97, Hil99, HJ96]. Although they hint of plans
for a usage study [BB97], there are as yet no published
results.

Another recent study used data from Bell Mobility’s
Personal Communications Services (PCS) cellular net-
work to study the characteristics of customers using WAP
web browsers on their cell phones [KBZ+00]. They
traced the network during seven months, using tcpdump
to capture packets at the WAP gateway. Unfortunately,
they were unable to identify unique users or phones, but
the number of IP addresses assigned in any given day in-
creased to about 400 by the end of the trace. The PCS
network reassigned an IP address whenever the browser
was idle for 90 seconds, so the session lengths were quite
short (average 3.38 minutes). Otherwise, the usage fol-
lowed the expected weekly and daily patterns in amount
of traffic and number of users.

6 Conclusion

We conducted the largest trace-based study of wireless
LAN users to date, in an effort to understand patterns
of activity in the network. The activity and traffic var-
ied widely from hour to hour, day to day, and week to
week. While we do see clear daily and weekly patterns,
they reflect a mixture of a residential campus and an aca-
demic workplace, including more overnight usage than
might be common in enterprise WLANs. We found that
many wireless cards are extremely aggressive when asso-
ciating with access points, leading to a large number of
short “sessions” and a high degree of roaming within ses-
sions. About 17% of sessions involved roaming, and of
these “mobile sessions” about 40% involved roaming to
a different subnet. From anecdotal evidence, these extra-
subnet roams often occur when when the user is station-
ary, leading to failures of IP traffic.

Network designers should note the high variance in the
activity of buildings, access points, and cards, over both
time and space. We need new solutions to prevent cards
from roaming too frequently, without sacrificing cover-
age. We need network-layer [Per99] and application-layer
solutions [MTK02] to support multi-subnet roaming. Fi-
nally, note that the traffic is not definitively dominated
by outbound or inbound traffic. The ratio varied signif-
icantly from day to day, building to building, and protocol
to protocol. This conclusion argues against any design
with asymmetric bandwidth.

In the early stages of the wireless project, the staff at
Dartmouth College debated whether it would be important
to provide wireless coverage in the dormitories, which
were already wired with at least one port per resident. Our
data shows that the bulk of wireless activity occurs in the
residences. Furthermore, for wireless network connectiv-
ity to be useful to a mobile user, it needs to be pervasive,
allowing the user to grab their laptop on the way out the
door, confident that there will be network access wherever
they may go. Nonetheless, we saw that most users visited
few APs and buildings over the life of the trace, and most
users were stationary within a session.

Future work. Our study, and nearly all of the stud-
ies before it, characterized only the wireless network. It
would be useful (but nearly impossible, on switched net-
works) to collect simultaneous information about usage
on the wired and wireless networks, to determine what
characteristics are unique to the wireless environment.

We would like to study the geographic patterns of mo-
bility. Presumably most users have regular habits as they
move from dorm to class to dining hall.

We were unable to distinguish users or types of users
(students, faculty, staff). It may be possible to infer the
type of users from their behavior (for example, students
are seen frequently in dorms), or to use clustering tech-
niques [TB00].

We plan to repeat the study in Spring 2002, with refined
data-collection and -analysis scripts.
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