
Disk-directed I/O for MIMD Multiprocessors

David Kotz

Department of Computer Science
Dartmouth College
Hanover, NH 03755

dfk@cs.dartmouth.edu

Abstract

Many scientific applications that run on today’s multipro-
cessors, such as weather forecasting and seismic analy-
sis, are bottlenecked by their file-I/O needs. Even if the
multiprocessor is configured with sufficient I/O hardware,
the file-system software often fails to provide the avail-
able bandwidth to the application. Although libraries and
enhanced file-system interfaces can make a significant im-
provement, we believe that fundamental changes are needed
in the file-server software. We propose a new technique,
disk-directed I/O, to allow the disk servers to determine
the flow of data for maximum performance. Our simula-
tions show that tremendous performance gains are possible.
Indeed, disk-directed I/O provided consistent high perfor-
mance that was largely independent of data distribution,
obtained up to 93% of peak disk bandwidth, and was as
much as 16 times faster than traditional parallel file sys-
tems.

1 Introduction

Scientific applications like weather forecasting, aircraft
simulation, seismic exploration, and climate modeling are
increasingly being implemented on massively parallel su-
percomputers. Applications like these have intense I/O
demands, as well as massive computational requirements.
Recent multiprocessors have provided high-performance
I/O hardware, in the form of disks or disk arrays attached to
I/O processors connected to the multiprocessor’s intercon-
nection network, but effective file-system software has yet
to be built.

Today’s typical multiprocessor has a rudimentary par-
allel file system derived from Unix. While Unix-like se-
mantics are convenient for users porting applications to
the machine, the performance is often poor. Poor per-
formance is not surprising because the Unix file system
was designed for a general-purpose workload [OCH�85],
rather than for a parallel, scientific workload. Scientific

This research was funded by Dartmouth College.

applications, on the other hand, use larger files and have
more sequential access [MK91, GGL93, PP93]. Parallel
scientific programs access the file with patterns not seen
in uniprocessor or distributed-system workloads, in par-
ticular, complex strided access to discontiguous pieces of
the file [KN94, NK94]. Finally, scientific applications use
files for more than loading raw data and storing results;
files are used as scratch space for very large problems as
application-controlled virtual memory [CK93]. In short,
multiprocessors need new file systems that are designed for
parallel scientific applications.

In this paper we describe a technique that is designed
specifically for high performance on parallel scientific ap-
plications. It is most suited for MIMD multiprocessors
that have no remote-memory access, and that distinguish
between I/O Processors (IOPs), which do file-system pro-
cessing, and Compute Processors (CPs), which do mostly
application processing. The IBM SP-2, Intel iPSC, In-
tel Paragon, KSR/2, Meiko CS-2, nCUBE/2, and Think-
ing Machines CM-5 all use this model; the CS-2 and the
SP-2 allow IOPs to double as CPs. Furthermore, our tech-
nique is best suited to applications written in a single-
program-multiple-data (SPMD) or data-parallel program-
ming model. With our technique, disk-directed I/O, CPs
collectively send a single request to all IOPs, which then
arrange the flow of data to optimize disk, buffer, and net-
work resources.

We begin by advocating a “collective-I/O” interface for
parallel file systems. Then, in Sections 3 and 4, we con-
sider some of the ways to support collective I/O and our
implementation of these alternatives. Section 5 describes
our experiments, and Section 6 examines the results. We
contrast our system to related work in Section 7, and sum-
marize our conclusions in Section 8.

2 Collective I/O

Consider programs that distribute large matrices across the
processor memories, and the task of loading such a matrix

David Kotz
Bulletin of the IEEE Technical Committee on Operating Systems and Application Environments, pages 29–42. IEEE, Autumn 1994. ©Copyright David Kotz. �

from a file.1 From the point of view of a traditional file
system, each processor independently requests its portion
of the data, by reading from the file into its local memory.
If that processor’s data is not logically contiguous in the
file, as is often the case [KN94], a separate file-system call
is needed for each contiguous chunk of the file. The file
system is thus faced with concurrent small requests from
many processors, instead of the single large request that
would have occurred on a uniprocessor. Indeed, since most
multiprocessor file systems [CF94, FPD93, Pie89, Roy93,
DdR92, LIN�93, BGST93, Dib90, DSE88] decluster file
data across many disks, each application request may be
broken into even smaller requests that are sent to different
IOPs. It is difficult for the file system, which is distributed
across many I/O processors, to recognize these requests as
a single coordinated request, and to use that information
to optimize the I/O. Valuable semantic information — that
a large, contiguous, parallel file transfer is in progress —
is lost through this low-level interface. A collective-I/O
interface, in which all CPs cooperate to make a single,
large request, retains this semantic information, making it
easier to coordinate I/O for better performance [dBC93,
Nit92, PGK88].

Collective I/O need not involve matrices. Many out-of-
core parallel algorithms do I/O in “memoryloads,” that is,
they repeatedly load some subset of the file into memory,
process it, and write it out [CK93]. Each transfer is a large,
but not necessarily contiguous, set of data. Traditional
caching and prefetching policies, geared for sequential ac-
cess, would be ineffective or even detrimental for this type
of I/O.

Unfortunately, few multiprocessor file systems provide a
collective interface. Most have an interface based on simple
parallel extensions to the traditional read/write/seek model,
focusing on coordination of the file pointer. Vesta [CF94]
and the nCUBE file system [DdR92] support logical map-
pings between the file and processor memories, defining
separate “subfiles” for each processor. Although these
mappings remove the burden of managing the file pointer
from the programmer, and allow the programmer to re-
quest noncontiguous data in a single request, there is no
support for collective I/O. CM-Fortran for the CM-5 does
provide a collective-I/O interface, which leads to high per-
formance through cooperation among the compiler, run-
time, operating system, and hardware. ELFS [GP91] pro-
vides an object-oriented interface that encourages opera-
tions on large objects, and could lead to support for collec-
tive I/O. Finally, there are several interfaces for collective
matrix I/O [GGL93, BdC93, BBS�94]. For example, to

1This scenario arises in many situations. The file may contain raw
input data or may be a scratch file written in a previous phase of the
application. The matrix may be the whole data set, or may be a partition
of a larger data set, for example, a 2-d slice of a 3-d matrix. Furthermore,
the operation may be synchronous, with the application waiting for I/O to
complete, or asynchronous, perhaps as the result of a compiler-instigated
prefetch request.

read a two-dimensional matrix of integers in the notation of
[GGL93], every processor executes the following code:

/* describes my part of matrix */
PIFArrayPart mypart[2] = ... ;
/* memory for my part */
int *A = malloc(...);
PIFILE *fp = PIFOpen(...);
PIFReadDistributedArray(fp, NULL,

sizeof(int), mypart, 2,
A, MSG_INT);

Thus, the groundwork for collective I/O exists. The
challenge is to provide mechanisms that use the semantic-
informationcontent of collective operations to improve per-
formance.

3 Collective-I/O implementation alternatives

In this paper we consider collective-read and -write oper-
ations that transfer a large matrix between CP memories
and a file that is declustered, block by block, over many
IOPs and disks. The matrix is distributed among the CPs
in various ways, but within each CP the data is contiguous
in memory. We discuss three implementation alternatives:
traditional caching, two-phase I/O, and disk-directed I/O.
The latter two require a collective-I/O interface similar to
that of Galbreath et al [GGL93], above.

Traditional caching. This alternative mimics a “tradi-
tional” parallel file system like Intel CFS [Pie89], with no
explicit collective-I/O interface and with IOPs that each
manage a file cache. Figure 1a shows the function called
by the application on the CP to read its part of a file, and
the corresponding function executed at the IOP to service
each incoming CP request. Recall that each application
process must call ReadCP once for each contiguous chunk
of the file, no matter how small. Each IOP attempts to dy-
namically optimize the use of the disk, cache, and network
interface.

Two-phase I/O. Figure 1b sketches an alternative pro-
posed by del Rosario,Bordawekar, and Choudhary [dBC93,
BdC93], which permutes the data among the CP memories
before writing or after reading. Thus, there are two phases,
one for I/O and one for an in-memory permutation. The
permutation is chosen so that requests to the IOPs “con-
form” to the layout of the file, that is, the requests are for
large contiguous chunks.

Disk-directed I/O. We go further by having the CPs pass
the collective request on to the IOPs, which then arrange
the data transfer as shown in Figure 1c. This disk-directed
model, which essentially puts the disks (IOPs) in control
of the order and timing of the flow of data, has several
potential performance advantages:

a
�
T
ra
d
it
io
n
a
l
c
a
c
h
in
g

R
e
a
d
C
P
�
f
i
l
e
�
r
e
a
d
p
a
r
a
m
e
t
e
r
s
�
d
e
s
t
i
n
a
t
i
o
n
a
d
d
r
e
s
s
�
�

f
o
r
e
a
c
h
f
i
l
e
b
l
o
c
k
n
e
e
d
e
d
t
o
s
a
t
i
s
f
y
r
e
q
u
e
s
t

c
o
m
p
u
t
e
w
h
i
c
h
d
i
s
k
h
o
l
d
s
t
h
a
t
f
i
l
e
b
l
o
c
k

i
f
o
u
r
p
r
e
v
i
o
u
s
r
e
q
u
e
s
t
t
o
t
h
a
t
d
i
s
k
i
s
s
t
i
l
l
o
u
t
s
t
a
n
d
i
n
g
�

w
a
i
t
f
o
r
r
e
s
p
o
n
s
e
a
n
d
d
e
p
o
s
i
t
d
a
t
a
i
n
t
o
u
s
e
r
�
s
b
u
f
f
e
r

s
e
n
d
n
e
w
r
e
q
u
e
s
t
t
o
t
h
a
t
d
i
s
k
�
s
I
O
P
f
o
r
t
h
i
s
�
p
a
r
t
i
a
l
�
b
l
o
c
k

e
n
d

w
a
i
t
f
o
r
a
l
l
o
u
t
s
t
a
n
d
i
n
g
r
e
q
u
e
s
t
s
�

R
e
a
d
I
O
P
�
f
i
l
e
�
r
e
a
d
p
a
r
a
m
e
t
e
r
s
�
�

l
o
o
k
f
o
r
t
h
e
r
e
q
u
e
s
t
e
d
b
l
o
c
k
i
n
t
h
e
c
a
c
h
e

i
f
n
o
t
t
h
e
r
e

f
i
n
d
o
r
m
a
k
e
a
f
r
e
e
c
a
c
h
e
b
u
f
f
e
r

a
s
k
d
i
s
k
t
o
r
e
a
d
t
h
a
t
b
l
o
c
k
i
n
t
o
c
a
c
h
e
b
u
f
f
e
r

r
e
p
l
y
t
o
C
P
�
i
n
c
l
u
d
i
n
g
d
a
t
a
f
r
o
m
c
a
c
h
e
b
u
f
f
e
r

c
o
n
s
i
d
e
r
p
r
e
f
e
t
c
h
i
n
g
o
r
o
t
h
e
r
o
p
t
i
m
i
z
a
t
i
o
n
s

b
�
T
w
o
�p
h
a
se
I�
O

C
o
l
l
e
c
t
i
v
e
R
e
a
d
C
P
�
f
i
l
e
�
r
e
a
d
p
a
r
a
m
e
t
e
r
s
�
d
e
s
t
i
n
a
t
i
o
n
a
d
d
r
e
s
s
�
�

B
a
r
r
i
e
r
�
C
P
s
u
s
i
n
g
t
h
i
s
f
i
l
e
�
�
t
o
e
n
s
u
r
e
t
h
a
t
a
l
l
a
r
e
r
e
a
d
y

d
e
c
i
d
e
w
h
a
t
p
o
r
t
i
o
n
o
f
t
h
e
d
a
t
a
t
h
i
s
p
r
o
c
e
s
s
o
r
s
h
o
u
l
d
r
e
a
d

�
c
o
n
f
o
r
m
i
n
g
t
o
t
h
e
f
i
l
e
l
a
y
o
u
t
�

f
o
r
e
a
c
h
c
o
n
t
i
g
u
o
u
s
c
h
u
n
k
o
f
t
h
e
f
i
l
e
t
h
i
s
p
r
o
c
e
s
s
o
r
s
h
o
u
l
d
r
e
a
d

R
e
a
d
C
P
�
f
i
l
e
�
o
n
e
c
h
u
n
k
�

B
a
r
r
i
e
r
�
C
P
s
u
s
i
n
g
t
h
i
s
f
i
l
e
�
�
t
o
w
a
i
t
f
o
r
a
l
l
I
�
O
t
o
c
o
m
p
l
e
t
e

r
u
n
p
e
r
m
u
t
a
t
i
o
n
a
l
g
o
r
i
t
h
m
t
o
s
e
n
d
d
a
t
a
t
o
c
o
r
r
e
c
t
d
e
s
t
i
n
a
t
i
o
n

B
a
r
r
i
e
r
�
C
P
s
u
s
i
n
g
t
h
i
s
f
i
l
e
�
�
t
o
w
a
i
t
f
o
r
p
e
r
m
u
t
a
t
i
o
n
t
o
c
o
m
p
l
e
t
e

R
e
a
d
I
O
P

�a
s
a
bo
ve
�

c
�
D
is
k
�d
ir
e
c
te
d
I�
O

C
o
l
l
e
c
t
i
v
e
R
e
a
d
C
P
�
f
i
l
e
�
r
e
a
d
p
a
r
a
m
e
t
e
r
s
�
d
e
s
t
i
n
a
t
i
o
n
a
d
d
r
e
s
s
�
�

a
r
r
a
n
g
e
f
o
r
i
n
c
o
m
i
n
g
d
a
t
a
t
o
b
e
s
t
o
r
e
d
a
t
d
e
s
t
i
n
a
t
i
o
n
a
d
d
r
e
s
s

B
a
r
r
i
e
r
�
C
P
s
u
s
i
n
g
t
h
i
s
f
i
l
e
�
�
t
o
e
n
s
u
r
e
t
h
a
t
a
l
l
b
u
f
f
e
r
s
a
r
e
r
e
a
d
y

a
n
y
o
n
e
C
P
�

m
u
l
t
i
c
a
s
t
�
C
o
l
l
e
c
t
i
v
e
R
e
a
d
�
f
i
l
e
�
r
e
a
d
p
a
r
a
m
e
t
e
r
s
�
t
o
a
l
l
I
O
P
s

w
a
i
t
f
o
r
a
l
l
I
O
P
s
t
o
r
e
s
p
o
n
d
t
h
a
t
t
h
e
y
a
r
e
f
i
n
i
s
h
e
d

B
a
r
r
i
e
r
�
C
P
s
u
s
i
n
g
t
h
i
s
f
i
l
e
�
�
t
o
w
a
i
t
f
o
r
a
l
l
I
�
O
t
o
c
o
m
p
l
e
t
e

C
o
l
l
e
c
t
i
v
e
R
e
a
d
I
O
P
�
f
i
l
e
�
r
e
a
d
p
a
r
a
m
e
t
e
r
s
�
�

d
e
t
e
r
m
i
n
e
t
h
e
s
e
t
o
f
f
i
l
e
d
a
t
a
l
o
c
a
l
t
o
t
h
i
s
I
O
P

d
e
t
e
r
m
i
n
e
t
h
e
s
e
t
o
f
d
i
s
k
b
l
o
c
k
s
n
e
e
d
e
d

s
o
r
t
t
h
e
d
i
s
k
b
l
o
c
k
s
t
o
o
p
t
i
m
i
z
e
d
i
s
k
m
o
v
e
m
e
n
t

u
s
i
n
g
d
o
u
b
l
e
	
b
u
f
f
e
r
i
n
g
f
o
r
e
a
c
h
d
i
s
k
�

r
e
q
u
e
s
t
b
l
o
c
k
s
f
r
o
m
t
h
e
d
i
s
k

a
s
e
a
c
h
b
l
o
c
k
a
r
r
i
v
e
s
f
r
o
m
d
i
s
k
�

s
e
n
d
p
i
e
c
e
�
s
�
t
o
t
h
e
a
p
p
r
o
p
r
i
a
t
e
C
P
s

w
h
e
n
c
o
m
p
l
e
t
e
�
s
e
n
d
m
e
s
s
a
g
e
t
o
o
r
i
g
i
n
a
l
r
e
q
u
e
s
t
i
n
g
C
P

F
ig
u
re
�
�
P
se
u
d
o
�c
o
d
e
fo
r
co
ll
ec
ti
v
e�
re
a
d
im
p
le
m
en
ta
ti
o
n
s�
C
o
ll
ec
ti
v
e
w
ri
te
s
a
re
si
m
il
a
r�

� The I/O can conform not only to the logical layout of
the file, as in two-phase I/O, but to the physical layout
on disk.

� The disk-I/O phase is integrated with the permutation
phase.

� There is only one I/O request to each IOP; subsequent
communication uses only low-overhead data-transfer
messages.

� Disk scheduling is improved, possibly across
megabytes of data: in Figure 1c, the IOPs presort
the block list for each disk.

� Prefetching and write-behind require no guessing, and
thus make no mistakes.

� Buffer management is perfect, needing little space
(two buffers per disk per file), and capturing all po-
tential locality advantages.

� No additional memory or memory-memory copying is
needed at the CPs for buffering, message-passing, or
permuting data.

� There is no communication among the IOPs and none,
other than barriers, among the CPs. The cost of these
barriers is negligible compared to the time needed for
a large file transfer.

4 Evaluation

We implemented both a traditional-caching system and a
disk-directed-I/O system on a simulated MIMD multipro-
cessor (see below). We did not implement two-phase I/O
because, as we discuss in Section 7.1, disk-directed I/O ob-
tains all the benefits of two-phase I/O, and more. In this
section, we describe our simulated implementation; more
details can be found in [Kot94].

Files were striped across all disks, block by block. Each
IOP served one or more disks, using one I/O bus. Each disk
had a thread permanently running on its IOP, that controlled
access to the disk.

Disk-directed I/O. Each IOP received one request, cre-
ating one new thread. The new thread computed the list
of disk blocks involved, sorted the list by location, and
informed the relevant disk threads. It then allocated two
one-block buffers for each local disk, and created a thread
to manage each buffer. While not absolutely necessary,
the threads simplified programming the concurrent activ-
ities. These buffer threads repeatedly transferred blocks,
letting the disk thread choose which block to transfer next.
When reading, they used a special “Memput” message to
move data from the IOP memory to the CP memory, us-
ing DMA to and from the network. When writing, they

sent a “Memget” message to the CP, causing it to reply
with a message containing the requested data, again using
DMA. When possible the thread sent concurrent Memget
or Memput messages to many CPs.

Traditional caching. Our code followed the pseudo-code
of Figure 1a. CPs did not cache or prefetch data, so all
requests involved communication with the IOP. The CP
sent concurrent requests to all the relevant IOPs, with up
to one outstanding request per disk per CP. This limit was
a compromise between maximizing concurrency and the
need to limit the potential load on each IOP.2

At the IOP, each incoming request was handled by a new
thread. Each IOP managed a cache that was large enough to
double-buffer an independent stream of requests from each
CP to each disk.3 The cache used an LRU-replacement
strategy, prefetched one block ahead after each read request,
and flushed dirty buffers to disk when they were full (i.e.,
after n bytes had been written to an n-byte buffer [KE93]).

We transferred data as a part of request and reply mes-
sages, and used DMA for all message-passing. Thus, the
reply to a read request contained up to one block of data,
which was deposited directly in the user buffer before wak-
ing the CP. Write-request messages also contained up to
one block of data, which was deposited directly into a new
thread’s buffer. Later, the thread copied the data into a
cache buffer, the only memory-memory copy we used.4

While our cache implementation does not model any
specific commercial cache implementation, we believe it is
reasonable and better than most, and thus a fair competitor
for our disk-directed-I/O implementation.

4.1 Simulator

The implementations described above ran on top of the
Proteus parallel-architecture simulator [BDCW91], which
in turn ran on a DEC-5000 workstation. We configured
Proteus using the parameters listed in Table 1. These pa-
rameters are not meant to reflect any particular machine,
but a generic machine of current technology.

We added a disk model, a reimplementation of Ruemm-
ler and Wilkes’ HP 97560 model [RW94, KTR94]. We
validated our model against disk traces provided by HP,
using the same technique and measure as Ruemmler and
Wilkes. Our implementation had a demerit percentage of
3.9%, which indicates that it modeled the 97560 accurately.

2More aggressive strategies would require either more buffer space or
the addition of dynamic flow control, without a substantial improvement
in parallelism.

3While two cache buffers per disk perCP is not scalable,it is reasonable
in most situations (e.g., only 16 MB per IOP for 2 local disks, 512 CPs, and
an 8 KB block size). Note that this is much more than the space needed
for disk-directed I/O, two buffers per disk.

4We chose this design because it was similar to traditional systems. In
any case, we believe that avoiding the memory-memory copy by using
Memgets and dataless request messages would be unlikely to justify the
extra round-trip message traffic, particularly for small writes.

Table 1: Parameters for simulator. Those marked with a *
were varied in some experiments.

MIMD, distributed-memory 32 processors
Compute processors (CPs) 16 *
I/O processors (IOPs) 16 *
CPU speed, type 50 MHz, RISC
Disks 16 *
Disk type HP 97560
Disk capacity 1.3 GB
Disk peak transfer rate 2.34 Mbytes/s
File-system block size 8 KB
I/O buses (one per IOP) 16 *
I/O bus type SCSI
I/O bus peak bandwidth 10 Mbytes/s
Interconnect topology 6� 6 torus
Interconnect bandwidth 200� 106 bytes/s

bidirectional
Interconnect latency 20 ns per router
Routing wormhole

5 Experimental Design

We used the simulator to evaluate the performance of disk-
directed I/O, with the throughput for transferring large files
as our performance metric. The primary factor used in
our experiments was the file system, which could be one
of three alternatives: traditional caching, disk-directed, or
disk-directed with block-list presort (defined in Figure 1c).
We repeated this experiment for a variety of system configu-
rations; each configuration was defined by a combination of
the file-access pattern, disk layout, number of CPs, number
of IOPs, and number of disks. Each test case was replicated
in five independent trials, to account for randomness in the
disk layouts and in the network. To be fair, the total trans-
fer time included waiting for all I/O to complete, including
outstanding write-behind and prefetch requests.

The file and disk layout. Our experiments transferred a
one- or two-dimensional array of records. Two-dimensional
arrays were stored in the file in row-major order. The file
was striped across disks, block by block. The file size in all
cases was 10 MB (1280 8-KB blocks). While 10 MB is not
a large file, preliminary tests showed qualitatively similar
results with 100 and 1000 MB files. Thus, 10 MB was a
compromise to save simulation time.

Within each disk, the blocks of the file were laid out
according to one of two strategies: contiguous, where the
logical blocks of the file were laid out in consecutive phys-
ical blocks on disk, or random-blocks, where blocks were
placed at random physical locations. A real file system
would be somewhere between the two. As confirmed by
our own preliminary tests, it would have performance some-
where between the two.

The access patterns. Our read- and write-access pat-
terns differed in the way the array elements (records)
were mapped into CP memories. We chose to evalu-
ate the array-distribution possibilities available in High-
Performance Fortran [HPF93, dBC93], as shown in Fig-
ure 2. Thus, elements in each dimension of the array could
be mapped entirely to one CP (NONE), distributed among
CPs in contiguous blocks (BLOCK; note this is a different
“block” than the file system “block”), or distributed round-
robin among the CPs (CYCLIC). We name the patterns
using a shorthand beginning with r for reading and w for
writing; the r names are shown in Figure 2. There was
one additional pattern, ra (ALL, not shown), which corre-
sponds to all CPs reading the entire file, leading to multiple
copies of the file in memory. A few patterns are redundant
in our configuration (rnn � rn, rnc � rc, rbn � rb)
and were not actually used.

We chose two different record sizes, one designed to
stress the system’s capability to process small pieces of data,
with lots of interprocess locality and lots of contention, and
the other designed to work in the most-convenient unit, with
little interprocess locality or contention. The small record
size was 8 bytes, the size of a double-precision floating point
number. The large record size was 8192 bytes, the size of
a file-system block and cache buffer. These record-size
choices are reasonable [KN94]. We also tried 1024-byte
and 4096-byte records, leading to results between the 8-
byte and 8192-byte results; we present only the extremes
here.

6 Results

Figures 3 and 4 show the performance of our disk-directed-
I/O approach and of the traditional-caching method. Each
figure has two graphs, one for 8-byte records and one for
8192-byte records. Disk-directed I/O was usually at least
as fast as traditional caching, and in one case was 16 times
faster.

Figure 3 displays the performance on a random-blocks
disk layout. Three cases are shown for each access pattern:
traditional caching (TC), and disk-directed I/O (DDIO) with
and without a presort of the block requests by physical lo-
cation. Throughput for disk-directed I/O with presorting
consistently reached 6.2 Mbytes/s for reading and 7.4–
7.5 Mbytes/s for writing. In contrast, traditional-caching
throughput was highly dependent on the access pattern, was
never faster than 5 Mbytes/s, and was particularly slow for
many 8-byte patterns. Cases with small chunk sizes were
the slowest, as slow as 0.8 Mbytes/s, due to the tremendous
number of requests required to transfer the data. As a result,
disk-directed I/O with presorting was up to 9.0 times faster
than traditional caching.

NONE
NONE

(rnn)
cs = 64

1
0

2
3

1
0

2
3

1

0

2

3

0

BLOCK
NONE

(rbn)
cs = 16

CYCLIC
NONE

(rcn)
cs = 8
s = 32

0

NONE
CYCLIC

(rnc)
cs = 1
s = 4

BLOCK
CYCLIC

(rbc)
cs = 1
s = 2

CYCLIC
CYCLIC

(rcc)
cs = 1

s = 2, 10

0
1

2
3

1
2

3

0
1

0
1

0
1

0
1

2
3

2
3

2
3

2
3

0 1
2 3 2 3 2 3 2 3

0 1 0 1 0 1

0 1
2 3 2 3 2 3 2 3

0 1 0 1 0 1

0 1
2 3 2 3 2 3 2 3

0 1 0 1 0 1

0 1
2 3 2 3 2 3 2 3

0 1 0 1 0 1

HPF array-distribution patterns

10 2 30

NONE (rn)
cs = 8

BLOCK (rb)
cs = 2

CYCLIC (rc)
cs = 1, s = 4

10 2 3 10 2 3

NONE
BLOCK

(rnb)
cs = 2
s = 8

BLOCK
BLOCK

(rbb)
cs = 4
s = 8

CYCLIC
BLOCK

(rcb)
cs = 4
s = 16

0
1

2
3

0 1

2 3

0
2

0
2

0
2

0
2

3

3

3

3
1

1

1

1

Figure 2: Examples of matrix distributions, which we used as file-access patterns in our experiments. These examples
represent common ways to distribute a 1x8 vector or an 8x8 matrix over four processors. Patterns are named by the
distribution method (NONE, BLOCK, or CYCLIC) in each dimension (rows first, in the case of matrices). Each region
of the matrix is labeled with the number of the CP responsible for that region. The matrix is stored in row-major order,
both in the file and in memory. The chunk size (cs) is the size of the largest contiguous chunk of the file that is sent to a
single CP (in units of array elements), and the stride (s) is the file distance between the beginning of one chunk and the
next chunk destined for the same CP, where relevant.

Throughput (MB/s)

0.0 2.0 4.0 6.0 8.0

wcn

wcc

wbc

wcb

wbb

wnb

wc

wb

wn

rcn

rcc

rbc

rcb

rbb

rnb

rc

rb

rn

ra

DDIO
(sort)

DDIO TC

b) 8192-byte records

Throughput (MB/s)

0.0 2.0 4.0 6.0 8.0

wcn

wcc

wbc

wcb

wbb

wnb

wc

wb

wn

rcn

rcc

rbc

rcb

rbb

rnb

rc

rb

rn

ra

DDIO
(sort)

DDIO TC

a) 8-byte records

Figure 3: Two graphs comparing the throughput of disk-directed I/O (DDIO) to that of traditional caching (TC), on a
random-blocks disk layout. ra throughput has been normalized by the number of CPs. Each point represents the average
of five trials of an access pattern on both methods (maximum coefficient of variation (cv) is 0.14).

Figure 3 also makes clear the benefit of presorting disk
requests by physical location, an optimization available in
disk-directed I/O to an extent not possible in traditional
caching or, for that matter, in two-phase I/O. Nonetheless,
disk-directed I/O without presorting was still faster than
traditional caching in most cases. At best, it was 6.1 times
faster; at worst, there was no noticeable difference. Disk-
directed I/O thus improved performance in two ways: by
reducing overhead and by presorting the block list.

To test the ability of the different file-system implemen-
tations to take advantage of disk layout, and to expose other
overheads when the disk bandwidth could be fully utilized,
we compared the two methods on a contiguous disk lay-
out (Figure 4). I/O on this layout was much faster than
on the random-blocks layout, by avoiding the disk-head
movements caused by random layouts and by benefiting
from the disks’ own caches when using the contiguous lay-
out. In most cases disk-directed reading moved about 32.8
Mbytes/s, and disk-directed writing moved 34.8 Mbytes/s,
which was an impressive 93% of the disks’ peak transfer
rate of 37.5 Mbytes/s. The few cases where disk-directed
I/O did not get as close to the peak disk transfer rate were af-
fected by the overhead of moving individual 8-byte records
to and from the CPs. Further tuningof the disk-directed-I/O
code may alleviate this problem, but the real solution would
be to use gather/scatter Memput and Memget operations.

Traditional caching was rarely able to obtain the full disk
bandwidth, and had particular trouble with the 8-byte pat-
terns. Although there were cases where traditional caching
could match disk-directed I/O, traditional caching was as
much as 16.2 times slower than disk-directed I/O. Tradi-
tional caching failed in a few critical ways:

� When the CPs were active at widely different locations
in the file (e.g., in rb or rcn), there was little inter-
process spatial locality. In the contiguous layout, the
multiple localities defeated the disk’s internal caching
and caused extra head movement, both a significant
performance loss. Furthermore, the lost locality could
hamper the performance of IOP caching and prefetch-
ing, although our caches were large enough to avoid
this factor.

� In some patterns, IOP-prefetching mistakes caused ex-
traneous disk reads. At the end of the rb pattern, for
example, one extra block is prefetched on most disks;
this one block is negligible in large files, but accounts
for most of traditional caching’s poor performance on
rb in Figure 3.

� When the CPs were using 8-byte CYCLIC patterns,
many IOP-request messages were necessary to trans-
fer the small non-contiguous records, requiring many
(expensive) IOP-cache accesses. In addition, the suc-
cess of interprocess spatial locality was crucial for
performance.

� The high data rates of the contiguous disk layout ex-
pose the cache-management overhead in traditional
caching, unable to match disk-directed I/O’s perfor-
mance except for wn.

6.1 Sensitivity

To evaluate the sensitivity of our results to some of the
parameters, we independently varied the number of CPs,
number of IOPs, and number of disks. It was only feasible
to experiment with a subset of all configurations, so we
chose a subset that would push the limits of the system by
using the contiguous layout, and exhibit most of the variety
shown earlier, by using the patterns ra, rn, rb, and rc
with 8 KB records. ra throughput was normalized as usual.
For more details and other variations, see [Kot94].

We first varied the number of CPs (Figure 5), holding
the number of IOPs and disks fixed, and maintaining the
cache size for traditional caching at two buffers per disk per
CP. Note that disk-directed I/O was unaffected. Multiple
localities hurt rb as before, but the most interesting effect
was the poor performance of traditional caching on the rc
pattern. With 1-block records and no buffers at the CP,
each CP request can only use one disk. With fewer CPs
than IOPs, the full disk parallelism was not used. Finally,
cache-management overhead, which grew with cache size
and contention by multiple CPs, reduced the performance
of traditional caching on all four patterns.

We then varied the number of IOPs (and SCSI busses),
holding the number of CPs, number of disks, and total
cache size fixed (Figure 6). Performance decreased with
fewer IOPs because of increasing bus contention, partic-
ularly when there were more than two disks per bus, and
was ultimately limited by the 10 MB/s bus bandwidth. As
always, traditional caching had difficulty with the rb pat-
tern. Cache-management overhead contributed to tradi-
tional caching’s inability to match disk-directed I/O.

We then varied the number of disks, using one IOP, hold-
ing the number of CPs at 16,and maintaining the traditional-
caching cache size at two buffers per CP per disk (Figures 7
and 8). Performance scaled with more disks, approach-
ing the 10 MB/s bus-speed limit. The relationship between
disk-directed I/O and traditional caching was determined by
a combination of factors: disk-directed I/O’s lower over-
head and better use of the disks, and traditional caching’s
better use of the bus (sometimes the “synchronous” nature
of disk-directed I/O caused bus congestion on the contigu-
ous layout).

Summary. These variation experiments showed that
while the relative benefit of disk-directed I/O over tradi-
tional caching varied, disk-directed I/O consistently pro-
vided excellent performance, at least as good as traditional
caching, often independent of access pattern, and often
close to hardware limits.

Throughput (MB/s)

0.0 10.0 20.0 30.0 40.0

wcn

wcc

wbc

wcb

wbb

wnb

wc

wb

wn

rcn

rcc

rbc

rcb

rbb

rnb

rc

rb

rn

ra

DDIO TC

b) 8192-byte records

Throughput (MB/s)

0.0 10.0 20.0 30.0 40.0

wcn

wcc

wbc

wcb

wbb

wnb

wc

wb

wn

rcn

rcc

rbc

rcb

rbb

rnb

rc

rb

rn

ra

DDIO TC

a) 8-byte records

Figure 4: Two graphs comparing the throughput of disk-directed I/O (DDIO) and traditional caching (TC), on a contiguous
disk layout. ra throughput has been normalized by the number of CPs. Each point represents the average of five trials of
an access pattern on both methods (maximum cv is 0.13). Note that the peak disk throughput was 37.5 Mbytes/s.

�

�

��

��

��

��

��

��

��

� � � � � �� �� �� �� ��

Mbytes	s

Number of CPs

Throughput of TC and DDIO
 varying number of CPs

Max bandwidth

DDIO ra �

� � � � �

DDIO rn �

� � � � �

DDIO rb �

� � � � �

DDIO rc �

� � � � �

TC ra �

� � � �

�

TC rn �

� � � �
�

TC rb �

�

� � �
�

TC rc �

�

�

�

� �

Figure 5: A comparison of the throughput of disk-directed I/O (DDIO) and traditional caching (TC), as the number of
CPs varied, for the ra, rn, rb, and rc patterns (ra throughput has been normalized by the number of CPs). All cases
used the contiguous disk layout, and all used 8 KB records.

�

�

��

��

��

��

��

��

��

� � � � � �� �� �� �� ��

Mbytes	s

Number of IOPs

Throughput of TC and DDIO
 varying number of IOPs

Max bandwidth

DDIO ra �

�

�

�

�
�

DDIO rn �

�

�

�

�
�

DDIO rb �

�

�

�

�
�

DDIO rc �

�

�

�

�
�

TC ra �

�

�

�

� �

TC rn �

�

�

�

�
�

TC rb �

� � � � �

TC rc �

�

�

�

�
�

Figure 6: A comparison of the throughput of disk-directed I/O (DDIO) and traditional caching (TC), as the number of
IOPs (and busses) varied, for the ra, rn, rb, and rc patterns (ra throughput has been normalized by the number of
CPs). All cases used the contiguous disk layout, and all used 8 KB records. The maximum bandwidth was determined
by either the busses (1–2 IOPs) or the disks (4–16 IOPs).

�

�

�

�

�

��

� � �� �� �� �� ��

Mbytes	s

Number of disks

Throughput of TC and DDIO on contiguous layout
 varying number of disks

Max bandwidth

DDIO ra �

�

�

�

�

�

�

DDIO rn �

�

�

�

�

�
�

DDIO rb �

�

�

�

�

�

�

DDIO rc �

�

�

�

�

�

�

TC ra �

�

�

�

�
�

�

TC rn ��

�

�

�

�
�

TC rb �

�
�

�

�

�

�

TC rc �
�

�

�

�

�

�

Figure 7: A comparison of the throughput of disk-directed I/O (DDIO) and traditional caching (TC), as the number of
disks varied, for the ra, rn, rb, and rc patterns (ra throughput has been normalized by the number of CPs). All cases
used the contiguous disk layout, and all used 8 KB records. The maximum bandwidth was determined either by the disks
(1–4 disks) or by the (single) bus (8–32 disks).

�

�

�

�

�

��

� � �� �� �� �� ��

Mbytes	s

Number of disks

Throughput of TC and DDIO on random�blocks layout
 varying number of disks

Max bandwidth

DDIO ra �

�
�

�

�

�

�

DDIO rn �

��
�

�

�

�DDIO rb �

�
�

�

�

�

�
DDIO rc �

�
�

�

�

�

�

TC ra �

�
�

�

�

�

�TC rn �

��
�

�

�

�

TC rb �

�
�

�

�

�

�

TC rc �

�
�

�

�

�

�

Figure 8: Similar to Figure 7, but here all cases used the random-blocks disk layout.

7 Related work

Disk-directed I/O is somewhat reminiscent of the PIFS
(Bridge) “tools” interface [Dib90], in that the data flow is
controlled by the file system rather by than the application.
PIFS focuses on managing where data flows (for memory
locality), whereas disk-directed I/O focuses more on when
data flows (for better disk and cache performance).

Some parallel database machines use an architecture sim-
ilar to disk-directed I/O, in that certain operations are moved
closer to the disks to allow for more optimization. In the
Tandem NonStop system [EGKS90] each query is sent to
all IOPs, which scan the local database partition and send
only the relevant tuples back to the requesting node. The
Super Database Computer [KHH�92] has disk controllers
that continuously produce tasks from the input data set,
which are consumed and processed by CPs as they become
available. While this concept is roughly similar to our disk-
directed I/O, it is primarily a speed-matching buffer used
for load balancing.

The Jovian collective-I/O library [BBS�94] tries to co-
alesce fragmented requests from many CPs into larger re-
quests that can be passed to the IOPs. Their “coalescing
processes” are essentially a dynamic implementation of the
two-phase-I/O permutation phase.

Our model for managing a disk-directed request, that is,
sending a high-level request to all IOPs which then operate
independently under the assumption that they can determine
the necessary actions to accomplish the task, is an example
of collaborative execution like that used in the TickerTAIP
RAID controller [CLVW93].

Finally, our Memput and Memget operations are not
unusual. Similar remote-memory-access mechanisms
are supported in a variety of distributed-memory sys-
tems [WMR�94, CDG�93].

7.1 Comparison to Two-phase I/O

The above results clearly show the benefits of disk-directed
I/O over traditional caching. Two-phase I/O [dBC93] was
designed to avoid the worst of traditional caching while us-
ing the same IOP software, by reading data in a “conform-
ing distribution,” then permuting it among the CPs. At first
glance, disk-directed I/O is two-phase I/O implemented by
rewriting IOP software so the IOPs do both phases simul-
taneously. In fact, disk-directed I/O has many advantages
over two-phase I/O:

� There is no need to choose a conforming distribution.
Our data indicates that it would be a difficult choice,
dependent on the file layout, access pattern, record
size, and cache management algorithm. The designers
of two-phase I/O found that an rb distribution was
appropriate for a matrix laid out in row-major order,
but our results show thatrbwas rarely the best choice.

� There is the opportunity to optimize disk access with
disk-request presorting, in our case obtaining a 41–
50% performance boost.

� Smaller caches are needed at the IOPs, there are no
prefetching mistakes, and there is no cache thrashing.

� No extra memory is needed for permuting at the CPs.

� No extra time is needed for a permutation phase; the
“permutation” is overlapped with I/O.

� Each datum moves through the interconnect only once
in disk-directed I/O, and typically twice in two-phase
I/O.

� Communication is spread throughout disk transfer, not
concentrated in a permutation phase.

Thus, although we did not simulate two-phase I/O, it should
be slower than disk-directed I/O because it cannot optimize
the I/O as well and because the I/O and permutation phases
are not overlapped. Two-phase I/O could be faster than
disk-directed I/O in some patterns if the network were much
slower than the disks, and two-phase I/O were able to use
a smart permutation algorithm not available to the more
dynamically scheduled disk-directed I/O.

8 Conclusions

Our simulations showed that disk-directed I/O avoided
many of the pitfalls inherent in the traditional caching
method, such as cache thrashing, extraneous disk-head
movements, excessive request-response traffic between CP
and IOP, inability to use all the disk parallelism, inability to
use the disks’ own caches, overhead for cache management,
and memory-memory copies. Furthermore, disk-directed
I/O presorted disk requests to optimize head movement, and
had smaller buffer space requirements. As a result, disk-
directed I/O could provide consistent performance close to
the limits of the disk hardware. Indeed, it was in one case
more than 16 times faster than the caching method, and was
never substantially slower. More importantly, its perfor-
mance was nearly independent of the distribution of data to
CPs.

Our results also reaffirm the importance of disk layout
to performance: throughput on the contiguous layout was
about 5 times that on a random-blocks layout. Multipro-
cessor file systems for scientific applications should defi-
nitely consider extent-based layouts or other techniques to
increase physical contiguity.

As presented here, disk-directed I/O would be most valu-
able when making large, collective transfers of data between
multiple disks and multiple memories, whether for loading
input data, storing result data, or swapping data to a scratch
file in an out-of-core algorithm. Indeed, the data need not be
contiguous; our random-blocks layout also simulates a re-
quest for an arbitrary subset of blocks from a large file. The

concept of disk-directed I/O can be extended to other en-
vironments, however. Non-collective I/O access (e.g., our
rn and wn patterns) can benefit, although the gain is not as
dramatic. Our Memput and Memget operations would fit
in well on a shared-memory machine with a block-transfer
operation. Although our patterns focused on the transfer
of 1-d and 2-d matrices, we expect to see similar perfor-
mance for higher-dimensional matrices and other regular
structures. Finally, there is potential to implement transfer
requests that are more complex than simple permutations,
for example, selecting only a subset of records that match
some criterion.

Our results emphasize that simply layering a new in-
terface on top of a traditional file system will not suffice.
For maximum performance the file-system interface must
include collective-I/O operations, and the file-system soft-
ware (in particular, the IOP software) must be redesigned to
use mechanisms like disk-directed I/O to support collective
I/O. Nonetheless, there is still a place for caches. Irregular
or dynamic access patterns involving small, independent
transfers and having substantial temporal or interprocess
locality will still benefit from a cache. The challenge,
then, is to design systems that integrate the two techniques
smoothly.

Future work

There are many directions for future work in this area:

� design an appropriate collective-I/O interface,

� find a general way to specify a collective, disk-directed
access request to IOPs,

� reduce overhead by allowing the application to make
“strided” requests to the traditional caching system,

� optimize network message traffic by using gather/
scatter messages to move non-contiguous data, and

� optimize concurrent disk-directed activities.

Acknowledgements

Thanks to Song Bac Toh and Sriram Radhakrishnan for im-
plementing and validating the disk model; to Chris Ruemm-
ler, John Wilkes, and Hewlett Packard Corporation for
allowing us to use their disk traces to validate our disk
model, and for their help in understanding the details of the
HP 97560; to Denise Ecklund of Intel for help understand-
ing the Paragon interconnection network; to Eric Brewer
and Chrysanthos Dellarocas for Proteus; to Tom Cormen,
Keith Kotay, Nils Nieuwejaar, the anonymous reviewers,
and especially Karin Petersen for feedback on drafts of this
paper.

References

[BBS�94] Robert Bennett, Kelvin Bryant, Alan Sussman, Raja
Das, and Joel Saltz. Jovian: A framework for opti-
mizing parallel I/O. In Proceedingsof the 1994 Scal-
able Parallel LibrariesConference. IEEE Computer
Society Press, October 1994. To appear.

[BdC93] Rajesh Bordawekar, Juan Miguel del Rosario, and
Alok Choudhary. Design and evaluation of primi-
tives for parallel I/O. In Proceedings of Supercom-
puting ’93, pages 452–461, 1993.

[BDCW91] Eric A. Brewer, Chrysanthos N. Dellarocas, Adrian
Colbrook, and William E. Weihl. Proteus: A high-
performance parallel-architecture simulator. Tech-
nical Report MIT/LCS/TR–516, MIT, September
1991.

[BGST93] Michael L. Best, Adam Greenberg, Craig Stanfill,
and Lewis W. Tucker. CMMD I/O: A parallel Unix
I/O. InProceedings of the Seventh International Par-
allel Processing Symposium, pages 489–495, 1993.

[CDG�93] David E. Culler, Andrea Drusseau, Seth Copen
Goldstein, Arvind Krishnamurthy, Steven Lumetta,
Thorsten von Eicken, and Katherine Yelick. Parallel
programming in Split-C. In Proceedings of Super-
computing ’93, pages 262–283, 1993.

[CF94] Peter F. Corbett and Dror G. Feitelson. Design and
implementation of the Vesta parallel file system.
In Proceedings of the Scalable High-Performance
Computing Conference, pages 63–70, 1994.

[CK93] Thomas H. Cormen and David Kotz. Integrating
theory and practice in parallel file systems. In Pro-
ceedings of the 1993 DAGS/PC Symposium, pages
64–74, Hanover, NH, June 1993. Dartmouth Insti-
tute for Advanced Graduate Studies. Revised from
Dartmouth PCS-TR93-188.

[CLVW93] Pei Cao, Swee Boon Lim, Shivakumar Venkatara-
man, and John Wilkes. The TickerTAIP parallel
RAID architecture. In Proceedings of the 20th An-
nual International Symposium on Computer Archi-
tecture, pages 52–63, 1993.

[dBC93] Juan Miguel del Rosario, Rajesh Bordawekar, and
Alok Choudhary. Improved parallel I/O via a two-
phase run-time access strategy. In IPPS ’93 Work-
shop on Input/Output in Parallel Computer Systems,
pages 56–70, 1993. Also published in Computer Ar-
chitecture News 21(5), December 1993, pages 31–
38.

[DdR92] Erik DeBenedictis and Juan Miguel del Rosario.
nCUBE parallel I/O software. In Eleventh Annual
IEEE International Phoenix Conference on Com-
puters and Communications (IPCCC), pages 0117–
0124, April 1992.

[Dib90] Peter C. Dibble. A Parallel Interleaved File System.
PhD thesis, University of Rochester, March 1990.

[DSE88] Peter Dibble, Michael Scott, and Carla Ellis. Bridge:
A high-performance file system for parallel proces-
sors. In Proceedings of the Eighth International

ConferenceonDistributedComputer Systems, pages
154–161, June 1988.

[EGKS90] Susanne Englert, Jim Gray, Terrye Kocher, and Pra-
ful Shah. A benchmark of NonStop SQL Release
2 demonstrating near-linear speedup and scaleup on
large databases. In Proceedings of the 1990 ACM
Sigmetrics Conference on Measurement and Mod-
eling of Computer Systems, pages 245–246, May
1990.

[FPD93] James C. French, Terrence W. Pratt, and Mriganka
Das. Performance measurement of the Concurrent
File System of the Intel iPSC/2 hypercube. Jour-
nal of Parallel and Distributed Computing, 17(1–
2):115–121, January and February 1993.

[GGL93] N. Galbreath, W. Gropp, and D. Levine.
Applications-driven parallel I/O. In Proceedings of
Supercomputing ’93, pages 462–471, 1993.

[GP91] Andrew S. Grimshaw and Jeff Prem. High per-
formance parallel file objects. In Sixth Annual
Distributed-Memory Computer Conference, pages
720–723, 1991.

[HPF93] High Performance Fortran Forum. High Perfor-
mance Fortran Language Specification, 1.0 edition,
May 3 1993.

[KE93] David Kotz and Carla Schlatter Ellis. Caching and
writeback policies in parallel file systems. Journalof
Parallel and Distributed Computing, 17(1–2):140–
145, January and February 1993.

[KHH�92] Masaru Kitsuregawa, Satoshi Hirano, Masanobu
Harada, Minoru Nakamura, and Mikio Takagi. The
Super Database Computer (SDC): System architec-
ture, algorithm and preliminary evaluation. In Pro-
ceedings of the Twenty-Fifth Annual Hawaii Inter-
national Conference on System Sciences, volume I,
pages 308–319, 1992.

[KN94] David Kotz and Nils Nieuwejaar. Dynamic file-
access characteristics of a production parallel scien-
tific workload. In Proceedings of Supercomputing
’94, November 1994. To appear.

[Kot94] David Kotz. Disk-directed I/O for MIMD multipro-
cessors. Technical Report PCS-TR94-226, Dept. of
Computer Science, Dartmouth College, July 1994.

[KTR94] David Kotz, Song Bac Toh, and Sriram Radhakrish-
nan. A detailed simulation model of the HP 97560
disk drive. Technical Report PCS-TR94-220, Dept.
of Computer Science, Dartmouth College, July
1994.

[LIN�93] Susan J. LoVerso, Marshall Isman, Andy Nanopou-
los, William Nesheim, Ewan D. Milne, and Richard
Wheeler. sfs: A parallel file system for the CM-5.
In Proceedings of the 1993 Summer USENIX Con-
ference, pages 291–305, 1993.

[MK91] Ethan L. Miller and Randy H. Katz. Input/output
behavior of supercomputer applications. In Pro-
ceedings of Supercomputing ’91, pages 567–576,
November 1991.

[Nit92] Bill Nitzberg. Performance of the iPSC/860 Concur-
rent File System. Technical Report RND-92-020,
NAS Systems Division, NASA Ames, December
1992.

[NK94] Nils Nieuwejaar and David Kotz. A multiproces-
sor extension to the conventional file system inter-
face. Technical Report PCS-TR94-230, Dept. of
Computer Science, Dartmouth College, September
1994.

[OCH�85] John Ousterhout, Hervé Da Costa, David Harrison,
John Kunze, Mike Kupfer, and James Thompson.
A trace driven analysis of the UNIX 4.2 BSD file
system. In Proceedings of the Tenth ACM Sympo-
sium onOperating SystemsPrinciples, pages 15–24,
December 1985.

[PGK88] David Patterson, Garth Gibson, and Randy Katz.
A case for redundant arrays of inexpensive disks
(RAID). In ACM SIGMOD Conference, pages 109–
116, June 1988.

[Pie89] Paul Pierce. A concurrent file system for a highly
parallel mass storage system. In Fourth Conference
on Hypercube Concurrent Computers and Applica-
tions, pages 155–160, 1989.

[PP93] Barbara K. Pasqualeand George C. Polyzos. A static
analysis of I/O characteristics of scientific applica-
tions in a production workload. In Proceedings of
Supercomputing ’93, pages 388–397, 1993.

[Roy93] Paul J. Roy. Unix file access and caching in a multi-
computer environment. InProceedings of theUsenix
Mach III Symposium, pages 21–37, 1993.

[RW94] Chris Ruemmler and John Wilkes. An introduction
to disk drive modeling. IEEE Computer, 27(3):17–
28, March 1994.

[WMR�94] Stephen R. Wheat, Arthur B. Maccabe, Rolf Riesen,
David W. van Dresser, and T. Mack Stallcup.
PUMA: An operating system for massively paral-
lel systems. In Proceedings of the Twenty-Seventh
Annual Hawaii International Conference on System
Sciences, 1994.

Many of these papers can be found at
http://www.cs.dartmouth.edu/pario.html

The disk-model software can be found at
http://www.cs.dartmouth.edu/

cs archive/diskmodel.html

