
Caching and Writeback Policies

in Parallel File Systems�

David Kotz

Dept� of Math and Computer Science

Dartmouth College

Hanover� NH ����������

David�Kotz�Dartmouth�edu

Carla Schlatter Ellis

Dept� of Computer Science

Duke University

Durham� NC 	���

carla�cs�duke�edu

July ��� ���	

�This research was supported in part by NSF grants CCR�������� and CCR�������� and DARPA�NASA
subcontract of NCC���	�

�

David Kotz
THIS COPY IS THE AUTHORS' PRE-PUBLICATION VERSION;
it may differ slightly from the official published version.
Journal of Parallel and Distributed Computing, January 1993.
doi:10.1006/jpdc.1993.1012. ©Copyright Academic Press. �

Kotz and Ellis� Caching and Writeback Policies in Parallel File Systems �

Proposed running head� Kotz and Ellis� Caching in Parallel File Systems

Address for proofs�

David Kotz
Assistant Professor
Mathematics and Computer Science
Dartmouth College
���� Bradley Hall
Hanover NH �����	����
email� David
Kotz�Dartmouth
edu
phone� ���	���	���

Abstract

Improvements in the processing speed of multiprocessors are outpacing improve�

ments in the speed of disk hardware� Parallel disk I�O subsystems have been proposed
as one way to close the gap between processor and disk speeds� Such parallel disk sys�

tems require parallel �le system software to avoid performance�limiting bottlenecks� We
discuss cache management techniques that can be used in a parallel �le system imple�

mentation for multiprocessors with scienti�c workloads� We examine several writeback
policies� and give results of experiments that test their performance�

Kotz and Ellis� Caching and Writeback Policies in Parallel File Systems �

Symbols used� � � � �

Kotz and Ellis� Caching and Writeback Policies in Parallel File Systems �

� Introduction

It is increasingly di�cult to provide su�cient I�O bandwidth to keep parallel supercomputers

running at full speed for large problems� which may consume and produce immense amounts

of data
 Recent trends have shown that improvements in the speed of disk hardware are not

keeping up with the increasing raw speed of processors
 Parallel I�O mechanisms� such as

disk striping ��
�� could provide a signi�cant boost in performance
 The challenge is to make

this extensive disk hardware bandwidth easily available to parallel programs
 We propose

a highly parallel �le system implementation that incorporates caching and prefetching as a

means of delivering the bene�ts of a parallel I�O architecture to the user programs

This paper concentrates on multiprocessor �le systems intended for scienti�c applications

The parallel environment and workload raise a number of questions� Are caches useful

for parallel scienti�c applications using parallel �le systems� What are the appropriate

management policies� Do write	behind and delayed writeback help utilize parallel disk

bandwidth� This paper examines these issues� de�nes some possible policies� and reports

results from experiments with these policies

In the next section we provide more background information� and then in Section � we

describe the workload and the cache management policies
 In Section � we present the

experiments� performance measures� and results
 Section � concludes

� Background

There are two ways to attach multiple disks to a multiprocessor
 The �rst is to attach a

striped disk array to a processor or to the interconnection network
 Disk striping �
� ��� �
�

declusters the data of a �le across numerous disks� accessing them in parallel through a single

controller
 The second� which also declusters data over many disks� is to attach independent

controllers and disks to separate processors or ports on the interconnection network
 We

call the latter structure Parallel Independent Disks �PID�
 Examples of a PID architecture

include Intel�s Concurrent File System ���� �� ���� the Bridge simulated �le system ��� �� for

the BBN Butter�y� and the �le system for the nCUBE�� ���� �� ���

While caching has not been studied for parallel �le systems� Alan Smith has extensively

Kotz and Ellis� Caching and Writeback Policies in Parallel File Systems �

studied caching in uniprocessors with general	purpose workloads ����

Uniprocessor and distributed	system �le access patterns have been measured many

times ��� ��� ��
 Sequential access is most common
 Supercomputer �le access patterns

�a scienti�c workload� involve huge �les �tens to thousands of megabytes� accessed primarily

sequentially� sometimes repeatedly ����
 Five parallel scienti�c applications� chosen from

the PERFECT benchmarks ���� and parallelized for an eight	processor Alliant� have only

sequential access patterns
 ����
 This is only a small sample� however� and the programs

are parallelized sequential programs� not parallel programs per se� Crockett�s discussion of

parallel �le access also in�uences our workload model ���
 In summary� little is known about

parallel �le access patterns� but it appears that some type of sequentiality will dominate

� Models and Policies

��� Architectural Models

Our architectural model is a multiple instruction stream� multiple data stream �MIMD�

shared	memory multiprocessor with parallel� independent disks
 We assume an interleaved

mapping of �les to disks� with blocks of the �le allocated round	robin to all disks in the

system
 The �le system manager� running on each processor� handles the mapping trans	

parently� managing the disks and all requests for I�O from that processor

��� Workload Model

The lack of a real parallel workload employing parallel I�O leads us to use a synthetic

workload in our tests
 We work with �le access patterns rather than disk access patterns�

an important distinction
 That is� we examine the pattern of access to logical blocks of the

�le rather than to physical blocks on the disk
 Disk access patterns are complicated by the

layout of logical blocks on the disk and by access to multiple �les
 We concentrate on the

logical access pattern per �le and ignore disk layout issues

The application accesses records in the �le �e
g
� lines of text� or rows of a matrix�� which

are translated into accesses to logical �le blocks by the interface to the �le system
 The �le

system internals� which are responsible for caching� see only the block access pattern
 Blocks

Kotz and Ellis� Caching and Writeback Policies in Parallel File Systems �

are the �le system�s transfer unit to the disk
 We assume that the �le system internal bu�er

size is the same as the block size
 Thus� one bu�er holds one block

Most �les are opened for either reading or writing� with few �les updated ��� ���
 In this

paper we focus on write	only patterns� and investigate delayed	write policies
 We use three

representative write	only parallel �le access patterns

lw� Local Whole �le� one process� a single process writes the entire �le from start to �nish

Since the other processes are idle lw� is a degenerate parallel pattern

seg Segmented� the �le is divided into disjoint segments� one per process� and each process

writes its segment from start to �nish
 Thus� each process produces an independent�

sequential access pattern

gw Global Whole �le� the entire �le is written from beginning to end
 The processes

write distinct records to the �le in a self�scheduled order� so that globally the entire

�le is written exactly once
 Typically� the processes choose the �next� record through

some mechanism external to the �le system� such as atomically incrementing a shared	

memory counter
 They independently seek and write a record when they are ready

Thus� the �le system may receive requests out of order
 The �le system does not

serialize requests� however� allowing them to proceed concurrently� even if they involve

the same bu�er

Note that these patterns are not necessarily representative of the distribution of the access

patterns actually used by applications
 We feel that this set covers the range of patterns

likely to be used by scienti�c applications
 We have seen instances of all three patterns

��� Design

In this section we describe some key components of the design of a �le cache� including

one simple replacement policy� which determines the blocks to replace when a free bu�er is

needed� and several write policies� which determine when new data are written back to disk

Kotz and Ellis� Caching and Writeback Policies in Parallel File Systems �

����� Bu�er Replacement Policy

We associate an instance of the cache with a particular open �le� caching the logical blocks

of the �le rather than the physical blocks of the disk
 This is a shared cache concurrently

servicing the requests of all processes within a parallel application
 In our experiments� then�

we examined the performance of this one	�le cache
 Allocating resources among multiple

�les and applications is left for future work

A cache depends on locality
 Temporal locality means that recently used data will be

used again soon
 Spatial locality means that data in or near a recently accessed block will

be accessed soon
 The combination of these observations often leads to sequential locality�

wherein the most	recently	used �MRU� block is used repeatedly
 In the access patterns we

expect to see in parallel scienti�c applications� we see another form of locality� interprocess

locality
 Here� a block used by one process is used soon by another process

Sequential locality suggests a �toss	immediately� replacement policy ����� which retains

the MRU block in memory� allowing older blocks to be replaced ��tossed��
� This works for

uniprocess sequential access patterns� but a parallel analog is needed
 Some access patterns

�like seg� may have several �MRU� blocks� one for each process
 Thus� our parallel toss	

immediately scheme retains at least the MRU block for each process
 The cache must have

at least as many bu�ers as processes� but one bu�er per process seems reasonable compared

to the other memory required for a process
 This scheme is also simple to implement� using

a counter for each cache bu�er to count processes whose MRU block is in that bu�er
 When

the counter is zero� the block is replaceable

����� Write Policies

A cache can improve �le	write performance with write�behind� where data are written into

a bu�er� allowing the application to continue while the bu�er is written to disk
 If the disk

write is not initiated immediately� it is termed �delayed writeback�� which usually reduces

the number of disk writes
 First� data sometimes disappear before being written to disk �by

being overwritten or by removal or truncation of the �le containing the data�
 This is not

�Note that this is not� strictly speaking� an �MRU
 replacement policy� which replaces the most�recently�
used block�

Kotz and Ellis� Caching and Writeback Policies in Parallel File Systems �

likely in our workload
 Second� spatial locality combines multiple �le writes to the same

block into a single disk write� which is of particular interest when there is also interprocess

locality involved

The write policy determines when �dirty� bu�ers are �cleaned� �written to disk�
 If a

dirty bu�er is written too late� the cache �lls with dirty blocks and processes idle waiting for

bu�ers to be cleaned
 If a dirty bu�er is written too early� it may have to be written again�

wasting the �rst write
 We call this a rewrite mistake�

In a single	process sequential access pattern it is reasonable to write a block whenever

the process begins writing the next block
 This technique assumes sequential access� once a

block is fully written by the process� it will not be rewritten
 In a multiprocess application

with interprocess locality� however� the actions of any one process do not indicate when a

block is complete
 From the assumption of sequentiality� however� every byte of the �le is

written exactly once
 Thus it is safe to write the block to disk when all bytes of the block

have been written
 This leads directly to the WriteFull policy below

We implemented WriteFull and three simpler write policies for comparison�

WriteThru forces a disk write on every �le write request
 This is ideal for blocks accessed

only once

WriteBack delays the disk write until the bu�er is needed for another block

WriteFree issues a disk write when the bu�er becomes replaceable
 Thus� it issues a write

before the bu�er is needed for re	use� but after it is no longer in use by some processor

Of course� the bu�er is not usable until the write completes

WriteFull issues the disk write when the bu�er is �full�� de�ned to be when the number of

bytes written to the bu�er is exactly equal to the size of the bu�er in bytes
 An old�

un�lled bu�er �no longer in use� will eventually be written
 Thus� WriteFull becomes

WriteBack during non	sequential access

WriteThru and WriteBack were included for comparison because they are commonly used

in memory caches and distributed �le system caches
 WriteFree is a compromise between

WriteThru and WriteBack

Kotz and Ellis� Caching and Writeback Policies in Parallel File Systems

� Experiments

We implemented a �le system testbed as heavily parameterized parallel program running on

a BBN GP���� parallel processor ���� an MIMD machine
 Since the multiprocessor does not

have parallel disks� however� they are simulated
 The testbed includes the synthetic work	

load� the �le system� and the set of simulated disks
 The use of a real parallel processor�

combined with real	time execution and measurement� allows us to directly include the ef	

fects of memory contention� synchronization overhead� inter	process dependencies� and other

overhead� as they are caused by our workload under various management policies
 See ����

for more details

��� Experimental Parameters

The parameters described here are the base from which we make other variations
 There

were �� processes running on �� processors
 The patterns all wrote � MBytes of data� or

about ��� KBytes per process
 The block and bu�er size was � KByte� and the record size

was usually one block �but varied in one set of tests�
 This translates to ���� blocks written

to the disk
 The cache contained �� one	block bu�ers
 We also had the capability to turn

the cache o�� so all requests went directly to the disk

After each record was accessed� delay was added in some tests to simulate computation�

this delay was exponentially distributed with a mean of �� msec
� All other tests had no

delay after each access� simulating an I�O	intensive process

The �le was interleaved over �� disks� at the granularity of a single block
 Disk requests

were queued in the appropriate disk queue
 The disk service time was simulated using a

constant arti�cial delay of �� msec� a reasonable approximation of the average� access time

for the small� inexpensive disk drives that might be used
 See ���� for more experimental

details� and results of variations of many of these parameters

�Actually� we used an exponential distribution truncated at ��� msec
 The exponential nature of the
distribution is not important
 Once chosen� this delay was a �xed part of the workload� and did not vary
from trial to trial

�Recall that we do not assume a contiguous �le layout on disk

Kotz and Ellis� Caching and Writeback Policies in Parallel File Systems ��

��� Measures

The primary performance metric is the total execution time
 This is real ��wall	clock�� time�

incorporating all forms of overhead �such as memory contention� policy mistakes� etc�� and

unexpected e�ects� and thus it is the best measure of overall performance
 It includes the

start� steady	state� and �nish portions of the workload
 The steady	state dominates
 Longer

access patterns would increase the steady	state proportion� where prefetching and caching

are most e�ective
 Thus� our results for the improvement due to caching are conservative

A note on the data� Every data point in each plot represents the average of �ve trials

�repetitions of the experiment with exactly the same parameters and workload�
 The coef�

�cient of variation �cv� is the standard deviation divided by the mean �average�
 For all

experiments in this paper� the cv was less than �
��� �usually much less�� meaning that the

standard deviation over �ve trials was less than �
�� of the mean
 In each table and plot

we give the maximum cv of all data points involved

����� The Ideal Execution Time

We compare the experimental execution time to a simple model of the ideal execution time

In the ideal situation� there is no overhead� and either all of the I�O is overlapped by

computation or all of the computation is overlapped by I�O
 Thus� the ideal execution time

is simply the maximum of the I�O time and the computation time
 This assumes that the

workload is evenly divided among the disks and processors and that the disks are perfectly

utilized
 No real execution of the program can be faster than the ideal execution time

With the base parameter values� both the I�O and the computation times are � seconds�

and thus the ideal execution time is also � seconds
 The ideal computation time for lw�

with computation �and thus the ideal execution time� is ��� seconds since there is only one

processor involved

��� Caching

Using the testbed� we ran all of our access patterns with and without caching
 The following

table shows the results of experiments on our write	only access patterns
 Here we compared

Kotz and Ellis� Caching and Writeback Policies in Parallel File Systems ��

the simple WriteBack caching policy with not caching
 Section �
� compares write policies

In addition to the traditional bene�ts of overlap between overhead and I�O� and avoiding

I�O due to locality �as in the quarter	block records below�� the one	processor pattern lw�

was able to use more than one disk by using delayed writes through the cache
 This is a

good example of a cache�s ability to help applications use parallel disk bandwidth

Total execution time� in seconds �cv � ������
One	block Quarter	block

Pattern No Cache Cache No Cache Cache
lw� ���
� ��
� ���
� ��
�
seg �

 �
� ��
� �
�
gw �
� �
� ���
� �
�

��� Write�Policy Experiments

These experiments evaluate the e�ectiveness of our write policies across variations in work	

load and cache size� and seek to answer the following questions� What is the e�ect of cache

size� How do the policies react to interprocess locality� Which �if any� policy is the most

generally successful� Can a smart write	bu�ering policy help an application to better use

the available parallel I�O bandwidth�

����� Cache�size Variation

We varied the cache size from �� one	block bu�ers to ��� one	block bu�ers
 The record size

was one block� so each block was accessed only once
 Note that WriteFull and WriteThru

are inherently equivalent in these access patterns� because the bu�er is full when it is �rst

written

In the gw pattern �Figure ��� WriteBack was clearly slowest� since it delayed the disk

write too long
 WriteFree delayed the disk write for a full MRU block until the next �le

system access� which was after the process�s compute cycle
 With non	zero computation

�Figure ��� this delay was too long� slowing down overall execution
 This same e�ect also

held for other patterns
 Note that between �� and �� bu�ers were the maximumuseful cache

size for gw
 Forty bu�ers corresponds to two bu�ers per process� which allowed one to be

�lled while the other is written to disk �double bu�ering�

Kotz and Ellis� Caching and Writeback Policies in Parallel File Systems ��

The lw� patterns ran more slowly than the gw patterns� because one process could not

drive all �� disks at full e�ciency �Figure ��
 Larger caches bene�ted the lw� pattern by

allowing more disk parallelism to be used� but this e�ect was not much of a factor when the

��� seconds of computation dominated

The write	only seg patterns had a di�cult disk access pattern �all processes began on the

same disk�
 A large cache allowed processes to continue writing even when some disks were

overloaded �Figure ��
 In e�ect� larger caches allowed seg to use more disks concurrently

This is an excellent example of the ability of a cache to help a simple	minded program access

the potentially high bandwidth of parallel disks
 The results for seg with computation are

not shown since they o�er no new insights

For the experiments in the next section we chose an ��	block cache �four bu�ers per

process� because that was a reasonable compromise for all workloads� based on the results

in this section

����� Record�size Variation

We varied the record size of the access pattern with a �xed cache size of �� one	block bu�ers

The total amount of data written� in blocks� was �xed
 The variation includes both integral

and non	integral record sizes �relative to the block size�
 The latter are important because

they cause multiple accesses to many blocks� which should clearly di�erentiate WriteThru

and WriteFull

Figure �a shows the record	size variation for the write	only gw access pattern
 WriteThru

is clearly a poor choice for small record sizes� due to a huge number of rewrite mistakes

�rewriting the same block to disk many times�
 WriteFree was smarter� waiting until the

bu�er was mostly unused before issuing a disk write� but it still had some mistakes and did

not immediately write the blocks to disk when they were full
 WriteBack was sometimes

faster than WriteFree because it had fewer rewrite mistakes
 Finally� the WriteFull method

had a nearly perfect �	second execution time over all record sizes� because it issued the write

precisely when the block was ready to go to disk� and made no mistakes

Note the dips in the curves for all but WriteFull
 These occur at integral record sizes

Kotz and Ellis� Caching and Writeback Policies in Parallel File Systems ��

��� �� �� �� �� and �� blocks��� where there was only one access per block
 This avoided any

opportunity for mistakes� which were common in the non	integral record sizes

The results for lw� are shown in Figure �b
 Due to overhead� one process could not keep

�� disks busy� even with an ��	block cache
 With non	integral record sizes this overhead was

increased due to repeated accesses to some blocks
 Thus� the time varies widely for non	

integral record sizes
 The record	size variation for the seg pattern �Figure �c� shows that

WriteThru was slowest� due to rewrite mistakes
 Because of the sequential access pattern on

each processor� none of the others had rewrite mistakes

Record size was an important factor in the performance of our write methods
 For integral

record sizes� all methods were essentially independent of record size
 For non	integral sizes�

all but WriteFull made many mistakes
 WriteFull was thus the most generally successful

write policy

� Conclusion

A relatively simple cache management strategy� based on toss	immediately ����� provided

e�cient and e�ective caching for our workload
 More complex strategies do not appear

to be necessary
 Most importantly� it was an e�ective base for studying write policies for

write	only patterns
 Caching was able to use locality� including interprocess locality� to help

applications use the parallel disk bandwidth

Given the types of write	only access patterns we expect to be common in scienti�c work	

loads� our exploration of four methods shows that WriteFull was consistently at or near the

best performance in all situations
 A small cache ���� blocks per process� was su�cient to

obtain the best performance� except in the seg pattern� where larger caches helped mask the

disk contention
 Large caches were thus only useful when there was high disk contention

�Although we did not study bursty I�O� larger caches should also be useful for absorbing

bursts of write activity
� High	performance parallel �le writing in scienti�c workloads is def	

initely possible with these simple caching techniques
 Further study is needed� however� to

determine the e�ects of multiple �les� multiple applications� or of di�erent workload types

�We used these record sizes because they divided the ���� blocks into an integral number of �xed�size
records

Kotz and Ellis� Caching and Writeback Policies in Parallel File Systems ��

References

��� M
 G
 Baker� J
 H
 Hartman� M
 D
 Kupfer� K
 W
 Shirri�� and J
 K
 Ousterhout
 Mea	

surements of a distributed �le system
 In Proceedings of the Thirteenth ACM Symposium

on Operating Systems Principles� pages �
������ �

�

��� BBN Advanced Computers
 Butter�y Products Overview� �
��

��� T
 W
 Crockett
 File concepts for parallel I�O
 In Proceedings of Supercomputing �	
�

pages ������
� �
�

��� E
 DeBenedictus and J
 M
 del Rosario
 nCUBE parallel I�O software
 In Eleventh

Annual IEEE International Phoenix Conference on Computers and Communications

�IPCCC�� Apr
 �

�
 To appear

��� P
 Dibble� M
 Scott� and C
 Ellis
 Bridge� A high	performance �le system for par	

allel processors
 In Proceedings of the Eighth International Conference on Distributed

Computer Systems� pages �������� June �
��

��� P
 C
 Dibble
 A Parallel Interleaved File System
 PhD thesis� University of Rochester�

Mar
 �

�

��� R
 Floyd
 Short	term �le reference patterns in a UNIX environment
 Technical Report

���� Dept
 of Computer Science� Univ
 of Rochester� Mar
 �
��

��� J
 C
 French� T
 W
 Pratt� and M
 Das
 Performance measurement of a parallel in	

put�output system for the Intel iPSC�� hypercube
 Proceedings of the �

� ACM Sig�

metrics Conference on Measurement and Modeling of Computer Systems� pages ��������

�

�

�
� M
 Y
 Kim
 Synchronized disk interleaving
 IEEE Transactions on Computers� C	

�������
���
��� Nov
 �
��

���� D
 Kotz
 Prefetching and Caching Techniques in File Systems for MIMD Multiproces�

sors
 PhD thesis� Duke University� Apr
 �

�
 Available as technical report CS	�

�	���

Kotz and Ellis� Caching and Writeback Policies in Parallel File Systems ��

���� E
 L
 Miller and R
 H
 Katz
 Input�output behavior of supercomputer applications
 In

Proceedings of Supercomputing �
�� pages �������� Nov
 �

�

���� nCUBE Corporation
 nCUBE � supercomputers� Technical overview
 Brochure� �

�

���� J
 Ousterhout� H
 D
 Costa� D
 Harrison� J
 Kunze� M
 Kupfer� and J
 Thompson
 A

trace driven analysis of the UNIX �
� BSD �le system
 In Proceedings of the Tenth

ACM Symposium on Operating Systems Principles� pages ������ Dec
 �
��

���� D
 Patterson� G
 Gibson� and R
 Katz
 A case for redundant arrays of inexpensive disks

�RAID�
 In ACM SIGMOD Conference� pages ��
����� June �
��

���� P
 Pierce
 A concurrent �le system for a highly parallel mass storage system
 In Fourth

Conference on Hypercube Concurrent Computers and Applications� pages �������� �
�

���� L
 Pointer
 PERFECT� Performance evaluation for cost	e�ective transformations� Re	

port �
 Technical Report
��� CSRD Univ
 of Illinois� Nov
 �

�
 With Addenda �

and �

���� T
 W
 Pratt� J
 C
 French� P
 M
 Dickens� and S
 A
 Janet� Jr
 A comparison of the

architecture and performance of two parallel �le systems
 In Fourth Conference on

Hypercube Concurrent Computers and Applications� pages �������� �
�

���� A
 L
 N
 Reddy and P
 Banerjee
 A study of I�O behavior of Perfect benchmarks

on a multiprocessor
 In Proceedings of the ��th Annual International Symposium on

Computer Architecture� pages �������� �

�

��
� K
 Salem and H
 Garcia	Molina
 Disk striping
 In IEEE �
	
 Conference on Data

Engineering� pages �������� �
��

���� A
 J
 Smith
 Disk cache	miss ratio analysis and design considerations
 ACM Transac�

tions on Computer Systems� ������������� Aug
 �
��

���� M
 Stonebraker
 Operating system support for database management
 Communications

of the ACM� �������������� July �
��

Kotz and Ellis� Caching and Writeback Policies in Parallel File Systems ��

�

	

�

�

�

��

��

��

�� �� 	� �� ��� ��� ��� �	� ��� ���

Total
Time
�sec�

Cache size �blocks�

Cache�size variation for gw

WriteBack !!

!

! ! ! ! ! !

WriteFull
WriteFree
WriteThru �

�

�

� � � � � �

ideal

Figure �� Cache	size variation for write pattern gw

	

�

��

��

��

�� �� 	� �� ��� ��� ��� �	� ��� ���

Total
Time
�sec�

Cache size �blocks�

Cache�size variation for gw with computation

WriteBack !!

!
! ! ! ! ! !

WriteFull
WriteFree
WriteThru �

�

� � � � � � �

ideal

Figure �� Cache	size variation for write pattern gw with computation

Kotz and Ellis� Caching and Writeback Policies in Parallel File Systems ��

��

��

��

�	

��

��

�� �� 	� �� ��� ��� ��� �	� ��� ���

Total
Time
�sec�

Cache size �blocks�

Cache�size variation for lw�

WriteBack !

! !
! ! ! ! ! !

WriteFull
WriteFree
WriteThru �

�

�
� � � �

� �

ideal �	 seconds�

Figure �� Cache	size variation for write pattern lw�

	

�

�

�

��

��

��

��

��

��

�� �� 	� �� ��� ��� ��� �	� ��� ���

Total
Time
�sec�

Cache size �blocks�

Cache�size variation for seg

WriteBack !

!

!
! ! ! ! !

WriteFull
WriteFree
WriteThru �

�

�

�

�

�
� � �

ideal

Figure �� Cache	size variation for write pattern seg

Kotz and Ellis� Caching and Writeback Policies in Parallel File Systems ��

�

�

��

��

��

� � � � � � 	 � � � ��

Total
Time
�sec�

Record size �blocks�

a� Record�size variation for gw

WriteBack !

!
!
!
!
!!!
!
!!!!!!

!
!!!
!
!!!!!!!!!

!
!!!!!!!

WriteFull
WriteFree
WriteThru �

�

�

�

�

�
�
�

�

������

�

���

�

���������

�

�����
�

�

ideal

�

��

��

��

��

��

	�

� � � � � � 	 � � � ��

Total
Time
�sec�

Record size �blocks�

b� Record�size variation for lw�

WriteBack !
!

!!

!

!
!
!

!

!

!!!!
!

!
!!
!!
!! ! !

!
!
!!
! !

WriteFull
WriteFree
WriteThru �

�

�
�

�

�

�

�

�

�

����

�

�

�
�

��

�� � �
�
�

��

�
�

ideal

�

�

��

��

��

��

��

� � � � � � 	 � � � ��

Total
Time
�sec�

Record size �blocks�

c� Record�size variation for seg

WriteBack !

!!!!!!!!!!!!!!!!!!!!! ! ! !!!! ! !

WriteFull
WriteFree
WriteThru �

�

�

�

�

��
�

�

�����

�

��

�

���� � �

�

��� �

�

ideal

Figure �� Record	size variation for all three write patterns

Kotz and Ellis� Caching and Writeback Policies in Parallel File Systems �

Biographies

David F� Kotz received the A
B
 degree in computer science and physics from Dart	

mouth College� Hanover NH� in �
��
 He received the M
S
 and Ph
D
 degrees in computer

science from Duke University in �
�
 and �

�� respectively
 His research interests include

secondary memory management and �le system design for MIMD multiprocessors� and algo	

rithms for concurrent data structures
 He has been an Assistant Professor of Mathematics

and Computer Science at Dartmouth College� Hanover NH� since �

�

Carla Schlatter Ellis received the B
S
 degree from the University of Toledo� Toledo

OH� in �
�� and the M
S
 and Ph
D
 degrees from the University of Washington� Seattle�

in �
�� and �
�

 She is currently an Associate Professor in the Department of Computer

Science� Duke University� Durham NC
 Previously� she was a member of the computer science

faculties at the University of Oregon� Eugene� from �
�� to �
��� and at the University of

Rochester� Rochester NY� from �
�� to �
��

Kotz and Ellis� Caching and Writeback Policies in Parallel File Systems ��

Captions

Figures�

Figure �
 Cache	size variation for write pattern gw

Figure �
 Cache	size variation for write pattern gw with computation

Figure �
 Cache	size variation for write pattern lw�

Figure �
 Cache	size variation for write pattern seg

Figure �
 Record	size variation for all three write patterns

Footnotes�

�
 Note that this is not� strictly speaking� an �MRU� replacement policy� which replaces

the most	recently	used block"

�
 Actually� we used an exponential distribution truncated at ��� msec
 The exponential

nature of the distribution is not important
 Once chosen� this delay was a �xed part

of the workload� and did not vary from trial to trial

�
 Recall that we do not assume a contiguous �le layout on disk

�
 We used these record sizes because they divided the ���� blocks into an integral number

of �xed	size records

