
Copyright 2000 ACM. doi:10.1145/346855.346868.
Appeared in Workshop on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM 2000), August 2000.�
THIS COPY IS THE AUTHORS’ PRE-PUBLICATION VERSION; it may differ slightly from the official published version.

Performance Analysis of Mobile Agents
for Filtering Data Streams on Wireless Networks

David Kotz Guofei Jiang Robert Gray George Cybenko Ronald A. Peterson

Dartmouth College
Hanover NH 03755 USA

First.Last@Dartmouth.edu

Abstract

Wireless networks are an ideal environment for mobile
agents, because their mobility allows them to move across
an unreliable link to reside on a wired host, next to or closer
to the resources they need to use. Furthermore, client-
specific data transformations can be moved across the wire-
less link, and run on a wired gateway server, with the goal of
reducing bandwidth demands. In this paper we examine the
tradeoffs faced when deciding whether to use mobile agents
to support a data-filtering application, in which numerous
wireless clients filter information from a large data stream
arriving across the wired network. We develop an analyti-
cal model and use parameters from our own experiments to
explore the model’s implications.

1. Introduction

Mobile agents are programs that can migrate from host
to host in a network of computers, at times and to places of
their own choosing. Unlike applets, both the code and the
execution state (heap and stack) move with the agent; un-
like processes in process-migration systems, mobile agents
move when and where they choose. They are typically writ-
ten in a language that can be interpreted, such as Java, Tcl,
or Scheme, and thus tend to be independent of the operating
system and hardware architecture. Agent programmers typ-
ically structure their application so that the agents migrate
to the host(s) where they can find the desired service, data,
or resource, so that all interactions occur on the local host,
rather than across the network. In some applications, a sin-
gle mobile agent migrates sequentially from host to host; in
others, an agent spawns one or more child agents to migrate
independently.

A mobile-agent programmer thus has an option not avail-
able to the programmer of a traditional distributed appli-

This research was supported by the DARPA CoABS Program, con-
tract F30602-98-2-0107, and by the DoD MURI program (AFoSR contract
F49620-97-1-03821).

cation: to move the code to the data, rather than moving
the data to the code. In many situations, moving the code
may be faster, if the agent’s state is smaller than the data
that would be moved. Or, it may be more reliable, because
the application is only vulnerable to network disconnection
during the agent transfer, not during the interaction with the
resource. For a survey of the potential of mobile agents,
see [CHK97, GCKR00].

These characteristics make mobile-agent technology es-
pecially appealing in wireless networks, which tend to have
low bandwidth and low reliability. A user of a mobile
computing device can launch a mobile agent, which jumps
across the wireless connection into the wired Internet. Once
there, it can safely roam among the sites that host mobile
agents, interacting either with local resources or, when nec-
essary, with resources on remote sites that are not willing to
host mobile agents. Once it has completed its task, it can
return to (or send a message to) its user, using the wireless
network.

Clearly the agent case avoids the transmission of unnec-
essary data, but does require the transmission of agent code
from client to server. The total bandwidth consumption
from code transmission depends on the agent size and ar-
rival rate. For most reasonable agent code sizes and arrival
rates, the savings in data transmission may be much larger
than the code transmissions. Of course, each client’s code
could be pre-installed on the server.1 This approach pre-
supposes, however, that the clients are known in advance.
In many of the environments that we consider, new clients
with new code can appear at any time, and possibly disap-
pear only a short while later. In scenarios like the one dis-
cussed in this paper, we need at least a dynamic-installation
facility, and mobile agents give us the flexibility to move
filtering code to any point in the network, and to move the
code again as the situation changes. Although we do not
consider such multi-machine scenarios in this initial paper,
they will be an important part of future work.

In this paper we analyze the potential performance ben-

1In fact, most mobile-agent systems include, or plan to include, some
kind of code-caching functionality, so that the agent code is transferred
only the first time that an agent visits a machine.



efits of a typical application scenario. The scenario is suffi-
ciently general to reflect many applications, from a military
application in which field units are monitoring information
sources as diverse as weather data and intelligence reports,
to commercial applications in which consumers are moni-
toring stock reports and news stories.

In our scenario there are numerous information produc-
ers, each of which pushes out a steady stream of infor-
mation, such as weather observations, stock quotes, news
stories, traffic reports, plane schedules, troop movements,
and the like. Clearly each source has a different data rate
and frequency. There are also numerous information con-
sumers, whose computers are connected to a wireless net-
work channel. We assume that the information streams
gather at a gateway server, which then transmits the data
across the wireless channel to the consumers. Although
we model a single server, in a large system we expect that
the server would be a large multiprocessor or cluster, such
as those used in large Internet servers today. Although we
model a single wireless channel, the results are easily exten-
sible to multiple channels, each with its own server, whether
in separate regions or in overlapping regions.

Each consumer is interested in a different (but not nec-
essarily disjoint) subset of the data. The consumer is inter-
ested in only a few of the information streams, and then
only in some filtered set of items in those streams. For
example, a traveler may monitor the weather stream, but
not the stock stream; of the weather stream, they may care
only about the locations affecting their travels today. The
first step requires no computation; the second may require
some computation related to the size of the data stream. We
model a consumer’s interests as a set of tasks, all running
on that consumer’s single computer client.

We compare two approaches to solving this problem:

1. The server combines and broadcasts all the data
streams over the wireless channel. Each client receives
all of the data, and each task on each client machine fil-
ters through the appropriate streams to obtain the de-
sired data.

2. Each task on each client machine sends one mobile
agent to the server. These “proxy” agents filter the data
streams on the server, sending only the relevant data as
a message to the corresponding task on the client.

We use two performance metrics to compare these two
techniques: the bandwidth required and the computation
required. We can directly compare the usage of the two
techniques, and we can evaluate the capacity needed in the
server or the network. Clearly, the mobile agent approach
trades server computation (and cost) for savings in network
bandwidth and client computation, a valuable tradeoff if it
is important to keep client weight and power requirements
(and cost) low.

In the next section, we list and define the parameters
that arise in the analysis. After that, we derive the basic
equations, and interpret their significance. In Section 3, we
describe our experiments used to obtain the values of key
parameters. In Section 4, we use the results of those experi-
ments to explore the performance space given by our model.
We describe some related work in Section 5, and summarize
in Section 6.

2. The model

Since the data is arriving constantly, we think of the sys-
tem as a pipeline; see Figure 1. We imagine that, during a
time interval �, one chunk of data is accumulating in the in-
coming network buffers, another chunk is being processed
on the server, another chunk is being transmitted across the
wireless network, and another chunk is being processed by
the clients. If the data arrives at an average rate of � bits per
second, the average chunk size is �� bits.

Server

Client
Client

Client
Information
data streams

Wireless
network

Internet

TI TS TW TC

Figure 1. The scenario viewed as a pipeline.

For the pipeline to be stable, then, each stage must be
able to complete its processing of data chunks in less than
� time, on average (Figure 2). That is, �� � �, �� � �,
�� � �, and �� � �. In the analysis that follows we
work with these steady-state assumptions; as future work,
we would like to explore the use of a queueing model to bet-
ter understand the dynamic properties of this system, such
as the buffer requirements (queue lengths).

0 t 2t 3t 4t 5t 6t 7t 8t

Server receives chunk from Internet, TI

Server processes chunk, TS

Server sends chunk across wireless, TW

Client processes chunk, TC

A

A

A

A

B

B

B

B

C

C

C

C

D

D

D

D

E

E

E

E

...

...

...

...

...

...

Time

Figure 2. The pipeline timing diagram. The
letters represent data chunks. For example,
between time �� and �� chunk A is being pro-
cessed by the clients, chunk B is being trans-
mitted from the server to the clients, chunk C
is being processed by the server, and chunk
D is being received by the server.



2.1. The parameters

Below we define all of the parameters used in our model,
for easy reference.
� � input data streams’ speed (bits/sec);
� � time interval (seconds);
� � ��, the size of a data chunk arriving during time

period � (bits);
� � wireless channel’s total physical bandwidth

(bits/sec);
�� � communication overhead factor for broadcast

(�� � �);
�� � ���, the effective bandwidth available for broad-

cast (bits/sec);
�� � communication overhead factor for agents

(�� � �);
�� � ���, the effective bandwidth available for agent

messages (bits/sec);
�� � the bandwidth available in the server’s wired Inter-

net connection, for receiving data streams (bits/sec);
presumably �� �� �;

� � number of client machines;
	 � index of a client machine (� � 	 � �);

� � number of tasks on each client machine 	,
� � 	 � �;

� � index of a task (� � � � 
�);

 �
�


�, total number of tasks;
� � arrival rate of new agents uploaded from the clients

to the server (per second);

 � average agent size (bits);
� �

�� � the fraction of the total data� that task � on client 	
chooses to process (by choosing to process only certain
data streams);

��� � the fraction of the data processed by task � on
client 	, produced as output;

�������
�

�� � ���� � computational complexity of task � on
client 	 (operations);2

� � the average computational complexity, for a given
� �� � �

�

�
�� �������

�

�� � �����. It is a convenient
shorthand.

��	�
 � average number of operations needed for a new
agent to start and to exit;

��� � performance of client machine 	 (operations/sec);
��� � performance efficiency of the software platform on

the client machine 	 (��� � �);
�� � performance of the server machine (opera-

tions/sec);3

�� � performance efficiency of the software platform on
the server (�� � �);

2We expect that ��� will have little dependence on �, directly, but more
on �� �

��
.

3We assume that all agents get equal-priority access to server cycles.

Notes. � is the raw bandwidth of the wireless channel, but
that bandwidth is never fully available to application com-
munication. We assume that a broadcast protocol would
actually achieve bandwidth �� and a mobile-agent messag-
ing protocol would achieve bandwidth ��. In Section 3 we
discuss our measurements of �� and ��.

When comparing a mobile-agent approach to a more tra-
ditional approach, we think it is most fair to expect that a
traditional system would use compiled code on the client
(such as compiled C code), whereas a mobile-agent sys-
tem would use interpreted code on the server (because most
mobile-agent systems only support interpreted languages
like Java or Tcl). The client and server will likely be dif-
ferent hardware and have different speeds, � � and ��, re-
spectively. Because the language, compiler, and run-time
system impose overhead, the client runs at a fraction �� of
the full speed ��, and the server runs at a fraction �� of the
full speed ��. Of course � � �, and we expect �� � ��.
On the other hand, we would expect � � �� ��.

Computed values. As hinted in the figures above, the fol-
lowing values are computed as a result of the other parame-
ters.

�� � The time for transmission across the Internet to the
server.

�� � The time for processing on the server.
�� � The time for transmission across the wireless net-

work.
�� � The time for processing on the client.
Most of these have two variants, i.e., ��
 for the agent

case and ��� for the broadcast case, ��
 for the agent case
and ��� for the broadcast case, and ��
 for the agent case
and ��� for the broadcast case.

2.2. Computing the constraints

As we mentioned above, each stage of the pipeline must
complete in less than time �, that is, �� � �, �� � �, �� �

�, and �� � �.

Internet, �� . Since we are concerned with alternatives for
the portion of the system spanning the wireless network, we
do not specifically model the Internet portion. We assume
that the Internet is not the bottleneck, that is, it is sufficiently
fast to deliver all data streams on schedule:

�� �
�

��

� � (1)

� � �� (2)

of course.



Server, �� . In the broadcast case, the server simply
merges the data streams arriving from the Internet. This
step is trivial, and in any case ��� � � almost certainly.

In the agent case, data filtering happens on the server.
The server’s time is a combination of the filtering costs plus
the time spent initializing newly arrived agents:

��
 �

	�

���

���

���

�������
�

�� � ����

����
�
����	�

����

(3)

If we know that the expected value of the computing
complexity ��� is �, then we can simplify and obtain a
bound on the number of client tasks (agents), 
. That is,
we assume that

�
�� �������

�

�� � ����

����
�


�

����
(4)

Now ��
 � �,


�� ����	�

����

� � (5)


 � ����� � ���	�
�
�

�
(6)

Wireless network, �� . The broadcast case is relatively
simple, since all of the chunk data � is sent over the chan-
nel:

��� �
�

��

� � (7)

� � �� (8)

Recall that �� � ���, and that � � ��.
In the agent case, agents filter out most of the data and

send a subset of the data items across the wireless network,
as messages back to their task on the client. Agent�� sends,
on average, �� �

����� bits from a chunk. The total time to
transfer all agents’ messages is thus

��
 �

�
��� ��

�

�����

��

� � (9)

If we consider the average agent, and define

� �� �
�




�

���

� �

����� � (10)

then since there are 
 agents


�� ��

��

� � (11)

But it is not quite that simple.
The wireless channel also carries agents from the clients

to the server, so we must adjust for the bandwidth occupied

by traffic in the reverse direction.4 Recall that new agents
of size 
 jump to the server at a rate � per second. This
activity adds �
 bits per second (��
 bits per chunk) to
the total traffic. So, updating equation (11) we have


�� �� � ��


��

� � (12)

which leads to a bound on the number of agents (tasks):


 �
�� � �


�� ��
(13)

When does the mobile-agent approach require less wire-
less bandwidth? We can compute the bandwidth needed
from the amount of data transmitted for one chunk, ex-
panded by ��� to account for the protocol overhead, then
divide by the time � for one chunk:

�

�
�
�

��
�
�� �� � ��
�� �

�

�
�
�

��
�� (14)


�� �� � �
 �
��
��
� (15)


 �
�

� ��
�
��

��

�
�


�
� (16)

Note that inequality (16) is nearly the same as inequal-
ity (13). If broadcast is possible (� � ��), then we should
use broadcast iff 
 exceeds the limit provided in inequal-
ity (16). If broadcast is impossible (� � ��), then of course
the mobile-agent approach is the only choice, but the num-
ber of agents must be kept within the limit specified in (13).

Note that in the broadcast case the wireless bandwidth
must scale with the input stream rate, while in the agent
case the wireless bandwidth must scale with the number of
agents and the relevance of the data. Since we expect that
most of the data will be filtered out by agents (i.e., � �� �
����), the agent approach should scale well to systems with
large data-flow rates and moderate client populations.

Client, �� . We consider only the processing needed to
filter the data stream, and assume that the clients have ad-
ditional power and time needed for an application-specific
consumption of the data. Also, we assume the client has
sufficient processing power to launch agents at rate ���.

In the broadcast case, the data filtering happens on the
clients. We must design for the slowest client, i.e.,

��� � ��	
�

���

���

�������
�

�� � ����

����
�
�

(17)

If all � client hosts were the same, we could write simply

��� �



�

�

����
(18)

4Unless the channel is full duplex, in which case there is no impact on
the downlink bandwidth. Here we assume a half-duplex channel.



and since ��� � � is required,


 � �����
�

�
(19)

In the agent case there is no data filtering on the clients,
so ��
 � �.

2.3. Commentary

The results are summarized in Table 1.
We can see that the agent approach fits within the con-

straints of the wireless network if the number (
 and �) and
size (
) of agents is small, or the filtering ratios (� �� ) are
low.

We believe that, in many realistic applications, most
agents will remain on the server for a long time, and new
agents will be installed rarely. Thus, � is small. Most of the
time, � � �. This assumption simplifies some of the equa-
tions into a more readable form, as shown in the right side
of the table.

Notice that the broadcast case scales infinitely with the
number of clients, but to add tasks to a client or to add data
to the input stream requires the client processor to be faster.
On every client 	

���

���

�������
�

�� � ����

����
�
�

� � (20)

��� �

���

���

�������
�

�� � ����

��� �
(21)

so, as � or � increases or as 
� (the range of �) increases,
��� must increase.

The mobile-agent case, on the other hand, requires little
from the client processor (for filtering), but requires a lot
more from the server processor. That processor must scale
with the input data rate, the number of clients, and the num-
ber of tasks per client.

�� �

�� ����	�


���
(22)

On the other hand, it may be easier to scale a server in a
fixed facility than to increase the speed of individual client
machines, especially if the server lives in a comfortable ma-
chine room while the clients are mobile, battery-operated
field machines.

Buffers in the pipeline. Since we model our application
as a pipeline, we are primarily concerned with throughput
and bandwidth, rather than response time and latency. As
long as the pipeline is stable in the steady state, i.e., no com-
ponent’s capacity is exceeded, the system works. All of our
above calculations are based on that approach.

In a real system, of course, the data flow fluctuates over
time. Buffers between each stage of the pipeline hold data
when one stage produces data faster than the next stage can
process it. In a more complete analysis we would use a full
queuing model to analyze the distribution of buffer sizes at
each stage of the pipeline, given distributions for parameters
like �, �, and ���. We leave this analysis for future work.

Latency. Although we are most concerned with through-
put, in our application some clients may also be concerned
about latency. In other words, it would be a shame if
time-critical data were delayed from reaching the client.
Which approach leads to less latency, say, from the time
it reaches the server until the time it reaches the client ap-
plication? Consider the flow of a specific data item through
the pipeline: it is processed on the server, transmitted on the
wireless network, and processed on the client. It must share
each of these resources with other data items in its chunk,
and it must share the server and wireless network with other
clients. On average, each of 
 agents may require only
�

�
��
 CPU time on the shared server. If the server divides

its time finely and evenly, all tasks will complete their com-
putation at time ��
. If the server divides its time coarsely,
the average task completes in half that time, at time �

�
��
.

A similar analysis can be made for the wireless network.
Assuming fine-grain sharing of the server and network,

the latencies are

�
 � ��
 � ��
 � ��
 (23)

�� � ��� � ��� � ��� (24)

If we ignore the arrival of new agents (i.e., � � �), and
assume that all clients are identical, we have

�
 �

�

����
�

�� ��

��

� � (25)

�� � � �
�

��

�

�

�����
(26)

Unfortunately it is difficult to compare these two without
specific parameter values.

We wonder, however, about the value of such a latency
analysis. Given a specific data rate �, one must choose a
server speed, wireless network bandwidth, and client speed,
that can just keep up with the data flow. That is, in time in-
terval � those three components must each be able to process
� data. Their latency is 
�. With sufficiently small �, say,
1–10 seconds, it seems likely this latency would suffice for
most applications. Although one approach may have a little
less latency than the other, the data flow rate remains the
same. One could reduce latency by making balanced im-
provements to the two components with non-zero latency;
this improvement may be easier in the agent approach, be-
cause it may be easier to upgrade the server than thousands
of clients.



Table 1. Summary of the constraints derived earlier, along with simplified constraints that assume
� � �. �� and �� are not affected by �. At the bottom, we show the comparison where agents require
less wireless bandwidth than the broadcast approach.

Limits Simplified Limits
Stage Broadcast Agent Broadcast Agent
Internet, �� � � �� � � �� � � �� � � ��

Server, �� negligible 
 � ����� � ���	�
�


�

0 
 � ������ 

�

Wireless, �� � � �� 
 �
�����
�� ��

� � �� 
 �
��

�� ��

Client, �� 
 � ������� 

�

negligible 
 � ������� 

�

negligible
Comparison Simplified Comparison

Wireless, �� 
 � �

� ��
���

��

� ��
�
� 
 � �

� ��
��

��

Client

Wireless channel

Server cluster

Switch

Wired
Ethernet

Wired/wireless
gateway

Figure 3. The experimental platform, in which
the server is a cluster of workstations, send-
ing its data through a wireless gateway ma-
chine to the wireless network.
[Client: Gateway Solo 2300 laptop; Intel Pentium
MMX 200 MHz, 48MB RAM, running Linux 2.0.36.
Gateway: Tecra 500CS laptop; Intel Pentium 120
MHz, 16MB RAM, running Linux 2.2.6. Servers:
VA Linux VarStation 28, Model 2871E; Pentium II at
450 MHz, 512K ECC L2 Cache, 256MB RAM, run-
ning Linux 2.0.36. Wired network: the gateway was
connected to a 10 Mbps Ethernet, through a hub, a 10
Mbps switch, and a 100 Mbps switch, to the server
cluster. Wireless network: 2 Mbps Lucent Wave-
LAN “Bronze Turbo” 802.11b PC cards configured
at 2 Mbps.]

3. Experiments to obtain parameters

To measure the value of several model parameters, we
constructed a small test environment consisting of two
Linux laptops, a Linux workstation cluster, and a wireless
network. One laptop served as the wireless client machine.
The other laptop ran routed to serve as a gateway between
the 2 Mbps wireless network and the 10 Mbps wired net-
work. Our server cluster contained 14 Linux workstations.
We treated the 14 machines as a single logical server, be-
cause we needed that many to effectively measure ��, as we
describe below. The platform can be envisioned as shown
in Figure 3.

3.1. Measuring �

Because the language, compiler, and run-time system
impose overhead, the client runs at a fraction �� of the full
speed ��, and the server runs at a fraction �� of the full
speed ��. Unfortunately, we do not know and cannot di-
rectly measure �.5 On a single host of speed �, though, we
can run a compiled C program and a comparable Java pro-
gram, to obtain ��� and ���, and divide to obtain ������

We wrote a simple image-processing application (an
edge detector) in C, and then ported it to Java. We ran
them both on one of our servers, using a sample image;
averaging over 100 runs, the Java program took 111 msec
and the C program took 83 msec. In this measurement, we
include only the computational portion of the application,
rather than the time to read and write the image files, be-
cause in our modeled application the data will be stream-
ing through memory, and not on disk. These numbers give
����� � ����, i.e., C was 25% faster than Java.

3.2. Measuring �

The raw bandwidth of our WaveLAN wireless network
was 2 Mbps (2,097,152 bps). To obtain � values, we mea-
sured the transmission speed of sample applications trans-
mitting data across that network, and divided by 2 Mbps.

To compute �� for the broadcast case, we wrote a simple
pair of programs; one broadcast 4999 data blocks of 50,000
bytes each across the wireless link, for the other to receive.
The transmission completed in 1135 seconds, which implies
that

�� �

���� ��� ���� � ����

��
� sec
(27)

�� �
��

�
�

�� ���� ��� bps
�� ���� ��� bps

� ���
� (28)

5Recall the difficulty of measuring the “peak performance” of an ar-
chitecture, and all the discussions about the value of MHz and MIPS as
metrics of performance.



In other words, broadcast of these reasonably large chunks
of data is 84% efficient.

To compute �� for the agent case, we wrote a simple
agent program that visits the server, and sends about 50KB
of documents every 3 seconds. The agent completes after
sending 500 of these 50KB messages. The effective band-
width is computed as the total amount of data transmitted
divided by the time required to transmit the data, including
the time sleeping. To better reflect the modeled application,
we actually sent out several agents to different hosts within
our server cluster, and increased the number of agents and
hosts until we reached the highest possible total bandwidth.
We found that 14 agents, running on separate hosts within
the server cluster, reached about 1.4 Mbps. Specifically,

�� �
��

�
�

�� 
�
� �

 bps
�� ���� ��� bps

� ����� (29)

We use these constants in our equations to obtain the results
below.

3.3. Measuring ��	�


When hosting agents, the server needs to support all of
their computational needs. In addition to the processing
time required to filter the data, new agents come and old
agents exit. In our model, � agents come and go, per sec-
ond, on average. We model the computational overhead
of each agent’s start and exit as ��	�
. We wrote a triv-
ial agent and arranged for one of our server hosts to rapidly
submit agents to another server host. After 5000 submit/exit
pairs in 204 seconds, we conclude that the overhead� �	�
 is
about 40 msec (actually, it is the number of operations cor-
responding to 40 msec). It may be less, because our mea-
surement was based on wall-clock time, not CPU time, and
this experiment did not max out the CPU.

4. Results

We now use these parameters in our equations to get a
sense of how they react under specific conditions.

Unfortunately it is difficult to get actual �, �, and � pa-
rameters, although we did measure some ratios above. If we
assume, however, that our edge-detection algorithm is rep-
resentative of one sort of filtering operation, we do know the
time it took to execute that operation. On our client laptop
we measured

�

����
� �
�msec (30)

If this computation represents the time needed for filtering
data that arrived over � � �� seconds, for example, Equa-
tion 19 tells us that


�� � ����
�

�
(31)

� ������
� (32)

� 
� (33)

That is, about 40 tasks per client, for an arbitrary number of
clients �. Of course, the client machine should reserve some
power for consuming the data after filtering, so it should not
run anywhere close to 40 such tasks.

Similarly, on the server, if we ignore �, Equation 6 tells
us that


 � ������
�

�
(34)

The machines we used as “servers” in our experiments were
not particularly speedy. It is more interesting to derive an
equation for 
 in terms of the relative power of the server
and client, using quantities that we already have measured:


 �
����

�
� (35)

�
����

�

��

��
��

��
� (36)

�
�

���
� sec
������

��

��
��� sec� (37)

� 
���
��

��
(38)

Figure 4 shows the total number of agents (for all clients)
that could be supported as the power of the server � � grows
relative to the power of the clients � �, for our 236 msec
sample task as well as two other possibilities. The plot
shows ratios ����� reaching up to 200; large ratios can oc-
cur if, for example, the server is a large parallel computer
or cluster, and the clients are simple palm-top devices.

In Figure 5 we show the constraints on 
, in the agent
case. This graph plots the two constraints from Table 1,
as � varies. The actual constraint is the minimum of the
two curves. For lower � �� , the server’s computation is
the tighter constraint; for higher � �� , the wireless network
bandwidth limits us more. We use our earlier measurement
of ������ � ��� msec (the edge-detection program run-
ning on a 308 KB image on one of our servers). Of course,
in nearly any application � will vary with � (and thus with
� and �); for the purposes of this illustrative graph we as-
sume that � � �� and that the computation is linear. In
other words, we imagine that � may behave as follows.

�

����
� ���
����

�

�� sec� �Mbps
(39)

In Figure 6 we look at similar results when we vary �
(the previous graph assumed � � �). In Section 3.3 we
measured

��	�

����

� 
�msec (40)

and in Section 3.1 we measured
�

����
� ���
��� (41)



0

2000

4000

6000

8000

10000

12000

14000

16000

20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 n
um

be
r 

of
 a

ge
nt

s,
 m

Relative server power, Ss/Sc

236 msec per 10 sec

1000 msec per 10 sec

100 msec per 10 sec

Figure 4. The number of agents that can ef-
fectively be supported, as the server power
grows relative to the client’s power. We show
three curves, representing different possi-
ble computations; 236 msec represents our
image-processing sample application.

0

20

40

60

80

100

120

140

160

1 1.5 2 2.5 3 3.5 4 4.5 5

M
ax

im
um

 n
um

be
r 

of
 a

ge
nt

s,
 m

Input data rate, d (Mbps)

Computational limit
Bandwidth limit, F’F = 0.010
Bandwidth limit, F’F = 0.020
Bandwidth limit, F’F = 0.050

Figure 5. The maximum number of agents �
we can support, given the constraints in Ta-
ble 1. Here � � � Mbps, � � �, �� � �����,
� � �� seconds, and � is proportional to �,
as described in the text.

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5

M
ax

im
um

 n
um

be
r 

of
 a

ge
nt

s,
 m

Agent birth/death rate, r per second

|<---Typical r=0.1 or lower

Computational limit
Bandwidth limit, F’F = 0.010
Bandwidth limit, F’F = 0.020
Bandwidth limit, F’F = 0.050

Figure 6. The maximum number of agents �
we can support, given the constraints in Ta-
ble 1, as we vary �. Here � � � Mbps,
	 � � Mbps, �� � �����, � � �� seconds,

�������

�
�	 � �� msec, and �����
�	 �
��� msec.

and for a fixed � � �� seconds, the computational constraint
from Equation 6 is


 � �
����

�
�
���	�

�

�� (42)

� �
�

���msec
� �


�
���

���msec
���� sec� (43)

Again, the actual constraint is the minimum of the two
curves. For lower � �� , the server’s computation is the
tighter constraint; for higher � �� , the wireless network
bandwidth limits us more. Above a certain point the traffic
induced by the jumping agents (�
) consumes the avail-
able bandwidth ��, leaving nothing for agents to transmit
their data. With a chunk size of � � ��, we think it highly
unlikely that � � �, and more likely � �� �.6

Another useful way to look at the results is to graph
the bandwidth required by either the agent approach or the
broadcast approach, given certain parameters. In Figure 7
we vary the filtering ratio, since it clearly has a big impact
on the bandwidth required by the agent approach. For low
filtering ratios, the agent approach needs less bandwidth
than the broadcast approach. If � � � (not shown), of
course the broadcast approach cannot work at all, and the
agent approach is the only solution.

5. Related work

Performance modeling of computer networks and dis-
tributed applications is an old field, and our approach and

6We have heard of some tests at Lockheed-Martin in which � � ��� at
the peak.



0

0.5

1

1.5

2

2.5

3

0.01 0.02 0.03 0.04 0.05

R
eq

ui
re

d 
ba

nd
w

id
th

 (
M

bp
s)

Filtering Ratio F’F

Raw channel bandwidth B

Broadcast approach bandwidth
Input bandwidth d

m=10

m=20

m=40

Figure 7. The bandwidth requirements for
agent and broadcast approaches. Here 	 �
� Mbps, � � � Mbps, � � ���, � � 
� KB,
�� � �����, and �� � �����. Note that
the bandwidth required by the broadcast ap-
proach is 	���, and appears slightly bigger
than 	.

resulting equations are similar to many previous analyses
of distributed systems [Kin90]. In addition, there has been
some similar modeling work specifically for mobile-agent
systems.

Strasser and Schwehm [SS97] develop a general model
for comparing the performance of Remote Procedure Calls
(RPC) with the performance of migrating agents. Using
their model, which is best-suited for information-retrieval
applications, they derive equations for the total number of
bytes transferred across the network, as well as the total
completion time of the task. The equations include such
parameters as the expected result size and the “selectivity”
of the agent (i.e., how much irrelevant information the agent
filters out at the data site, rather than carrying with it for fu-
ture examination). Their byte equations are similar to our
bandwidth equations, although their time equations are not
directly applicable to our scenario, since we are interested
only in whether the server can keep up with the incoming
data streams, not with the total completion time.

Küpper and Park [KP98] examine a signaling applica-
tion inside a telecommunications network, and compare a
mobile-agent approach with a stationary-agent (or client-
server) approach. Starting with a queuing model of a hi-
erarchical signaling network, they produce equations that
specify the expected load on each network node in both the
mobile and stationary cases. These equations are similar to
our server-load equations (from which we derive the con-
straint on how many agents the server machine can handle
simultaneously).

Picco, Fuggetta and Vigna [Pic98, FPV98] identify three

main design paradigms that exploit code mobility: remote
evaluation, code on demand, and mobile agents. Within
the context of a network-management application, i.e., the
polling of management information from a pool of network
devices, they analyze these three paradigms and the tradi-
tional client-server paradigm. They develop analytical mod-
els to compare the amount of traffic around the network-
management server, as well as the total traffic on the man-
aged network. These models are similar to our bandwidth
models.

More recently, Puliafito et al. [PRS99] use Petri nets
to compare the mobile-agent, remote-evaluation and client-
server paradigms. The key parameters to the models are
transition probabilities that specify (1) whether a traditional
client or agent will need to redo an operation, and (2)
whether a client or agent will need to perform another op-
eration to continue with the overall task. Using the mod-
els, they compare the mean time to task completion for
the three paradigms. Like the the work of Strasser and
Schwehm [SS97], these Petri-net models are well suited
for information-retrieval applications, are more general than
the models in the other papers, and are not directly applica-
ble to our scenario, which involves continuous filtering of
an incoming data stream, rather than a multi-step retrieval
task. Petri nets, however, could be a useful analysis tech-
nique for our scenario.

In addition to the mathematical analyses above, there
has been a range of simulation and experimental work for
mobile-agent systems. Recent simulation work includes
[SHG99], which considers the use of mobile agents for
search operations on remote file systems (such as the stan-
dard substring search of the Unix grep command), and
[BP99], which examines the use of mobile agents for mes-
sage delivery in ad-hoc wireless networks. Recent exper-
imental work includes [SDSL99], which compares differ-
ent strategies for accessing a Web database, and [GCKR00],
which compares RPC and mobile-agent approaches for ac-
cessing a document database. Although we have not done
simulation or experimental validation of our model yet,
such validation is an essential part of future work.

In our broadcast scenario all of the data are broadcast.
In our agent scenario each agent sends its own copy of the
filtered data to its client, regardless of whether other clients
may also want the data. We may be able to use techniques
from the domain of “broadcast publishing” to obtain a more
efficent compromise approach [IV96].

6. Summary and future work

Inspection of the above equations shows that with small
filtering ratios (� �� ), or small numbers of agents, a mobile-
agent scheme can get by with less bandwidth, or slower
(i.e., cheaper or lighter) clients. Our analysis reinforces the



importance of the engineering challenge to keep � � and ��
large, that is, to reduce the overhead of mobile-agent com-
putation and communication.

To further develop this performance analysis and to be
able to use it predictively in real applications, we need to
better understand several issues: How variable is the in-
put data stream, in its flow rate? In other words, how
much buffering would be necessary in the server, and in the
clients? How many different agent/task types are there in
typical applications, and how widely do these types vary?
How much CPU time is needed to support the network pro-
tocols? Are average or expected numbers acceptable or do
we need worst-case analysis?

Furthermore, we need to address a few limitations: (1)
The broadcast case assumes that nobody misses any trans-
missions, or that they do not care if they miss it, so there
are no retransmissions. (2) Both cases ignore the client pro-
cessing consumed by the end application. (3) We consider
only one application scenario here. While it is widely rep-
resentative, there are certainly other application types worth
analyzing. In particular, we would like to consider scenar-
ios in which the mobile agents move up and down a hier-
archy of gateway machines. We are also interested in the
use of mobile agents as a dynamically distributed, and re-
distributed, cooperative cache to support mobile computers
in a wireless network.

7. Acknowledgements

Many thanks for the helpful input from Daniela Rus, Jeff
Bradshaw, Niranjan Suri, and the anonymous reviewers.

References

[BP99] S. Bandyopadhyay and K. Paul. Evaluating the
performance of mobile agent-based message
communication among mobile hosts in large ad
hoc wireless network. In Proc. of the 2nd ACM
Int’l Workshop on Modeling, Analysis and Sim-
ulation of Wireless and Mobile Systems, pages
69–73. ACM Press, August 1999.

[CHK97] D. Chess, C. Harrison, and A. Kershenbaum.
Mobile agents: Are they a good idea? In
Mobile Object Systems: Towards the Pro-
grammable Internet, number 1222 in Lec-
ture Notes in Computer Science, pages 25–47.
Springer-Verlag, 1997.

[FPV98] A. Fuggetta, G. P. Picco, and G. Vigna. Under-
standing code mobility. IEEE Transactions on
Software Engineering, 24(5):342–361, 1998.

[GCKR00] R. S. Gray, G. Cybenko, D. Kotz, and D. Rus.
Mobile agents: Motivations and state of the art.
In Handbook of Agent Technology. AAAI/MIT
Press, 2000. To appear.

[IV96] T. Imielinski and S. Viswanathan. Wireless
publishing: Issues and solutions. In Mo-
bile Computing, chapter 11, pages 299–329.
Kluwer Academic Publishers, 1996.

[Kin90] P. J. B. King. Computer and Communication
System Performance Modeling. Prentice Hall,
1990.

[KP98] A. Küpper and A. S. Park. Stationary vs. mo-
bile user agents in future mobile telecommuni-
cations networks. In Proc. of the Second Int’l
Workshop on Mobile Agents (MA ’98), volume
1477 of Lecture Notes in Computer Science.
Springer-Verlag, September 1998.

[Pic98] G. P. Picco. Understanding, Evaluating, For-
malizing and Exploiting Code Mobility. PhD
thesis, Dipartimento di Automatica e Informat-
ica, Politecnico di Torino, 1998.

[PRS99] A. Puliafito, S. Riccobene, and M. Scarpa. An
analytical comparison of the client-server, re-
mote evalutaion and mobile agents paradigms.
In Proc. of the 1st Int’l Symp. on Agent Systems
and Applications and 3rd Int’l Symp. on Mobile
Agents (ASA/MA99). IEEE Computer Society
Press, October 1999.

[SDSL99] G. Samaras, M. Dikaiakos, C. Spyrou, and
A. Liverdos. Mobile agent platforms for web-
databases: A qualitative and quantitative as-
sessment. In Proc. of the 1st Int’l Symp. on
Agent Systems and Applications and Third Int’l
Symp. on Mobile Agents (ASA/MA’99), pages
50–64. IEEE Computer Society Press, October
1999.

[SHG99] T. Spalink, J. H. Hartman, and G. Gibson. The
effects of a mobile agent on file service. In
Proc. of the 1st Int’l Symp. on Agent Systems
and Applications and 3rd Int’l Symp. on Mo-
bile Agents (ASA/MA’99), pages 42–49. IEEE
Computer Society Press, October 1999.

[SS97] M. Strasser and M. Schwehm. A perfor-
mance model for mobile agent systems. In
Proc. of the Int’l Conference on Parallel and
Distributed Processing Techniques and Appli-
cations (PDPTA’97), volume 2, pages 1132–
1140, June 1997.


