Tuning STARFISH

David Kotz

DARTMOUTH

Technical Report PCS-TR96-296

Department of Computer Science
Dartmouth College
Hanover, NH 03755-3510
dtk@cs.dartmouth.edu

October 14, 1996

Abstract

STARFISH is a parallel file-system simulator we built for our research into the concept of
disk-directed I/O. In this report, we detail steps taken to tune the file systems supported by
STARFISH, which include a traditional parallel file system (with caching) and a disk-directed
I/0 system. In particular, we now support two-phase I/O, use smarter disk scheduling, increased
the maximum number of outstanding requests that a compute processor may make to each disk,
and added gather/scatter block transfer. We also present results of the experiments driving the

tuning effort.

1 Introduction

STARFISH is a parallel file-system simulator, based on the Proteus simulator [BDCW91]. It was
originally developed by the author for research into the concept of disk-directed 1/O [Kot94a,
Kot94b, PEK96, Kot95b, KC95, Kot95¢c, Kot95a]. In the course of preparing a more complete
paper about disk-directed 1/0 [Kot96], we made several modifications to both of the parallel file
systems supported by STARFISH (“traditional caching,” which we now call the “traditional parallel
file system,” and “disk-directed 1/0”). This report details those changes, and the results of the
experiments driving the tuning effort.

Most of the effort was applied to improving the performance of the traditional parallel file

system, as disk-directed 1/O needed little improvement.

This research was funded by NSF under grant number CCR-9404919, by NASA Ames under agreement number
NCC 2-849.

Copyright 1996 by the author

This paper assumes that you are familiar with the disk-directed I/O papers, but not necessarily

with the STARFISH code.

2 Major changes to STARFISH

The earlier disk-directed 1/O papers report results from STARFISH version 2.0, with some small
extensions. In 1996, we made several significant changes to STARFISH. STARFISH 3.0, released

in conjunction with this report, includes all of these changes.!

2.1 Disk scheduling

The disk-scheduling algorithm only affects the traditional parallel file system, because disk-directed
I/O builds a (possibly sorted) list of disk requests in advance, for each disk, and feeds that entire
list to the disk driver at once.

STARFISH 2.0 used a simple FCFS disk-scheduling algorithm. Each disk had its own queue
of disk requests, read by its own disk-driver thread (see Figure 1). The cache-management code
on the I/O processors (10Ps) fed requests into the appropriate disk-request queue, one at a time,
as they occurred. The disk-driver thread serviced requests, one at a time, in the order they were
inserted into the queue. Poor performance resulted, especially in contiguous disk layouts, unless
the requests happened to be enqueued in increasing disk-block order. Although, in the tested
workloads, each compute processor (CP) requested its blocks in increasing file-block order, which
in a contiguous layout translates into increasing disk-block order, the interleaving of requests from
multiple CPs may not have resulted in an increasing disk-block order at the disk-request queue.

In STARFISH 3.0 we added a new disk-queuing module. Fach disk has a single queue as before,
but it is a priority queue rather than a simple FCFS queue. New disk requests were placed into the
per-disk priority queue using the Cyclical Scan algorithm [SC0O90]. The implementation actually
uses two priority queues, each maintained in order of increasing disk-block number: one for requests
“ahead” of the current disk-head position, which will be serviced in the current pass of the disk
head, and another for requests “behind” the current disk position, which will be serviced on the

next pass of the disk head.

2.2 Increased number of outstanding requests

This section applies only to the traditional parallel file system.

!The STARFISH code and papers are available at http://www.cs.dartmouth.edu/~dfk/STARFISH/.

request

message Request
from Thread
CP

Disk queue

A Disk
Thread

/q Disk
Thread

Disk queue

Request
Thread
Request
Thread
Request
Thread

Figure 1: Structure of an I/O processor (IOP) in STARFISH, when running the traditional parallel file

system. FEach incoming request is handled by a separate thread. That thread examines the cache, and

possibly inserts a request in one of the disk requests queues. There is one queue, and a thread to service it,

for each local disk.

In our traditional parallel file system implementation, each CP receives requests from the ap-
plication, each for some contiguous range of bytes in the file. Call these “file requests.” The file is
striped, block by block, across all of the disks. Thus, the CP file-system code must translate the

" each requesting one block (or less) of data and each

file request into a sequence of “IOP requests,’
directed at a particular disk on a particular IOP.

In STARFISH 2.0 each CP was limited to a maximum of one outstanding request to each disk.
This provided a simple static flow-control solution, because each IOP knew it would not receive
more than Nop X Ny ocalDisks reduests at any given time. Thus, each IOP cache contained twice
that many buffers, each holding one block, allowing the IOP to double-buffer a separate stream of
requests from each CP to each disk. The double buffering was necessary because the IOP caches
attempted to prefetch on each read, and write behind on each write.

The CPs attempted to maximize their potential by working through the sequence of blocks
necessary to satisfy the current file request, sending up to one IOP request to each disk, then
waiting for a IOP request to complete. As such, one CP could keep all of the disks busy, if the

request involved at least one block from each disk.

Nonetheless, with only one request from each CP, the IOPs’ disk queues were fairly short, which

seemed to justify the use of FCFS disk queuing.

Few of our workload’s access patterns presented the CP with requests larger than one stripe;
many of them presented the CP with an 8-byte request! So it was not often possible to send more
than one request to each disk, even if it were allowed.

Nonetheless, in STARFISH 3.0 we rewrote the CP code that services file requests. It now
generates up K outstanding IOP requests to each disk, if the current file request so requires, where
K is a constant integer > 1. As soon as a disk replies that it has completed a given 10P request,
another IOP request is sent to that disk. With a large request (larger than K D blocks on D disks),
each CP can keep each disk supplied with K requests until it has made all of the IOP requests
necessary for the current file request. That concurrency should fill the disk queues, and enable
better disk scheduling.

Each TIOP cache now contain K times as many buffers as before, to accommodate the potential

flood of data and to retain the same static flow-control solution.

2.3 Queued Memput and Memget

This section affects only disk-directed 1/O and two-phase I/O (we used Memgets and Memputs to
implement the permutation phase).

STARFISH supports two “remote DMA” operations. Memput allows a processor to store a
block of data into a remote processor’s memory, and Memget allows a processor to fetch a block of
data from a remote processor’s memory. In both cases, the remote processor must be expecting such
transfers, and must supply a base address in advance. The Memput or Memget request supplies
an offset and a length; the offset is added to the base address by the remote processor’s interrupt
handler before transferring the data.

This arrangement is extremely convenient for disk-directed I/O. Each CP sets its base address
to the address of its user-supplied buffer. Then the IOPs, using their knowledge of the access
pattern, can compute for each byte of the file read or written, the location (CP number and offset
within the CP) of the corresponding byte in memory. There is no need for every IOP to know the
base address of every CP buffer.

Nontheless, we saw poor performance in some access patterns involving 8-byte records, because
they used Memput or Memget operations to transfer only 8 bytes at a time. The overhead was
overwhelming.

STARFISH 3.0 supports an alternative Memput and Memget system, which we call “queued

Memget” and “queued Memput.” This system essentially supports gather/scatter block transfer.
Queued Memgets and Memputs have the potential to be faster for small requests, although they
require extra data copying and processing on both sides of the transfer.

With this arrangement, each processor has a collection of buffers, one for each other processor
(allocated as needed). Each buffer is large enough to hold one file-system block. The processor may
make a series of queued Memputs, to any set of processors, of any size. Requests larger than one
block are broken into smaller requests. Each resulting Memput request (offset, length, and data)
is appended to the buffer for the appropriate destination processor. Once the buffer fills, it is sent
to the remote processor, where the requests are unpacked and processed: each offset is added to
the base address, and then the data is copied into that address. An acknowledgement is returned.

Similarly, a processor may make a series of queued Memget requests. Requests larger than one
block are broken into smaller requests. Each request (offset, length) is appended to the outgoing
buffer for the appropriate destination processor. Once the outgoing buffer is full, that is, it would
result in a full reply buffer, it is sent to the destination processor. Once there, a reply buffer is
allocated and the requests are unpacked and processed: each offset is added to the base address,
and the data is copied from that address into the reply buffer. The reply buffer is then sent to the
requesting processor, where the data is copied into the desired location.

In both cases, the requesting processor restricts itself, for flow control reasons, to one outstand-
ing request per destination processor. It avoids waiting as much as possible, by avoiding the check

for a reply until it needs to send a new request.

3 Other features of STARFISH

STARFISH 2.0 included several features that were not used in the original disk-directed 1/O papers.
In this report, we experimentally re-examine those features to decide which features offer the best

performance.

3.1 Memget writes

This section applies only to the traditional parallel file system.

When writing a file, each CP sent write requests to many I0Ps. Fach request could transfer up
to one block of data. The data was included in the request message, so the IOP had to be prepared
to accept the data. That requirement led to the static flow-control policies outlined above. Once

the data was safely entered into the cache, the IOP replied to the CP, allowing it to make a new

request.

The alternate method did not include data with a write-request message. The IOP had to be
prepared to accept the same number of requests, but the requests were substantially smaller. Once
the IOP had a chance to process the request, it used Memget requests to fetch the data from the
CP’s memory. Once the IOP had all of the data from the CP, it replied to the CP, allowing it to
make a new request.

We call this alternate “Memget writes”. The potential benefits of this approach include reduced
memory usage on the IOPs, and possibly higher throughput due to reduced memory-memory copies.
(With Memget writes, the data arrived at the IOP in a Memget reply, and was deposited directly
into the appropriate cache buffer; without Memget writes, the data arrived in a request message,

was copied into a thread stack, and then was copied again into the appropriate cache buffer.)

3.2 Queued requests vs. thread requests

This section applies only to the traditional parallel file system.

The IOPs were multi-threaded. There was a permanent thread for each disk, acting as a disk
driver. New IOP requests arrived as inter-processor interrupts. The interrupt handler started a
new thread, and copied the rest of the interrupt message onto the stack of the new thread, before
returning from the interrupt. Thus, each request had its own thread to shepherd the request
through the process of checking the cache and waiting for the disk. Thread-creation overhead in
STARFISH was quite low, but not insignificant. If the requests were for 8 bytes, as they were in
some patterns, thread creation overhead could drag down performance.

The alternate structure had each IOP pre-allocate a pool of threads. The interrupt handler
would not create a new thread for each arriving IOP requests, but instead enqueue the request in
a queue. Fach thread would repeatedly service requests from the queue. The IOPs allocated as
many threads as there were buffers in the IOP cache. Thus, there were likely many more threads
allocated at one time than there were in the previous structure, which required a lot of memory,
but the startup latency for each request was reduced.

We call this structure “queue requests” rather than “thread requests.”

4 Experiments

We ran a series of experiments, for each of the above improvements or alternatives, to measure

the performance (throughput) of the system under all of the access patterns we used in the other

Table 1: Parameters for simulator.

MIMD, distributed-memory 32 processors
Compute processors (CPs) 16

I/0O processors (I10Ps) 16
CPU speed, type 50 MHz, RISC
Disks 16
Disk type HP 97560
Disk capacity 1.3 GB
Disk transfer rate 2.11 MB/s, for multi-track transfers
File-system block size 8 KB
I/O buses (one per IOP) 16
I/0O bus type SCSI
I/O bus peak bandwidth 10 MB/s
Interconnect topology 6 X 6 torus
Interconnect bandwidth 200 x 10° bytes/s
bidirectional
Interconnect latency 20 ns per router
Routing wormhole
Memput call (IOP) 46-56 cycles
Memput handler (CP) 91 cycles + 1 cycle/word
Memput return (IOP) 72 cycles + thread wakeup
Memget call (IOP) 51-66 cycles
Memget handler (CP) 103 cycles + background DMA
Memget return (I0P) 58 cycles + 1 cycle/word + thread wakeup

disk-directed I/O papers. The parameters for each set of experiments are shown in Table 1. These

are the same parameters used in the other disk-directed I/O papers.

4.1 Disk scheduling

We compared FCFS to the new Cyclic-Scan disk-scheduling algorithm, for all of our access patterns,
both 8-byte and 8192-byte records, on both contiguous and random disk layouts, for the traditional
parallel file system. Again, disk-directed 1/0O is independent of the choice of disk-scheduling algo-
rithm.

The results for the contiguous disk layout are shown in Table 2. The new disk-scheduling
algorithm was nearly always faster; it was 9% slower in the 8-byte wc pattern. The most dramatic
improvements came in patterns like rb, where each CP was working in a different region of the file.
With FCFS disk scheduling, the disk head was constantly jumping from one region of the disk to
another, defeating the disk’s own caching and prefetching, and adding seek and rotational latency
to every access. With the new disk-scheduling algorithm, these requests were reordered to allow
one a group of requests from one CP, in one region, to be processed before jumping to a new region.
The disk schedule was still not optimal, but it was much better. Table 3 compares the number of
disk movements (including rotational delays) in the two cases.

The results for the random disk layout are shown in Table 4. The new disk-scheduling algorithm
made less difference here, because the random disk layout forced a fairly long seek on every access,
and the disk’s own cache was useless in either case. Only the 8-byte wc pattern was substantially
slower, losing 16% of its throughput. Table 5 compares the number of disk movements (including
rotational delays) in the two cases; both require a disk movement for each disk access because of
the random-access pattern.

The 8-byte wc pattern involved the CPs making 8-byte IOP requests, in an interleaved pattern,
so that the CPs were working through the file in approximately the same place. Fach IOP was
slowly building one block at a time, 8 bytes at a time, as each message arrived. As each block
became ready, it was stuck on the disk queue. The message-passing and cache processing for the
next block, however, took longer than the disk took to finish writing the block! So the disk queue
was empty and the disk was idle long before the next block was available to write. Thus, the
disk-scheduling policy did not matter: every disk write had substantial seek and/or rotational
latency. The throughput appears to be lower due to the increased computational overhead of the
new disk-scheduling algorithm.

In any case, we chose to use the new disk-scheduling algorithm in all of the other experiments

in this paper, and in our revised disk-directed 1/O experiments [Kot96].

Table 2: Throughput of the traditional parallel file system under all access patterns, with both 8 and
8192-byte records, and with both the FCFS and the Cyclic Scan (CS) disk-scheduling algorithm, on the
contiguous file layout. The throughput of ra seems high because it broadcasts the same data to all CPs.
The ratio of the throughput of CS to that of FCFS is greater than 1.0 if CS was faster than FCFS.

Throughput in MB/s
8-byte records 8192-byte records
Pattern | FCFS CS CS/FCFS || FCFS CS CS/FCFS
ra - - - || 474.9 500.7 1.05
rn - - - 314 314 1.00
rb 7.1 31.1 4.40 7.1 311 4.40
re 2.9 29 1.00 314 314 1.00
rnb 16.5 16.5 1.00 314 314 1.00
rbb 6.3 64 1.02 8.3 14.8 1.78
rcb 26.9 26.9 1.00 314 314 1.00
rbe 2.1 2.1 0.99 7.3 74 1.02
rec 2.7 3.0 1.10 9.4 146 1.55
ren 314 314 1.00 15.5 314 2.02
wn - - - 31.1 31.2 1.00
wb 9.0 288 3.19 9.0 28.8 3.19
we 1.8 1.6 0.91 314 314 1.00
wnb 31.3 31.2 1.00 10.1 30.5 3.02
wbb 9.2 278 3.01 8.9 29.8 3.33
wech 314 314 1.00 9.7 30.6 3.14
wbc 0.9 09 0.99 8.0 295 3.69
wee 1.6 1.6 1.01 9.9 299 3.01
wen 31.4 314 1.00 11.5 29.2 2.53

Table 3: Number of disk movements used by the traditional parallel file system under all access patterns,
with both 8- and 8192-byte records, and with both the FCFS and the Cyclic Scan (CS) disk-scheduling
algorithm, on the contiguous file layout. The ratio of the number of disk movements of CS to that of FCFS
is less than 1.0 if CS was better than FCFS.

Number of disk movements
8-byte records 8192-byte records
Pattern | FCFS CS CS/FCFS || FCFS CS CS/FCFS
ra - - - 148 144 0.97
rn - - - 144 144 1.00
rb 1280 144 0.11 1280 144 0.11
rc 1264 1264 1.00 144 144 1.00
rnb 37 37 1.00 136 136 1.00
rbb 1280 1280 1.00 939 577 0.61
rch 51 51 1.00 144 144 1.00
rbe 1274 1248 0.98 1280 1280 1.00
rce 1263 1262 1.00 682 543 0.80
rcn 144 144 1.00 563 144 0.26
wn - - - 16 16 1.00
wb 1176 46 0.04 1176 46 0.04
We 1283 1286 1.00 16 16 1.00
wnb 16 16 1.00 885 28 0.03
wbb 1280 74 0.06 1218 39 0.03
wch 16 16 1.00 1168 39 0.03
wbc 1280 1280 1.00 1280 42 0.03
wee 1288 1290 1.00 1258 42 0.03
wen 16 16 1.00 987 39 0.04

10

Table 4: Throughput of the traditional parallel file system under all access patterns, with both 8 and
8192-byte records, and with both the FCFS and the Cyclic Scan (CS) disk-scheduling algorithm, on the
random file layout. The throughput of ra seems high because it broadcasts the same data to all CPs. The
ratio of the throughput of CS to that of FCFS is greater than 1.0 if CS was faster than FCFS.

Throughput in MB/s
8-byte records 8192-byte records
Pattern | FCFS CS CS/FCFS || FCFS CS CS/FCFS
ra - - - 72.3 723 1.00
rn - - - 4.5 4.5 1.00
rb 4.3 4.5 1.04 4.3 4.5 1.04
re 2.2 2.2 0.99 4.5 4.5 1.00
rnb 3.3 33 1.00 4.5 4.5 1.00
rbb 3.7 3.8 1.03 4.5 44 0.97
rcb 4.1 4.1 1.00 4.5 4.5 1.00
rbe 2.0 2.0 1.03 4.3 44 1.01
rce 2.5 24 0.97 4.2 4.3 1.01
rcn 4.5 4.5 1.00 4.4 4.5 1.02
wn - - - 4.9 4.9 1.00
wb 4.9 4.9 0.99 4.9 4.9 0.99
we 1.5 1.3 0.84 4.9 4.9 1.00
wnb 4.9 4.9 1.00 4.9 4.9 1.00
wbb 5.1 4.9 0.97 5.0 4.9 0.98
wech 4.9 4.9 1.00 5.0 4.9 0.97
wbc 0.8 0.8 1.06 4.9 4.9 1.00
wee 1.6 1.6 1.00 4.9 4.9 1.00
wcn 49 49 1.00 50 4.9 0.99

11

Table 5: Number of disk movements used by the traditional parallel file system under all access patterns,
with both 8- and 8192-byte records, and with both the FCFS and the Cyclic Scan (CS) disk-scheduling
algorithm, on the random file layout. The ratio of the number of disk movements of CS to that of FCFS is
less than 1.0 if CS was better than FCFS.

Number of disk movements
8-byte records 8192-byte records
Pattern | FCFS CS CS/FCFS || FCFS CS CS/FCFS
ra - - - 1280 1280 1.00
rn - - - 1280 1280 1.00
rb 1280 1280 1.00 1280 1280 1.00
rc 1280 1280 1.00 1280 1280 1.00
rnb 1280 1280 1.00 1280 1280 1.00
rbb 1279 1280 1.00 1280 1280 1.00
rch 1280 1280 1.00 1280 1280 1.00
rbe 1280 1280 1.00 1280 1280 1.00
rce 1280 1280 1.00 1280 1280 1.00
rcn 1280 1280 1.00 1280 1280 1.00
wn - - - 1280 1280 1.00
wb 1280 1280 1.00 1280 1280 1.00
we 1280 1280 1.00 1280 1280 1.00
wnb 1280 1280 1.00 1280 1280 1.00
wbb 1280 1280 1.00 1280 1280 1.00
wch 1280 1280 1.00 1280 1280 1.00
wbc 1280 1280 1.00 1280 1280 1.00
wee 1280 1280 1.00 1280 1280 1.00
wen 1280 1280 1.00 1280 1280 1.00

12

4.2 Increased number of outstanding requests

This section affects only the traditional parallel file system.

In the original STARFISH, we only allowed one outstanding request from each CP to each
disk. In the new STARFISH, we can allow a larger number of requests. In this section we compare
various values for parameter K, the maximum number of outstanding requests. Note that the cache
size increased as this parameter increased, although the effect of this larger cache is minimal: in
these patterns the main benefit comes from a better disk schedule. As mentioned above, we used
the new disk-scheduling algorithm in these experiments. We only used access patterns whose chunk
size was larger than one block, because other patterns would be limited to one outstanding request
per CP, regardless of the new policy.

Figures 2 and 3 show the results for the contiguous disk layout, on two separate graphs for
clarity. The larger number of outstanding requests was primarily useful for patterns that had the
CPs working in separate regions of the disk, such as rb. FEach CP could send several requests to
each disk, which then better filled the disk queue, and gave the disk scheduler an opportunity to
serve more than one or two requests for a given CP before seeking to another region for another
CP. The rbb pattern never improved because its chunk size was 8, that is, each file-system request
was for eight blocks, so there was no room in the request for more than one outstanding request
per disk. The rbb throughput does improve (not shown) on larger files, where it has larger chunks.
Four outstanding requests, or fewer, was sufficient for all patterns to achieve their best performance.

Figures 4 and 5 show the results for the random disk layout, on two separate graphs for clarity.
The read access patterns in Figure 4 were helped by allowing more outstanding requests, although
in this case rbb needed a larger value to obtain its best performance. Figure 4 seems dramatic, but
the y-axis scale shows that the variations here are largely in the noise.

Overall, four outstanding requests seemed to be a reasonable compromise. We used four out-
standing requests in all of other experiments in this paper, and in our revised disk-directed 1/0

experiments [Kot96].

13

Contiguous disk layout, read patterns

40 I I I I I
- Mabandwidth 7
30 - iﬁ ra%
rn —+—
25 - -4 rb B-—
rnb <—
MB/s 20 - Tbb A
rcn ——
15 - A TCb =~
10 —
5_ —
0 | | | | | | |
0 2 4 6 8 10 12 14 16

Maximum number of outstanding IOP requests

Figure 2: Throughput of the traditional parallel file system under most read access patterns,
with 8192-byte records, with a varying maximum number of outstanding requests, on the con-
tiguous file layout. The throughput of ra has been normalized by the number of CPs.

Contiguous disk layout, write patterns

40 T T | | T
B Maxbandwidth 0 7
1 '
30 - N e ? wn—|—
= T wb B—
25 - wnb >—
Wbbé—
MB/s 20 + - Wen S
wcb —-—
15 -
10 -
5_ —
0 | | | | | | |
0 2 4 6 8 10 12 14 16

Maximum number of outstanding IOP requests

Figure 3: Throughput of the traditional parallel file system under most write access patterns,
with 8192-byte records, with a varying maximum number of outstanding requests, on the con-
tiguous file layout. The throughput of ra has been normalized by the number of CPs.

14

Random disk layout, read patterns

5.0 T T | | T
4.8 - -
4.6 - -
ra <—
44 — rn +_
rb H—
42 rnb <—
MB/s 4.0 | rbb A
rcn ——
38 rcb —-——
36 _
34 _
3.2 _
30 | | | | | | |
0 2 4 6 8 10 12 14 16

Maximum number of outstanding IOP requests

Figure 4: Throughput of the traditional parallel file system under all read access patterns, with
8192-byte records, with varying maximum numbers of outstanding requests, on the random file
layout. The throughput of ra has been normalized by the number of CPs. Note that the y-axis
is not based at zero.

Random disk layout, write patterns

5.02 | | | | |

5.00 -

498 . wn _|_

wb H—

4.96 wnb <—

4.94 - wbb A—

’ WCn —k—
MB/s 4.92 - wch —=—

4.90

4.88 -

4.86

4.84

482 | | | | | | |

0 2 4 6 8 10 12 14 16

Maximum number of outstanding IOP requests

Figure 5: Throughput of the traditional parallel file system under all write access patterns,
with 8192-byte records, with varying maximum numbers of outstanding requests, on the random
file layout. The throughput of ra has been normalized by the number of CPs. Note that the
y-axis is not based at zero, and that its scale is different from Figure 4.

15

4.3 Queued Memput and Memget

Memput and Memget are only used in disk-directed 1/O and in two-phase I/O (we used Memgets
and Memputs to implement the permutation phase). So we compare the performance of each, with
and without Queued Memputs/Memgets.

Table 6 presents the results for disk-directed 1/O and the contiguous disk layout. The through-
put was mostly unaffected; the throughput of ra was 21% slower, and the throughputs of some
patterns with 8-byte chunks were 10-24% faster.

Tables 7 and 8 present the results for the random disk layout, with and without the pre-sorting
option of disk-directed I/0O. Queued Memputs and Memgets made no difference here, because the
data-distribution overhead was completely hidden by the slow disk performance.

Table 9 presents the results for two-phase I/O and the contiguous disk layout. Some 8192-byte
patterns were slower, but most 8-byte patterns were faster, by as much as 145%! Three 8-byte
patterns were 2-5% slower.

Table 10 presents the results for two-phase 1/O and the random disk layout. The 8192-byte
patterns were largely unaffected, except for ra, but many 8-byte patterns were faster, by as much
as 40%.

Clearly, queued Memput and Memget were often, but not always, a good idea. So we chose
to use queuned Memput and Memget in all 8-byte patterns, but not in any 8192-byte patterns,
in all of the other disk-directed 1/O experiments in this paper, and in our revised disk-directed
I/O experiments [Kot96]. Note that this choice only adversely affected three 8-byte patterns in
two-phase I/0O, which were slower by 2-5%.

16

Table 6: Throughput of disk-directed I/O under all access patterns, with both 8- and 8192-byte records,
with both the original (Or) and queued Memputs/Memgets (QM), on the contiguous file layout. The
throughput of ra seems high because it broadcasts the same data to all CPs. The ratio of the throughput
of QM to that of Or is greater than 1.0 if Quened Memputs/Memgets were faster than the original Mem-
puts/Memgets. Ratios in italics do not represent a statistically significant difference at the 95% confidence
level; all others do.

Throughput in MB/s
8-byte records 8192-byte records
Pattern | Or QM QM/Or Oor QM QM/Or
ra - - - || 500.0 393.8 0.79
rn - - - 31.3 31.3 1.00
rb 31.3 31.2 1.00 31.3 31.2 1.00
rc 17.3 204 1.18 31.3 31.3 1.00
rnb 314 31.3 1.00 31.3 31.3 1.00
rbb 314 31.2 1.00 31.3 31.3 1.00
rch 314 31.3 1.00 31.3 31.3 1.00
rbc 13.5 15.2 1.13 31.3 31.3 1.00
rcce 13.7 154 1.13 31.3 31.3 1.00
rcn 31.3 31.3 1.00 31.3 31.2 1.00
wn - - - 31.4 314 1.00
wb 314 314 1.00 314 314 1.00
We 16.5 20.5 1.24 31.4 314 1.00
wnb 31.5 314 1.00 314 314 1.00
wbb 31.5 314 1.00 314 314 1.00
wch 31.5 314 1.00 314 314 1.00
wbc 14.0 154 1.10 31.4 314 1.00
ifele 13.1 15.7 1.20 31.4 314 1.00
wen 314 314 1.00 314 314 1.00

17

Table 7: Throughput of disk-directed I/0O, without sorting under all access patterns, with both 8-
and 8192-byte records, with both the original (Or) and queued Memputs/Memgets (QM), on the random
file layout. The throughput of ra seems high because it broadcasts the same data to all CPs. The ratio
of the throughput of QM to that of Or is greater than 1.0 if Queued Memputs/Memgets were faster than
the original Memputs/Memgets. Ratios in italics do not represent a statistically significant difference at the
95% confidence level; all others do.

Throughput in MB/s
8-byte records 8192-byte records
Pattern | Or QM QM/Or Or QM QM/Or
ra - - - || 7.7 715 1.00
rn - - - 4.5 4.5 1.00
rb 4.5 4.5 1.00 4.5 4.5 1.00
rc 4.5 4.5 1.00 4.5 4.5 1.00
rnb 4.5 4.5 1.00 4.5 4.5 1.00
rbb 4.5 4.5 1.00 4.5 4.5 1.00
rch 4.5 4.5 1.00 4.5 4.5 1.00
rbc 4.5 4.5 1.00 4.5 4.5 1.00
rcce 4.5 4.5 1.00 4.5 4.5 1.00
rcn 4.5 4.5 1.00 4.5 4.5 1.00
wn - - - 49 49 1.00
wb 49 49 1.00 49 49 1.00
We 49 49 1.00 49 49 1.00
wnb 49 49 1.00 49 49 1.00
wbb 49 49 1.00 49 49 1.00
wch 49 49 1.00 49 49 1.00
wbc 49 49 1.00 49 49 1.00
ifele 49 49 1.00 49 49 1.00
wen 49 49 1.00 49 49 1.00

18

Table 8: Throughput of disk-directed I/0O, with sorting under all access patterns, with both 8- and
8192-byte records, with both the original (Or) and queued Memputs/Memgets (QM), on the random file
layout. The throughput of ra seems high because it broadcasts the same data to all CPs. The ratio of
the throughput of QM to that of Or is greater than 1.0 if Queued Memputs/Memgets were faster than the
original Memputs/Memgets. Ratios in italics do not represent a statistically significant difference at the
95% confidence level; all others do.

Throughput in MB/s
8-byte records 8192-byte records
Pattern | Or QM QM/Or Oor QM QM/Or
ra - - - || 100.9 100.6 1.00
rn - - - 6.3 6.3 1.00
rb 6.3 6.3 1.00 6.3 6.3 1.00
rc 6.3 6.3 1.00 6.3 6.3 1.00
rnb 6.3 6.3 1.00 6.3 6.3 1.00
rbb 6.3 6.3 1.00 6.3 6.3 1.00
rch 6.3 6.3 1.00 6.3 6.3 1.00
rbe 6.3 6.3 1.00 6.3 6.3 1.00
rce 6.3 6.3 1.00 6.3 6.3 1.00
rcn 6.3 6.3 1.00 6.3 6.3 1.00
wn - - - 7.3 7.3 1.00
wb 7.3 7.3 1.00 7.3 7.3 1.00
we 7.3 7.3 1.00 7.3 7.3 1.00
wnb 7.3 7.3 1.00 7.3 7.3 1.00
wbb 7.3 7.3 1.00 7.3 7.3 1.00
wch 7.3 7.3 1.00 7.3 7.3 1.00
wbc 7.2 7.2 1.00 7.3 7.3 1.00
Wwce 7.2 7.2 1.00 7.3 7.3 1.00
wen 7.3 7.3 1.00 7.3 7.3 1.00

19

Table 9: Throughput of two-phase I/O under all access patterns, with both 8- and 8192-byte records, with
both the original (Or) and queued Memputs/Memgets (QM), on the contiguous file layout. The throughput
of ra seems high because it broadcasts the same data to all CPs. The ratio of the throughput of QM to that
of Or is greater than 1.0 if Queued Memputs/Memgets were faster than the original Memputs/Memgets.
Ratios in #talics do not represent a statistically significant difference at the 95% confidence level; all others

do.

Throughput in MB/s
8-byte records 8192-byte records
Pattern | Or QM QM/Or Oor QM QM/Or
ra - - - 1] 220.0 169.8 0.77
rn - - - 26.4 25.3 0.96
rb 31.3 31.3 1.00 31.3 31.3 1.00
rc 5.6 12.9 2.30 28.8 28.2 0.98
rnb 27.8 27.3 0.98 || 26.9 26.3 0.98
rbb 29.6 28.0 0.95 27.1 26.2 0.97
rcb 29.1 28.0 0.96 | 26.8 25.9 0.97
rbc 6.7 16.5 2.45 27.1 26.2 0.97
rcce 5.6 12.8 2.28 26.8 259 0.97
ren 28.8 28.2 0.98 || 26.7 25.6 0.96
wn - - - 24.1 15.1 0.63
wb 28.7 28.7 1.00 28.7 28.7 1.00
We 5.9 13.0 2.21 257 25.6 0.99
wnb 25.0 254 1.02 264 26.3 0.99
wbb 27.1 2.7 0.95 26.3 26.3 1.00
wech 25.9 25.6 0.99 || 26.5 26.3 0.99
wbc 6.8 15.1 2.24 26.3 26.3 1.00
wee 5.7 13.0 229 || 26.5 26.3 0.99
wen 25.8 25.7 1.00 25.9 257 1.00

20

Table 10: Throughput of two-phase I/0 under all access patterns, with both 8 and 8192-byte records,
with both the original (Or) and queued Memputs/Memgets (QM), on the random file layout. The through-
put of ra seems high because it broadcasts the same data to all CPs. The ratio of the throughput of QM to
that of Or is greater than 1.0 if Queued Memputs/Memgets were faster than the original Memputs/Memgets.
Ratios in #talics do not represent a statistically significant difference at the 95% confidence level; all others

do.

Throughput in MB/s
8-byte records 8192-byte records
Pattern | Or QM QM/Or Or QM QM/Or
ra - - - || 60.5 56.0 0.93
rn - - - 44 4.3 0.99
rb 4.5 4.5 1.00 4.5 4.5 1.00
rc 2.7 3.7 1.37 4.4 44 1.00
rnb 4.4 44 1.00 4.4 44 1.00
rbb 4.4 44 0.99 4.4 44 0.99
rcb 4.4 44 0.99 4.4 44 0.99
rbc 29 4.0 1.35 4.4 44 0.99
rcce 2.7 3.7 1.37 44 44 0.99
rcn 4.4 44 1.00 4.4 44 0.99
wn - - - 4.7 4.2 0.90
wb 49 49 1.00 49 49 1.00
We 2.9 4.1 1.38 4.8 4.8 1.00
wnb 4.8 4.8 1.00 4.8 4.8 1.00
wbb 4.8 4.8 0.99 4.8 4.8 1.00
wch 4.8 4.8 1.00 4.8 4.8 1.00
wbc 3.1 4.2 1.35 4.8 4.8 1.00
ifele 2.9 4.1 1.40 4.8 4.8 1.00
wen 4.8 4.8 1.00 4.8 4.8 1.00

21

4.4 Memget writes

We compared our original scheme, in which CPs wanting to write data sent the data as part of the
TIOP requests, to the “Memget writes” scheme, in which CPs sent only the request, and waited for
the IOP to use Memget to fetch the data.

Table 11 presents the results on the contiguous disk layout. Although Memget writes were
slightly (1-3%) faster in a few cases, they were often slower than the current plan, especially for
patterns with 8-byte chunks.

Table 12 presents the results on the random disk layout, and is no more optimistic.

As a result, we chose to retain the original scheme, rather than using Memget writes, in the

other experiments in this paper and in our revised disk-directed I/O experiments [Kot96].

22

Table 11: Throughput of the traditional parallel file system under all access patterns, with both 8 and
8192-byte records, and with both the original (Or) and the “Memget writes” (MW), on the contiguous file
layout. The throughput of ra seems high because it broadcasts the same data to all CPs. The ratio of the
throughput of MW to that of Or is greater than 1.0 if Memget writes were faster than the original scheme.
Ratios in #talics do not represent a statistically significant difference at the 95% confidence level; all others

do.

Throughput in MB/s
8-byte records 8192-byte records
Pattern | Or MW MW/Or Or MW MW/Or
ra - - - || 499.7 499.3 1.00
rn - - - 314 314 1.00
rb 31.3 313 1.00 31.3 31.3 1.00
rc 2.8 2.7 0.96 314 31.3 1.00
rnb 16.5 16.4 1.00 314 31.3 1.00
rbb 6.4 6.4 1.00 14.7 14.5 0.99
rcb 26.6 26.6 1.00 314 314 1.00
rbc 2.1 2.1 1.00 7.4 7.4 1.00
rcc 3.0 2.8 0.95 14.5 14.5 1.00
rcn 31.4 313 1.00 31.3 31.3 1.00
wn - - - 31.2 31.3 1.00
wb 28.7 29.6 1.03 28.7 29.6 1.03
WC 1.9 0.3 0.19 314 314 1.00
wnb 31.3 177 0.56 || 30.4 30.5 1.00
wbb 279 222 0.80 29.8 30.1 1.01
wch 31.4 314 1.00 30.4 30.6 1.01
wbc 0.8 0.3 0.38 || 29.6 29.6 1.00
Wwce 1.6 1.3 0.83 29.9 30.1 1.01
wcn 31.4 314 1.00 29.1 30.0 1.03

23

Table 12: Throughput of the traditional parallel file system under all access patterns, with both 8- and
8192-byte records, and with both the original (Or) and the “Memget writes” (MW), on the random file
layout. The throughput of ra seems high because it broadcasts the same data to all CPs. The ratio of the
throughput of MW to that of Or is greater than 1.0 if Memget writes were faster than the original scheme.
Ratios in #talics do not represent a statistically significant difference at the 95% confidence level; all others

do.

Throughput in MB/s
8-byte records 8192-byte records
Pattern | Or MW MW/Or| Or MW MW/Or
ra - - - || 71.6 71.6 1.00
rn - - - 4.5 4.5 1.00
rb 4.5 4.5 1.00 4.5 4.5 1.00
rc 2.2 2.2 0.99 4.5 4.5 1.00
rnb 3.3 3.3 1.00 4.5 4.5 1.00
rbb 3.8 3.8 1.00 4.5 4.5 1.00
rcb 4.1 4.1 1.00 4.5 4.5 1.00
rbc 2.0 2.1 1.03 4.3 4.3 1.00
rcc 2.5 2.5 1.01 4.2 4.2 1.00
rcn 4.5 4.5 1.00 4.5 4.5 1.00
wn - - - 4.9 4.9 1.00
wb 4.9 4.9 1.00 4.9 4.9 1.00
WC 1.6 0.3 0.23 4.9 4.9 1.00
wnb 4.9 4.9 1.00 4.9 4.9 1.00
wbb 4.9 4.9 1.00 4.9 4.9 1.00
wch 4.9 4.9 1.00 4.9 4.9 1.00
wbc 0.8 0.3 0.39 4.9 4.9 1.00
Wwce 1.6 1.3 0.83 5.0 4.9 1.00
wcn 4.9 4.9 1.00 4.9 4.9 1.01

24

4.5 Queued requests vs. thread requests

i

We compared the original “thread requests,” in which each incoming IOP request was allocated a

" in which each each incoming IOP request was matched with

new thread, with “queued requests,’
an existing thread from a pool of pre-allocated, reusable threads.

Table 13 shows the results for the contiguous disk layout. As expected, this change only affects
8-byte access patterns, indeed, only the patterns with 8-byte chunks (rc, rbc, rcc, we, wbe, wee),
because only they have a tremendous number of tiny requests. The cost of thread creation is
dominant in those patterns, and the queued-request system works better there, with no adverse
affects in the other cases.

Table 13 shows the results for the random disk layout. There are some larger improvements
(36%), but one case (wc with 8-byte records) is 7% slower.

As a result we chose to use queued requests in all of the other experiments in this paper, and

for our revised disk-directed 1/O experiments [Kot96].

25

Table 13: Throughput of the traditional parallel file system under all access patterns, with both 8 and
8192-byte records, and with both Thread Requests (TR) and Queued Requests (QR) on the contiguous
file layout. The throughput of ra seems high because it broadcasts the same data to all CPs. The ratio of
the throughput of QR to that of TR is greater than 1.0 if Queued Requests were faster than the Thread
Requests.

Throughput in MB/s
8-byte records 8192-byte records
Pattern | TR QR QR/TR TR QR QR/TR
ra - - - || 498.0 500.7 1.01
rn - - - 314 314 1.00
rb 31.0 31.1 1.00 31.0 31.1 1.00
rc 2.8 2.9 1.04 314 314 1.00
rnb 16.5 16.5 1.00 31.3 314 1.00
rbb 6.4 64 1.00 14.8 14.8 1.00
rcb 26.9 26.9 1.00 314 314 1.00
rbc 1.8 2.1 1.14 7.4 7.4 1.00
rcce 2.1 3.0 1.39 14.5 14.6 1.00
rcn 314 314 1.00 31.2 314 1.01
wn - - - 31.2 31.2 1.00
wb 28.8 28.8 1.00 28.8 288 1.00
We 1.5 1.6 1.07 314 314 1.00
wnb 31.2 31.2 1.00 || 30.5 30.5 1.00
wbb 27.6 278 1.00 29.8 298 1.00
wech 31.5 314 1.00 || 30.5 30.6 1.00
wbc 0.6 0.9 1.40 29.5 295 1.00
ifele 1.5 1.6 1.06 29.8 299 1.00
wen 314 314 1.00 29.1 29.2 1.00

26

Table 14: Throughput of the traditional parallel file system under all access patterns, with both 8- and
8192-byte records, and with both Thread Requests (TR) and Queued Requests (QR) on the random file
layout. The throughput of ra seems high because it broadcasts the same data to all CPs. The ratio of
the throughput of QR to that of TR is greater than 1.0 if Queued Requests were faster than the Thread
Requests.

Throughput in MB/s
8-byte records 8192-byte records
Pattern | TR QR QR/TR || TR QR QR/TR
ra - - - || 72.2 72.3 1.00
rn - - - 4.5 4.5 1.00
rb 4.5 4.5 1.00 4.5 4.5 1.00
rc 2.1 2.2 1.04 4.5 4.5 1.00
rnb 3.3 3.3 1.00 4.5 4.5 1.00
rbb 3.8 3.8 1.00 44 44 1.00
rcb 4.1 4.1 1.00 4.5 4.5 1.00
rbc 1.7 2.0 1.21 4.4 44 1.00
rcce 2.3 24 1.07 4.3 4.3 1.00
rcn 4.5 4.5 1.00 4.5 4.5 1.00
wn - - - 49 49 1.00
wb 4.9 4.9 1.00 49 49 1.00
We 1.4 1.3 0.93 49 49 1.00
wnb 4.9 4.9 1.00 49 49 1.00
wbb 4.9 4.9 1.00 49 49 1.00
wch 4.9 4.9 1.00 49 49 1.00
wbc 0.6 0.8 1.36 49 49 1.00
ifele 1.5 1.6 1.06 49 49 1.00
wen 4.9 4.9 1.00 49 49 1.00

27

5 Conclusions

We experimentally examined five major features in the STARFISH 3.0 parallel file-system simulator:

Disk scheduling: It was clear that the new Cyclic Scan disk-scheduling algorithm was much
better than our old FCFS algorithm. We used that algorithm for all other experiments in

this paper and in our revised disk-directed 1/O experiments [Kot96].

Increased number of outstanding requests: Allowing more outstanding requests increased
the throughput of the traditional parallel file system on many access patterns with large
chunks, because the resulting deep disk queues permitted better disk scheduling. Since two-
phase 1/0O uses rb, and rb benefited a lot from this change, two-phase /O would also benefit
greatly from this change. Four outstanding requests appeared to be a good maximum; few pat-
terns improved beyond this point. We used four outstanding requests for other disk-directed

I/O experiments in this paper and in our revised disk-directed I/O experiments [Kot96].

Queued Memput and Memget: The queued Memput and Memget functions were helpful in
both two-phase I/O and disk-directed 1/O, but only for 8-byte, not 8192-byte, access pat-
terns. Thus, we chose to use queued Memput and Memget for 8-byte access patterns only,
and we did so in all other experiments in this paper and in our revised disk-directed 1/0

experiments [Kot96].

Memget writes: Memget writes rarely increased throughput, the increases were small, and the

decreases were often dramatic. We chose not to use them in any other experiments.

Queued requests vs. thread requests: The overhead of thread creation was clearly a drag on
performance for those patterns that made a lot of IOP requests, i.e., those with 8-byte chunks.
The alternate implementation, queued requests, which kept a pool of ready and reusable
threads, was much faster for those patterns, and no slower for the other patterns. We chose
to use queued requests in all other experiments in this paper and in our revised disk-directed

I/O experiments [Kot96].

28

5.1 Comparing file systems

Based on the above conclusions, we revised our earlier experiments, in which we compare the
traditional parallel file system, two-phase 1/0, and disk-directed 1/0. All of these experiments use
the parameters from Table 1, and the features described in the conclusions above. The results are
graphed and examined in detail in the full paper [Kot96], but the raw data is presented below in
Tables 15-21.

29

Table 15: A comparison of the throughput of disk-directed 1/0 (DDIO) and the traditional parallel file
system (TPFS), on a contiguous disk layout. ra throughput has been normalized by the number of CPs.
Fach point represents the average of five trials of an access pattern on both methods (maximum cv is 0.23,
though most are less than 0.090). A ratio greater than 1.00 means that disk-directed 1/O was faster than
the traditional parallel file system in that case. Ratios in italics do not represent a statistically significant
difference at the 95% confidence level; all others do. Note that the peak disk throughput was 33.8 MB/s.

Throughput in MB/s
8-byte records 8192-byte records
Pattern | TPFS DDIO DDIO/TPFS || TPFS DDIO DDIO/TPFS
ra - - - || 499.7 500.0 1.00
rn - - - 314 31.3 1.00
rb 31.3 31.2 1.00 31.3 31.3 1.00
re 2.8 20.4 7.28 314 31.3 1.00
rnb 16.5 31.3 1.90 314 31.3 1.00
rbb 6.4 31.2 4.89 14.7 31.3 2.14
rch 26.6 31.3 1.18 314 31.3 1.00
rbe 2.1 15.2 7.39 74 31.3 4.23
rce 3.0 15.4 5.14 14.5 31.3 2.17
ren 314 31.3 1.00 31.3 31.3 1.00
wn - - - 31.2 314 1.01
wb 28.7 314 1.09 28.7 314 1.09
we 1.9 20.5 11.53 314 314 1.00
wnb 31.3 314 1.00 30.4 314 1.03
wbb 27.9 314 1.13 29.8 314 1.05
wech 31.4 314 1.00 30.4 314 1.03
wbc 0.8 15.4 18.11 29.6 314 1.06
wee 1.6 15.7 9.96 29.9 314 1.05
wen 31.4 314 1.00 29.1 314 1.08

30

Table 16: A comparison of the throughput of disk-directed I/O (DDIO) to that of the traditional parallel
file system (TPFS), on a random-blocks disk layout. DDIOs represents disk-directed I/O with the block-
list presort. ra throughput has been normalized by the number of CPs. Each point represents the average
of five trials of an access pattern on both methods (maximum coefficient of variation (ev) is 0.25, although
most were less than 0.042). The column r is the ratio of DDIO (or DDIOs) to TPFS. If » > 1, disk-directed
I/O was faster than the traditional parallel file system in that case. Ratios in ¢talics do not represent a
statistically significant difference at the 95% confidence level; all others do.

Throughput in MB/s
8-byte records 8192-byte records
Pattern | TPFS | DDIO r | DDIOs r || TPFS | DDIO r | DDIOs r
ra - - - - - 71.6 7.7 1.00 100.9 1.41
rn - - - - - 4.5 4.5 1.00 6.3 141
rb 4.5 4.5 1.00 6.3 141 4.5 4.5 1.00 6.3 141
rc 2.2 4.5 2.01 6.3 2.82 4.5 4.5 1.01 6.3 1.42
rnb 3.3 4.5 1.37 6.3 1.93 4.5 4.5 1.01 6.3 1.42
rbb 3.8 4.5 1.18 6.3 1.66 4.5 4.5 1.00 6.3 141
rch 4.1 4.5 1.10 6.3 1.55 4.5 4.5 1.00 6.3 141
rbe 2.0 4.5 2.23 6.3 3.14 4.3 4.5 1.04 6.3 1.46
rce 2.5 4.5 1.79 6.3 2.52 4.2 4.5 1.06 6.3 1.49
rcn 4.5 4.5 1.01 6.3 1.42 4.5 4.5 1.00 6.3 141
wn - - - - - 4.9 4.9 1.00 7.3 1.49
wb 4.9 4.9 1.00 7.3 1.49 4.9 4.9 1.00 7.3 1.49
we 1.6 4.9 3.29 7.3 4.8 4.9 4.9 1.00 7.3 1.49
wnb 4.9 4.9 1.00 7.3 1.49 4.9 4.9 1.00 7.3 1.48
wbb 4.9 4.9 1.00 7.3 1.49 4.9 4.9 1.00 7.3 1.48
wch 4.9 4.9 1.00 7.3 1.49 4.9 4.9 1.00 7.3 1.49
wbc 0.8 4.9 5.88 7.2 8.70 4.9 4.9 1.00 7.3 1.49
wee 1.6 4.9 3.12 7.2 4.62 5.0 4.9 0.99 7.3 1.48
wen 4.9 4.9 1.00 7.3 1.49 4.9 4.9 1.00 7.3 1.49

31

Table 17: A comparison of the throughput of two-phase I/0 (2PI0) and disk-directed I/O (DDIO), on a
contiguous disk layout. ra throughput has been normalized by the number of CPs. Each point represents
the average of five trials of an access pattern on both methods (maximum cv is 0.012). A ratio greater
than 1.00 means that disk-directed I/O was faster than two-phase I/O in that case. Ratios in italics do not
represent a statistically significant difference at the 95% confidence level; all others do. Note that the peak
disk throughput was 33.8 MB/s.

Throughput in MB/s
8-byte records 8192-byte records
Pattern | 2PIO DDIO DDIO/2PIO || 2PIO DDIO DDIO/2PIO
ra - - - || 220.0 500.0 2.27
rn - - - 26.4 31.3 1.19
rb 31.3 31.2 1.00 || 31.3 31.3 1.00
re 12.9 20.4 1.7 | 28.8 31.3 1.09
rnb 27.3 31.3 1.15 26.9 31.3 1.16
rbb 28.0 31.2 1.11 27.1 31.3 1.16
rch 28.0 31.3 1.12 26.8 31.3 1.17
rbe 16.5 15.2 0.92 27.1 31.3 1.16
rec 12.8 15.4 1.20 26.8 31.3 1.17
ren 28.2 31.3 1.11 26.7 31.3 1.17
wn - - - 24.1 31.4 1.31
wb 28.7 314 1.09 28.7 314 1.09
we 13.0 20.5 1.58 25.7 314 1.22
wnb 25.4 31.4 1.24 || 26.4 31.4 1.19
wbb 25.7 314 1.22 26.3 314 1.20
wch 25.6 314 1.23 26.5 314 1.19
wbc 15.1 15.4 1.02 26.3 314 1.20
Wwece 13.0 15.7 1.21 26.5 314 1.19
wen 25.7 314 1.23 25.9 314 1.22

32

Table 18: A comparison of the throughput of two-phase I/O (2PIO) and disk-directed I/O without the
block-list presort (DDIO), on a random disk layout. ra throughput has been normalized by the number of
CPs. Each point represents the average of five trials of an access pattern on both methods (maximum cv is
0.010). A ratio greater than 1.00 means that disk-directed I/O was faster than two-phase I/0 in that case.

Ratios in #talics do not represent a statistically significant difference at the 95% confidence level; all others

do.

Throughput in MB/s
8-byte records 8192-byte records
Pattern | 2PIO DDIO DDIO/2PIO || 2PIO DDIO DDIO/2PIO
ra - - - 60.5 717 1.19
rn - - - 4.4 4.5 1.03
rb 4.5 4.5 1.00 4.5 4.5 1.00
rc 3.7 4.5 1.20 4.4 4.5 1.01
rnb 4.4 4.5 1.02 4.4 4.5 1.02
rbb 4.4 4.5 1.02 4.4 4.5 1.02
rcb 4.4 4.5 1.02 4.4 4.5 1.02
rbe 4.0 4.5 1.13 4.4 4.5 1.02
rce 3.7 4.5 1.20 4.4 4.5 1.02
ren 4.4 4.5 1.02 4.4 4.5 1.02
wn - - - 4.7 4.9 1.04
wb 4.9 4.9 1.00 4.9 4.9 1.00
we 4.1 4.9 1.21 4.8 4.9 1.03
wnb 4.8 4.9 1.03 4.8 4.9 1.02
wbb 4.8 4.9 1.03 4.8 4.9 1.02
wech 4.8 4.9 1.03 4.8 4.9 1.02
wbc 4.2 4.9 1.15 4.8 4.9 1.02
wee 4.1 4.9 1.21 4.8 4.9 1.02
wen 4.8 4.9 1.03 4.8 4.9 1.02

33

Table 19: A comparison of the throughput of two-phase I/O (2PI0) and disk-directed I/O with the
block-list presort (DDIOs), on a random disk layout. ra throughput has been normalized by the number
of CPs. Each point represents the average of five trials of an access pattern on both methods (maximum
cv is 0.031). A ratio greater than 1.00 means that disk-directed I/O was faster than two-phase I/0 in that
case. Ratios in italics do not represent a statistically significant difference at the 95% confidence level; all
others do.

Throughput in MB/s
8-byte records 8192-byte records
Pattern | 2PIO DDIOs DDIOs/2PIO || 2PIO DDIOs DDIOs/2PIO
ra - - - 60.5 100.9 1.67
rn - - - 4.4 6.3 1.45
rb 4.5 6.3 1.41 4.5 6.3 1.41
rc 3.7 6.3 1.69 4.4 6.3 1.43
rnb 4.4 6.3 1.44 4.4 6.3 1.43
rbb 4.4 6.3 1.43 4.4 6.3 1.43
rcb 4.4 6.3 1.43 4.4 6.3 1.43
rbe 4.0 6.3 1.58 4.4 6.3 1.43
rce 3.7 6.3 1.69 4.4 6.3 1.43
ren 4.4 6.3 1.43 4.4 6.3 1.43
wn - - - 4.7 7.3 1.55
wb 4.9 7.3 1.49 4.9 7.3 1.49
we 4.1 7.3 1.79 4.8 7.3 1.53
wnb 4.8 7.3 1.53 4.8 7.3 1.52
wbb 4.8 7.3 1.53 4.8 7.3 1.52
wch 4.8 7.3 1.53 4.8 7.3 1.51
wbc 4.2 7.2 1.71 4.8 7.3 1.52
wee 4.1 7.2 1.79 4.8 7.3 1.51
wen 4.8 7.3 1.53 4.8 7.3 1.52

34

Table 20: A comparison of the throughput of the traditional parallel file system (TPFS) and two-phase
I/O (2PI0), on a contiguous disk layout. ra throughput has been normalized by the number of CPs.
Fach point represents the average of five trials of an access pattern on both methods (maximum cv is 0.24,
although most are less than 0.090). A ratio greater than 1.00 means that two-phase 1/O was faster than
the traditional parallel file system in that case. Ratios in italics do not represent a statistically significant
difference at the 95% confidence level; all others do.

Throughput in MB/s
8-byte records 8192-byte records
Pattern | TPFS 2PIO 2PIO/TPFS | TPFS 2PIO 2PIO/TPFS
ra - - - || 499.7 220.0 0.44
rn - - - 314 264 0.84
rb 31.3 313 1.00 31.3 313 1.00
re 2.8 129 4.62 31.4 288 0.92
rnb 16.5 273 1.65 314 26.9 0.86
rbb 6.4 28.0 4.39 4.7 27.1 1.85
rch 26.6 28.0 1.05 314 26.8 0.86
rbe 2.1 16.5 8.00 74 27.1 3.66
rec 3.0 128 4.27 14.5 26.8 1.86
ren 314 282 0.90 31.3 26.7 0.85
wn - - - 31.2 241 0.77
wb 28.7 28.7 1.00 28.7 28.7 1.00
we 1.9 13.0 7.32 314 25.7 0.82
wnb 31.3 254 0.81 304 26.4 0.87
wbb 279 25.7 0.92 29.8 26.3 0.88
wech 31.4 256 0.81 304 26.5 0.87
wbc 0.8 15.1 17.84 29.6 26.3 0.89
wee 1.6 13.0 8.24 29.9 26.5 0.89
wen 314 25.7 0.82 29.1 25.9 0.89

35

Table 21: A comparison of the throughput of the traditional parallel file system (TPFS) and two-phase
I/O (2PIO), on a random disk layout. ra throughput has been normalized by the number of CPs. Each
point represents the average of five trials of an access pattern on both methods (maximum cv is 0.25,
although most were less than 0.042). A ratio greater than 1.00 means that two-phase I/O was faster than
the traditional parallel file system in that case. Ratios in italics do not represent a statistically significant
difference at the 95% confidence level; all others do.

Throughput in MB/s
8-byte records 8192-byte records
Pattern | TPFS 2PIO 2PIO/TPFS | TPFS 2PIO 2PIO/TPFS
ra - - - 71.6 60.5 0.84
rn - - - 4.5 4.4 0.97
rb 4.5 4.5 1.00 4.5 4.5 1.00
rc 2.2 3.7 1.67 4.5 4.4 0.99
rnb 3.3 4.4 1.34 4.5 4.4 0.99
rbb 3.8 4.4 1.16 4.5 4.4 0.98
rcb 4.1 4.4 1.08 4.5 4.4 0.98
rbe 2.0 4.0 1.98 4.3 4.4 1.02
rce 2.5 3.7 1.49 4.2 4.4 1.04
rcn 4.5 4.4 0.99 4.5 4.4 0.98
wn - - - 4.9 4.7 0.96
wb 4.9 4.9 1.00 4.9 4.9 1.00
we 1.6 4.1 2.71 4.9 4.8 0.97
wnb 4.9 4.8 0.97 4.9 4.8 0.98
wbb 4.9 4.8 0.97 4.9 4.8 0.98
wch 4.9 4.8 0.97 4.9 4.8 0.98
wbc 0.8 4.2 5.09 4.9 4.8 0.98
wee 1.6 4.1 2.58 5.0 4.8 0.98
wcn 4.9 4.8 0.97 4.9 4.8 0.98

36

References

[BDCWI1] Eric A. Brewer, Chrysanthos N. Dellarocas, Adrian Colbrook, and William E.

[KC95]

[Kot94a]

[Kot94b)]

[Kot95a]

[Kot95b)]

[Kot95¢]

[Kot96]

[PEK96]

[SCO90]

Weihl. Proteus: A high-performance parallel-architecture simulator. Technical Re-
port MIT/LCS/TR-516, MIT, September 1991.

David Kotz and Ting Cai. Exploring the use of I/O nodes for computation in a MIMD
multiprocessor. In IPPS ’95 Workshop on Input/Output in Parallel and Distributed
Systems, pages 78-89, April 1995.

David Kotz. Disk-directed 1/O for MIMD multiprocessors. In Proceedings of the 1994
Symposium on Operating Systems Design and Implementation, pages 61-74, November
1994. Updated as Dartmouth TR PCS-TR94-226 on November 8, 1994.

David Kotz. Disk-directed I/O for MIMD multiprocessors. Technical Report PCS-
TR94-226, Dept. of Computer Science, Dartmouth College, July 1994. Revised Novem-
ber 8, 1994.

David Kotz. Disk-directed I/O for an out-of-core computation. In Proceedings of the
Fourth IFFFE International Symposium on High Performance Distributed Computing,
pages 159-166, August 1995.

David Kotz. Expanding the potential for disk-directed 1/O. In Proceedings of the 1995
IEFEE Symposium on Parallel and Distributed Processing, pages 490-495, October 1995.

David Kotz. Interfaces for disk-directed I/0O. Technical Report PCS-TR95-270, Dept.
of Computer Science, Dartmouth College, September 1995.

David Kotz. Disk-directed 1/O for MIMD multiprocessors. Submitted to TOCS, Oc-
tober 1996.

Apratim Purakayastha, Carla Schlatter Ellis, and David Kotz. ENWRICH: a compute-
processor write caching scheme for parallel file systems. In Fourth Workshop on In-
put/Output in Parallel and Distributed Systems, pages 55—68, May 1996.

Margo Seltzer, Peter Chen, and John Ousterhout. Disk scheduling revisited. In Pro-
ceedings of the 1990 Winter USENIX Conference, pages 313-324, 1990.

37

