WORKSHOP
ON

PARALLEL PROCESSING

The Lewis Room
Capitol Holiday Inn
Washington, D.C.

August 28 - 29, 1989

© Copyright 1989 by the author

Supported from the Defense Advanced Research Projects Agency
through the National Aeronautics and Space Administration

David Kotz
© Copyright 1989 by the author�

High-Performance File System Design
for

MIMD Parallel Processors

David Kotz
Duke University

with Prof. Carla Ellis

Motivations

» File systems for parallel processors have been
largely ignored.

« To avoid serial bottlenecks, parallel I/O and file
systems should be used.

« Caching and prefetching have been used
successfully to boost file system performance in
serial computers, and we believe this can be
extended to parallel computers.

Issues
General:

» The combined performance of all threads in a
parallel application is more important than that of
any one thread.

In order to speed up the application, we must
speed up all threads.

1/O:

 To avoid waiting for I/O under multiprogramming,
overlap the I/O with useful computation by
switching to a "ready" process.

e Many parallel systems do not multiprogram the
individual nodes.

» We thus use these idle moments of the application
process to do prefetching.

Prefetching: I oading blocks into the cache before
they are requested.

» Prefetching overhead must be minimized in order
to attain maximum benefit.

Completed Work

 Question: Is it possible to reduce overall

application execution time by prefetching file
blocks?

» Simplified version: given a priori an ordered list
of all file references, will prefetching reduce the
overall execution time?

If not, then it can't be done on-the-fly.

» Experimental approach:
RAPID-Transit testbed.
Architectural model:

parallel independent disks.
Synthetic workload.

Summary of Results

+ Average time required to read a block reduced in
all cases.

+ Cache hit ratio increased from near zero to over
69% in all cases.

- Disk contention (as measured by queuing time)
increases.

- Synchronization delays increase.

+ Total execution time reduced in most cases:
Maximum 69% reduction
Median 19% reduction
- In some cases, however, the application was 5-15%
slower

Conclusion: potential for improving performance
with prefetching is good.

Benefit Balancing

 Primary direct benefit of prefetching is reduced
block read time.

o If the benefit is unevenly distributed between
processors, some processors fall behind.

 The faster processors must wait for the slower
processors at the next synchronization point.

this all leads to

» No improvement in overall execution time.

A possible solution:

o Adjust the prefetching strategy so that
prefetching benefits all processors equally.

 Preliminary results: prefetching now improves
total execution time in all cases.

Access Pattern Prediction'

Given a sequential access pattern, predicting the
future is easy - in a serial processor.

In a parallel processor, what is a "sequential"
access pattern?

i.;-_':::.T_‘i‘.I' ‘-'—-ﬁ.;_-_nt .
@ f oo |) ii_ S
.) 3 _'_'__-____ 1 __‘L___._'____a -

e

Proc &

= H\‘JM.%/“\-—/
: Y
Ceoe .

e T ME

How to detect globally sequential patterns, in
parallel, on the fly, with low overhead?

Other Continuing Work

 Attain more accurate and complete workload
models.

 Scaling of algorithms, architecture.
o Layout of files on disk: contiguous?

» Location of file system control: dedicated I/O
nodes?

« NUMA issues in buffering.

» Analytical models.

Summary

e Parallel I/O is an important issue.

« Caching and prefetching are important for high
performance.

o Result: prefetching has the potential for improving
I/O performance.

« There are many issues to study regarding
automated prefetching in parallel.

P — 4 S——

Project Publications

David Kotz and Carla Ellis, "Prefetching in File Systems for MIMD
Multiprocessors", IEEE Trans. on Parallel and Distributed Systems,
Volume 1, Number 1. (shorter version in ICPP '89).

Mark Holliday, "Reference History, Page Size, and Migration Daemons
in Local/Remote Architectures”, Proc. Third Int. Conf. on
Architectural Support for Programing Languages and Operating
Systems, 1989.

Mark Holliday, "Page Table Management in Local/Remote
Architectures”, ACM SIGARCH Int. Conf. on Supercomputing, 1988.

Rick LaRowe, "NUMA Multiprocessor Page Placement Policies", Duke
University TR CS-1989-2, submitted for publication.

10

1 1]]"."r' |
.".‘l“
'p"’“-—.‘
/5 Maximum: 68.9 3
I

6 £ 9]
Cumulalive ;u X
Distribution =——NMedian: 19.0

A+ =

2 _'! 5

'____JI)
. g T— l\linizlnum: -14.9I(510\\'down) 1

—20 0 20 40 60 80 100

Percent Reduction in Total Execution Time

- e
X Reduction ™ Total Tim

Average Block Read Time (msec)

40 T T el T
...-"'. i L
35 |- line of no change—:_—_ % . . —
o o
o
30 o 8@0 o0 -
-]
25 | : 7
With 2 3
Prefetching 20 [© Change in read time o, ° vl
m—— &° Se
15 - o8 -
o
L]
10 — T -
&
o
G o -
[}
0 ! 1 ! 1
25 30 35 40 45 50
Without Prefetching
T o€

0.8

0.6
Cumulative

Distribution
0.4

0.2

T T T T 5
Hits-No prefetching N
R e o DD O Py sagessesspeRy N
L. K" ;
5 B
N
" 4
— N P -
" F
Al i 5
o B = 000y
N P C
¥ r
q ¥
a ' o
] o
: »
] y
{ - . F
-~ Hits-Prefetching ’_; -
I
e
{ 1 ! I | il
0.2 0.4 0.6 0.8 1
Hit Ratio .
S |
ol -: o

Ht Re

