Event Dissemination via Group-aware Stream Filtering

Ming Li and David Kotz
Department of Computer Science, Dartmouth College
Hanover, NH 03755
USA

Abstract

We consider a distributed system that disseminates high-
volume event streams to many simultaneous monitoring ap-
plications over a low-bandwidth network. For bandwidth
efficiency, we propose a group-aware stream filtering ap-
proach, used together with multicasting, that exploits two
overlooked, yet important, properties of monitoring applica-
tions: 1) many of them can tolerate some degree of “slack”
in their data quality requirements, and 2) there may ex-
ist multiple subsets of the source data satisfying the quality
needs of an application. We can thus choose the “best al-
ternative” subset for each application to mazimize the data
overlap within the group to best benefit from multicasting.
We provide a general framework that treats the group-aware
stream filtering problem completely; we prove the problem
NP-hard and thus provide a suite of heuristic algorithms
that ensure data quality (specifically, granularity and time-
liness) while preserving bandwidth. Our evaluation shows
that group-aware stream filtering is effective in trading CPU
time for bandwidth savings, compared with self-interested fil-
tering.

1. Introduction

Recent years have seen data-intensive applications that
feed on near-real time “context” information, such as lo-
cation, environmental status, and surrounding resources,
collected from distributed data sources leveraging sensor
networks. At the scene of a large fire, we imagine, fire-
spread prediction require sub-second updates on tempera-
ture, wind speed and direction from the sensor networks
deployed near the fire; command-and-control applications
need frequent updates on first responders’ locations. Sys-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DEBS °08, July 1-4, 2008, Rome, Italy

Copyright 2008 ACM 978-1-60558-090-6/08/07 ...$5.00

59

tems that disseminate data for those monitoring applica-
tions often use wireless networks for rapid deployment and
cost-effectiveness. In the emergency-response scenario, such
an infrastructure can be a wireless mesh network formed by
computers on police cars or fire trucks on the scene. It is
well recognized that the effective bandwidth of a wireless
network is usually much lower than its link capacity, and
that the high-volume data acquisition needs of monitor-
ing applications may push the envelope of the bandwidth-
constrained network.

Two classical approaches often used in event dissemina-
tion for saving bandwidth consumption are multicast and
in-network filtering. Multicast eliminates redundant com-
munications at network links. In-network filtering pushes
the computation close to the data source to discard un-
necessary data before transporting them. However, many
applications that feed on the same data source may use
data differently and thus require different filters. We can
combine filtering and multicast by multiplexing the results
of application-specific filters at the source node before mul-
ticasting. Figure 1 shows this process: two applications,
A and B, share the same data source D, but each appli-
cation’s filter selects a different subset on the source node.
The multicast protocol allows us to label each tuple with
the list of the applications that should receive that tuple;
thus each tuple is transmitted at most once on any link.

Filtering is a common way to ensure data granularity,
an important quality measure for the level of details of
domain-specific features embedded in a source data stream.
Using more aggressive filtering can reduce the data band-
width consumed by applications, but it may also degrade
the data granularity. When the resulting bandwidth con-
sumption of the filter-then-multicast approach reaches the
limit of the network, rather than resorting to more aggres-
sive filters that may severely reduce the data quality, we
propose a group-aware stream filtering approach, combined
with multicast, to explore further bandwidth-saving oppor-
tunities within the same level of data granularity required
by applications.

Our group-aware stream filtering approach makes use of
two overlooked, yet important, properties of context-aware
applications: 1) many applications can tolerate some degree
of “slack” in their data quality requirements, and 2) there

Context
Source

|
data stream D={D1, D2, D3, ...}

Filter
for B

| multiplex for multicast |

D1->A
D2 ->A, B

source node

out to a multicasting network

Figure 1. Filtering for multicasting.

may exist multiple subsets of the source data satisfying the
quality needs of an application. We can thus choose the
“best, alternative” subset for each application, maximizing
the data overlap within the group to best benefit from mul-
ticasting. This paper makes the following key contributions:

e This is the first paper that thoroughly treats the group-
aware stream filtering problem; we provide a suite
of heuristic algorithms, which ensure data timeliness
and data granularity. Thus our approach is quality-
managed.

e We provide a general framework of group-aware filter-
ing to support a variety of filtering needs.

e We built a prototype system for evaluation. Our re-
sults, based on real-world data sets, show that group-
aware filtering can effectively save bandwidth with low
CPU overhead when compared with self-interested fil-
tering.

In the next section, we describe the foundation of group-
aware filtering. In Section 3, we formally define the prob-
lem and introduce the framework and algorithms for group-
aware stream filtering. In Section 4, we show that our
framework is extensible to support diverse filters. In Sec-
tion 5, we evaluate our approach with a prototype system.
We discuss related work in Section 6 and summarize in Sec-
tion 7.

2. Two key observations

We base our filtering approach on two key observations
about data-quality requirements of monitoring applications.
Data quality is normally measured as the accuracy, gran-
ularity, timeliness, and completeness of the data. Impli-
cations of data quality at different parts of the data ac-
quisition process may be different. For filtering, ensuring

60

accuracy and completeness may mean that filters must not
tamper with the input data (enforcing accuracy), and that
filters must output all tuples in the input data stream that
satisfy applications’ needs (enforcing completeness). We
assume that the chosen filters can always ensure these two
qualities. The filters’ main job is to select an appropriate
subset of input data that meets the applications’ data gran-
ularity requirement. For example, an application would like
to get a temperature reading of a place whenever the read-
ing has changed by n degrees. This n-degree data granu-
larity requirement can be enforced by a Delta-Compression
(DC) filter that removes values that have changed less than
n units from the filter’s previous output, in effect compress-
ing the stream data at “delta”, in this case m, units. (We
consider other types of filters in Section 4.) The higher the
data granularity is (in the case of DC filters, the lower the
“delta” interval), the more output a filter should normally
produce. Data granularity thus directly affects bandwidth
consumption. The timeliness requirement at the filter can
be measured by the amount of delay introduced by filtering.
The faster a filter processes and outputs the data, the more
timely is the data delivered to applications.

First observation. Monitoring applications may toler-
ate some degree of “slack” in their data quality. Consider a
temperature source, and delta-compression filtering, for ex-
ample. Given a time-ordered nine-tuple sequence from the
source, {0,35,29,45,50,59,80,97,100}," the output that
satisfies compression at 50-unit granularity is {0, 50,100}.
We recognize that applications may find it harmless to toler-
ate a small deviation from the ideal compression granularity
in the output. For instance, the application may be able to
tolerate a maximum of 10-degree “slack” with regard to its
ideal 50-degree granularity requirement. We denote such
filters as a (slack, delta) Delta-Compression filter, which
selects data at delta-unit with slack-unit of quality devia-
tion.

Second observation. There may exist multiple se-
quences from a data source that satisfy an application’s ap-
proximate quality requirements. In the previous example, if
the application tolerates a maximum of 10-degree slack in
the 50-degree compression granularity, it is easy to validate
that the following sequences each also satisfy the approx-
imate granularity requirements: {0,45,100}, {0,59,100},
{0,50,97}, {0,45,97}, {0,59,97}, as 45, 59 are close-by tu-
ples within 10-degree deviation from “ideal” output 50 after
the output 0, and 97 from “ideal” output 100 as a third
output.

Group-awareness. Let us call the above delta-compression

application A. Suppose application B shares the same source
as A and tolerates a maximum of 5-degree slack in a 40-
degree compression granularity. By the above definitions,
it is easy to validate that the following sequences satisfy B’s
requirements: {0,45,97}, {0, 50,97}, {0, 50, 100}, {0,45,100}.

Here we represent each tuple as a single integer; in reality,
each tuple may have several fields, but for simplicity we
represent each by the value of its “temperature” field since
it is that field that is used for filtering.

Individually, A may choose {0, 50,100} as its output; B
may choose {0,45,97} as its output; there are thus 5 tu-
ples to output when multiplexing the output streams for
multicasting. If A and B are aware of each other’s filtering
needs, and both decide on, say, {0,50,97} as their individ-
ual output, then only three tuples need to be multicast to
A and B to satisfy both filtering requirements. In effect,
the “group-awareness” reduces the bandwidth demand by
two tuples.

3. Framework

In this section, we prove the group-aware stream filtering
problem NP-hard and provide a framework based on a suite
of heuristic algorithms to solve the problem approximately.

3.1 Problem definition

‘We assume that the input data stream is a time-ordered
continuous sequence of tuples. Each tuple consists of sev-
eral attributes, including a unique time stamp. We assume
that the output of a filter is a subset of its input data. We
abstract our group-aware stream filtering method into two
stages: In the first stage, compute candidate outputs, each
filter processes the input stream and computes a set of can-
didate outputs; in the second stage, decide on final outputs,
an output decider chooses a candidate output for each filter
for multicasting. For a continuous stream, group-aware fil-
tering iteratively goes through these two stages, processing
one segment at a time.

Reference-based candidate sets. For the first stage,
there exist many domain-specific ways for quality-slack tol-
erating filters to compute the candidate outputs. Here we
introduce a reference-based approach to find candidate out-
puts for filters. The idea is for the filter to compute a
candidate set for each tuple that the self-interested filter
would select. We call the tuples that would be chosen by
a self-interested filter reference tuples. Choosing any tuples
from the candidate set corresponding to a reference tuple
would be quality-equivalent to choosing the corresponding
reference tuple for the output. Figure 2 shows how a Delta
Compression (DC) filter that can tolerate 10-unit slack in
50-unit compression can select a vicinity of tuples around
the reference tuple, here tuple 50, that are no more than
10 units from the reference tuple, to form its candidate set.
In this case, tuples whose values are 45, 50, 59 are within
the 10-unit vicinity of, and contiguous with, the reference
tuple 50, and thus make the candidate set. We assume for
now that every candidate set is finite or closable.

The group-aware filters with reference-based candidate
sets exhibit the following properties. First, a group-aware
filter has to choose all candidates of a reference output be-
fore choosing any candidates of its next reference output.
Second, a group-aware filter is able and obligated to finish
choosing candidates of an output, if the system asks it to do
so (for timeliness, as we show later in the section). Finally,
a group-aware filter computes the candidates for an output
in an on-line fashion. It includes the possibility for a filter

61

%% :tuple candidate set for "50"
O : reference ime
tuple
(0) (35) (29) (45) (50) (59) (80) (97) (100)

Figure 2. Candidate set of a reference tuple.

to adjust the set of candidates for an output before moving
on to computing the set for the next output.

DEFINITION 1. A time cover, TC;, of a candidate set i
is [min {Vt;|t; is time stamp of tuple j in candidate set i},
maz {Vt;|t; is time stamp of tuple j in candidate set i}/

AxioM 1. Time covers of a filter’s candidate sets do not
intersect.

We assert this requirement to ensure that candidate tu-
ples remain in temporal order; that is, if a reference tu-
ple A’s time stamp is smaller than reference tuple B’s, we
make sure the time stamp of any of the candidates for A is
smaller than that for all the candidates for B. In a delta-
compression filter, the axiom requires that the quality slack
is less than half of the delta value, which is normally desir-
able.

PROBLEM DEFINITION 1. Given an input stream segment
S, n filters F1, Fa, ..., F, in the group, and a collection C
containing all candidate sets produced by the filters. The
objective is to pick a tuple o; from each candidate set in C,
such that the set Output = J; {o;} has minimal size.

THEOREM 1. Group-aware stream filtering is NP-hard.

Proof: We prove this property by reducing the prob-
lem to the minimum hitting-set problem, which is a classic
NP-hard problem [8]. Consider a special instance of the
group-aware filtering problem in which each filter F; has
exactly one reference point and thus exactly one candidate
set cands; for input stream S. Suppose we have n filters,
so there are n candidate sets to choose output from. Since
each candidate set is a subset of the tuples in S, this prob-
lem has a solution if and only if the minimum hitting-set
problem with these n sets has a solution, that is, the out-
put O of the minimum hitting-set problem makes sure that
every of the n sets intersects with (or “hits”) O, and O’s
size is smallest among all solutions. O

The minimal hitting-set problem has been studied exten-
sively in the computer science literature. It is proved that
the greedy algorithm produces a p(n) approximation to the

optimal solution [8], where p(n) = H(maz{|C| : C is a set
in the hitting-set problem}), and where H is a harmonic
function, and n is the total number of sets in the prob-
lem. We can apply this bounded approximation algorithm
directly to the group-aware filtering problem.

3.2 Region-base group-aware filtering

Notice the problem we defined assumes that the input is
a finite-length time series. For a continuous event stream
that is potentially infinite in length, we consider a group-
aware filtering optimization problem for all its finite prefixes
of a time-ordered input data sequence.

For a long stream, it is not time-efficient, if not impos-
sible, to collect all the data before applying filtering algo-
rithms. So we consider the problem of whether there ex-
ists a way to segment the input time series in such a way
that the segmentation does not affect the optimality of the
solution. Here we propose region-based segmentation for
applying minimum hitting-set algorithms.

DEFINITION 2. If A and B are candidate sets from two
filters, and the time covers of A and B intersect, we say A
and B are connected.

DEFINITION 3. If A and B are connected candidate sets,
and B and C are connected candidate sets, we deem A and
C to be connected.

DEFINITION 4. A region is a mazximum family of candi-
date sets such that each set is connected with every other in
the family.

DEFINITION 5. A time cover for a region is the union of
all time covers of the candidate sets contained in the region.

Figure 3 shows that there are two regions based on three
DC filters’ candidate sets: region, = {candsl-1, cands2-1,
cands3-1}, regions = {candsl1-2, cands2-2, cand3-2, candsl-
3, cands2-3}. Each filter continuously compute its candi-
date sets one after another. In this example, we assume
that the closure of a candidate set is signaled by the first
tuple that is not a candidate. Thus, cands2-1 is closed when
tuple 35 comes, as 35 is more than 5 units away from the
reference tuple 0. Filter B now anticipates the next refer-
ence tuple to be at least 40 and it admits tuple 35 into its
next candidate set as the tuple is within 5 units away from
40. When tuple 29 comes, it is not qualified as a candidate
tuple, and it also invalidates tuple 35’s candidacy, as in this
example we assume that a candidate set is made of tuples
that comes consecutively in time. When tuple 45 comes, it
is at least 40 unit away from the previous reference tuple
and thus is admitted into B’s candidate set. B admits tu-
ple 50 and closes the candidate set when tuple 59 comes.
Note that before a candidate set is closed, a filter has the

62

e tuple region 1 region 2
O :reference | - —_. R N
tuple jcands1}1 7~ cands1-2 candsT-3Y
! |

A: (10, 50) DC filter (0) {35) (29) 5(45) (50) (59) (80) (97) (100, :(112)

! cand525-1 | cands2-2 cands2-3 |
i i
| \

time

i
’ | time

(112)

(45) (50) (59) (80) (97) (100)
cands3-2

| time

Figure 3. Two regions for three DC filters.

ability to adjust its current candidate set by removing in-
valid candidates, for instance when a filter come cross the
real reference tuple in a candidate set, or find unqualified
tuples. It is easy to verify that adding any candidate set
outside a region to the region will invalidate the region, as
the added candidate set is not connected with the rest of
the sets in the region.

AXioM 2. Different regions’ time covers do not intersect.

Proof: we prove it by contradiction. Suppose the time
covers of two regions, A and B, intersect. It is easy to
see that at least one candidate set, say candso in B, is
connected with a candidate set in A. Then adding a new
candidate set candso to A will still make A a region, which
directly contradicts the assumption that A is a maximum
collection of the connected candidate sets. O

THEOREM 2. Given an input time sequence S, applying
divide-and-conquer approach for the group-aware filtering to
each region in S will not affect the optimality of the solution.

Proof: We need to prove that a set-union of the optimal
solutions from each region on the input stream S is an op-
timal solution for S. We prove it by contradiction: that is,
we suppose the opposite is true: given a total of n regions
on S, and each region has an optimal solution O;, the car-
dinality of the optimal solution O’ of S is smaller than the
size of the set-union U of all O;, thus U is not an optimal
solution for S. Now we divide O’ into n distinctive subsets
such that each subset is a group-aware filtering solution on
each region, that is, each subset is a hitting set of a region.

To find such n subsets, we can first initialize n empty
auxiliary sets, one for each region; then, for each tuple in
O’ that is contained by one of the candidate sets in a region,
we put it in the auxiliary set of that region. We can see each
tuple fall into exactly one auxiliary set; otherwise if a tuple
belongs to two auxiliary sets, then there must be two can-
didate sets from two different regions containing the tuple,

which means that the two candidate sets are connected and
thus belong to the same region, which contradicts the as-
sumption that they are from two different regions. In the
end, we get n distinct subsets of O’ in the auxiliary sets.
We can prove that each auxiliary set is a hitting-set solution
to its corresponding region. We prove it by contradiction.
Suppose the opposite is true: that is, at least one candidate
set in a region does not intersect with (“hit”) the auxiliary
set corresponding to the region. We know none of the other
auxiliary sets hit this candidate set, otherwise there must
be a candidate set in another region that intersects with
this candidate set, which means that they are connected
and are in the same region, which reaches a contradiction
to our assumption.

As the size of O’ is smaller than that of U, there must
be at least one of the n subsets of O’ whose size is smaller
than that of the optimal solution O; of that region, which
contradicts the optimality of O; for the region. O

For heuristics-based algorithms that find sub-optimal so-
lutions for the group-aware filtering problem, region-based
segmentation preserves the approximation ratio of the solu-
tion as shown in the theorem below (see [10] for the proof).

THEOREM 3. Region-based segmentation preserves the mazx-

imum approximation ratio of a heuristics-based algorithm.
That is, given an input source segment S, which is seg-
mented into n regions, if a heuristics-based algorithm has
approximate ratio r1, r2,..., rn on each region respectively,
the approzimation ratio T of the algorithm on the overall
segment S satisfies the property that r < max(ri,r2,- -

Now we introduce REGION-BASED-GREEDY-FILTERING,
a region-based greedy algorithm, for a continuous stream S
in Figure 4. First, assume that we have instantiated each
filter according to its specification from each application. A
filter specification specifies the type and parameters of the
filter, and how its internal state should be initiated and up-
dated. We use a global object globalState to coordinate the
filtering. The global state mainly consists of 1) the group
utility of each tuple, which counts the number of filters that
have included the tuple in their candidate set, and 2) the
current region that keeps track of the connected candidate
sets since the last region. Each filter uses its isAdmissible
(line 3) method to decide whether a tuple is admissible to its
candidate set. If so, the tuple is added to the filter’s candi-
date set (line 5), and the tuple’s group utility is incremented
in the globalState (line 7). A filter’s is Admissible method
may trigger the filter to find the next reference tuple as in-
ternal state for admitting its candidate tuples. Next, if the
filter finishes computing the current candidate set (line 8)
when detecting that the current tuple does not belong to
the current candidate set, the filter’s current candidate set
is closed. It then checks whether all connected candidate
sets are closed. This check is done at the global State, which
keeps track of currently closed candidate sets not included
in the previous region and tracks the group utilities of each
tuple. If the utility of any tuple in a closed candidate set is
greater than the number of currently closed candidate sets,

7rn)‘

63

then the region is not closed, as there must be a not-yet-
closed candidate set admitting this tuple (line 10). When
the current region is closed, it consists of all the closed can-
didate sets that are connected. Next, we apply a greedy
hitting-set algorithm, GREEDY-HITTING-SET in Figure 5,
to the current region (line 12) and send the solution for
multicast (line 13). The solution contains a set of tuples
chosen from the region that have high group utilities and
hit all candidate sets in the region.

GREEDY-HITTING-SET (in Figure 5) picks the tuple with
the highest group utility (line 3). If multiple tuples have the
same highest utility, we use tuples’ time stamps to break
the ties and choose the tuple with the latest time stamp
to favor time freshness. Then, remove all the candidate
sets that contain the chosen tuple (line 5). The group util-
ity of any tuple included in the removed candidate sets is
decremented by the number of removed candidate sets con-
taining the tuple (line 6). The algorithm then greedily picks
the next tuple with the highest utility and the same hitting-
set process continues until no candidate set is left to be hit.
The chosen tuples constitute the solution.

In the previous example with three DC filters A, B, and
C (see Figure 3), when the tuple 35 comes, candsl-1, cand2-
1, and cand3-1 are closed as the tuple 35 is more than the
tolerable slack away from the reference tuple for each fil-
ter. Region 1 closes at the moment when previously open
candidate sets contained in the region are now all closes.
The greedy algorithm then runs on the closed region and
the tuple 0 is output to all three filters. After Region 1,
Region 2 starts when the group finds the first tuple whose
utility is not 0. Region 2 ends when all its contained can-
didate sets are closed, when tuple 112 comes. By running
the greedy hitting-set algorithm on the region, tuple 100 is
chosen as an output first as it is one of the tuples with the
highest group utility. That is, cands1-3, cands2-3, cands3-2
are “hit” by tuple 100. Next, tuple 50 is chosen, as it has
the next highest group utility. candsl-2 and cands2-2 are
both hit by tuple 50. Now, all candidate sets have been hit
in Region 2. Thus, the outputs for Region 2 are tuple 100
for filter A, B and C, and tuple 50 for filter A and B.

3.3 Region’s timely cuts

The region-based group-aware algorithm computes the
smallest input stream segment to apply the hitting-set al-
gorithm so that the optimality of the solution will not be
affected. Beyond preserving bandwidth, we aim to ensure
data timeliness as well.

Long candidate sets affect the timeliness of the output,
because a region has to wait for all its member candidate
sets to close before choosing outputs. In the case of a delta-
compression filter, after admitting a tuple in the candidate
set, it waits for the first tuple that does not fall into the
valid range for this candidate set to close the current can-
didate set. If the stream data changes little, and the filter’s
quality slack is relatively large, the candidate set can grow
long, which affects the timely outputs of all its connected
candidate sets.

REGION-BASED-GREEDY-FILTERING(.S)
1 while ((currentTuple — S.getNextTuple()) ! = null)
2 do for each filter f in the group
do if f.isAdmissible(currentTuple)
then > first stage: admit candidates

STk W

f-state.update(current Tuple)

f.candidateSet.add(current Tuple)

> increment group utility of currentTuple

if f.candidateSet.closed(currentTuple)

© 00

global State.groupUtility.increment(current Tuple)

then globalState.addClosedCandidateSet(f.candidateSet)

> second stage: if current region is ready, decide output based on globalState

10

12
> multicast output

13 multicaster.send(output)

if (region «— globalState.getCurrentRegion()) ! = null)
then > apply greedy algorithm to the region to decide the output
output «— GREEDY-HITTING-SET(region, globalState.group Utility)

Figure 4. Region-based greedy algorithm for group-aware stream filtering.

GREEDY-HITTING-SET(region, groupUtility)

1 resultSet.init(0)
2 while (region.hasMoreCandidateSets())

> greedily pick the tuple with max groupUtility; use time stamp to break ties, if there are any

3 do mazUtilityTuple — get M ax(groupUtility)
4 resultSet.add(maxUtilityTuple)

> get all the candidate sets that are hit by maxUtilityTuple
5 hitCandidateSets «— region.removeAllCandidateSets Hit By(maxUtilityTuple)
> decrement groupUtility for each tuple in the hitCandidateSets

6 groupUtility.decrUtility For(hitCandidateSets)
7 return resultSet

Figure 5. Greedy hitting-set algorithm.

Here we propose a mechanism, cuts, to curb the compu-
tation of long candidate sets according to filters’ time con-
straints. We assume that each filter specifies a maximum
tuple delay for group-aware filtering and we simply use the
minimum of all the time specifications, we call it the group-
Time, to enforce the data timeliness for the group. To de-
rive the time cover of a region that satisfies groupTime, we
build a latency model based on on-line observations of the
most recent ten regions’ performance, specifically the cor-
relation between region sizes and CPU time for computing
the regions and choosing output for the regions. From our
experiments, we found that a linear model was a pretty ac-
curate fit. The last tuple in a region should not have times-
tamp that exceeds (groupTime — intercept)/slope, where
intercept and slope are coefficients of the current linear
time model.

To enforce timely cuts to our previous algorithm, we ex-
tend it to check the time constraint after each filter finishes
processing the new input tuple (after line 7 in Figure 4).
Then, if the time constraints are about to be violated if we
wait any longer, we force all open candidate sets to close.
These closures will make the current region close automat-
ically and then we can apply the GREEDY-HITTING-SET to
choose the output, as before. Finally, after line 13 in Fig-
ure 4, we let the globalState, which keeps track of CPU time

64

for computing a region, update the time model to compute
a new group time constraint, which will be used in the next
region.

It should be easy to see that cuts may reduce the sizes
of candidate sets and thus reduce the likeliness of over-
lapping candidate sets, which may reduce the bandwidth-
saving performance of group-aware filtering. Nevertheless,
we can prove that the worst case for group-aware filter-
ing algorithms with timely cuts is that each candidate set
contains only one tuple and thus it is no different from self-
interested filtering. Thus, although a timely cut may affect
the bandwidth-saving performance of group-aware filtering,
it performs no worse than self-interested filtering in terms
of bandwidth consumption.

3.4 Stateful candidate sets

The above algorithms compute candidate sets based on
reference tuples that are chosen by the self-interested filters
with predicates. In other words, computing a filter’s cur-
rent candidate set does not depend on the chosen output
of its previous candidate set. We call this stateless compu-
tation of candidate sets for a filter. For some applications,
an alternative semantics for computing a candidate set is to
base its reference on the chosen output of the previous can-

3¢ :tuple

: reference
tuple

: chosen
tuple

time
W_.

—
depend on

>

Figure 6. Stateful candidate sets.

didate set. We call this stateful computation of candidate
sets, and call the candidate sets stateful candidate sets.

For stateful candidate sets, the filter needs to choose the
output as soon as its current candidate set closes, as the
reference for the next candidate set depends on the chosen
output (Figure 6). We use group state to track already-
chosen tuples of each stateful candidate set in addition to
the group utilities of tuples, and propose the following two
heuristics for choosing output tuples from stateful candi-
date sets: (1) choose the tuple that has been chosen
by other filters, and (2) choose the tuple that has
the highest group utility.

The first heuristic takes precedence over the second heuris-
tic. Both are subject to the tie-breaking rule, preferring the
more recent tuple. After a filter chooses a tuple from a can-
didate set, the group utilities of all tuples in its candidate
set are decremented by 1. Group state will keep track of
the tuples chosen by each filter. If there are stateless filters
in the group, identifying regions is still useful, as it is the
earliest possible time to multicast decided tuples that have
not yet been output in the region, when a region closes.
In that case, we can still apply the greedy hitting-set al-
gorithm upon the time the region is closed, only that the
stateful filters’ candidate sets become singleton sets with
one chosen tuple in each. The logic for computing regions
and timely cuts is the same as in the previous algorithm.

3.5 Output Strategy

There are several output strategies we can use to enforce
different output patterns. First, by computing regions, we
get the earliest possible time for output tuples of a region
without hurting the optimality of the solution. Second, by
enforcing group time constraints, we get the earliest possi-
ble subject to group time constraint output pattern. Third,
filters may opt for a batched output pattern, that is, for a
fixed-sized (time or tuple) batch of the input stream, select
and output tuples.

In the case of a group with all stateful filters, it may be
desirable to output tuples at the time each candidate set
is closed, if the applications can tolerate disordered output
within the predefined time frame. We call this per-candidate
set output pattern. The benefit of using this pattern is that
the delay of average tuple is less than that with a region-
based earliest possible output strategy. The downside of it
is that it may cause disorder in the output for the candidate

65

sets in a region.

4. Extensible framework

Group-aware filtering supports a variety of filters beyond
simple delta-compression filters.

Filters of special interest to many exploratory data-analysis

applications are sampling filters, which derive interesting
properties by choosing a small set of data from a popu-
lation. The notion of candidate sets is inherent in many
commonly-used sampling methods, such as reservoir sam-
pling, subset-sum sampling and stratified sampling [9]. For
example, reservoir sampling chooses a fixed number of sam-
ples from a given population. Each tuple in the result can be
replaced randomly by another tuple in the population. In
this case, the candidate set of each output tuple is the whole
data sequence in a predefined window. Reservoir sampling
can be useful to bound the output bandwidth demands for
some applications. For detection-oriented analysis, predi-
cates that recognize interesting patterns can first be applied
to the time series to distinguish important data sequences
from less important ones, and then a higher sample rate
can be applied to the more important data segments. This
sampling theme belongs to stratified sampling, as it first de-
cides strata of data with different characteristics and then
samples each stratum with a different sample rate.

Our framework is general enough to support those so-
phisticated filtering requirements. It supports the same
two-stage process as with delta-compression filters. At the
first stage, we allow each filter to extend the basic group-
aware filter by implementing an isAdmissible method to
apply domain-specific functions (perhaps with non-trivial
states) in candidate admission. At the second stage, group-
aware filtering chooses a required number of outputs from
each candidate set. The greedy algorithm for region-base
filtering now needs to “hit” a candidate set k times (i.e.,
the final output intersects the candidate set with at least
k tuples), where k is the total number of required outputs
for the candidate set, before removing the set from the set-
hitting process. For stateful candidate sets, the second rule
for choosing the outputs of a candidate set becomes choos-
ing tuples with the top-k (k > 1) highest group utilities.
This extended group-aware filtering problem is also NP-
hard, as it is more general than the previous problem, but
the heuristics in our framework work well. We have imple-
mented these extensions for diverse filters, including strat-
ified sampling filters. We provide a library of customizable
filters and distance or member functions to facilitate appli-
cations to specify their filtering needs.

5. Evaluation

The main goal for our evaluation is to see how well group-
aware filtering works in comparison to self-interested filter-
ing, in terms of network bandwidth consumption and its
effect on data timeliness.

5.1 Prototype system

We implement and integrate the group-aware filtering
prototype with Solar [5], a general-purpose data dissemi-
nation system developed at Dartmouth College. The core
of Solar is a p2p overlay infrastructure in which each over-
lay node supports a suite of data-dissemination services,
such as naming, data fusion, and multicasting. We package
the group-aware filtering as a new service, working together
with Solar’s basic services on each overlay node.

Solar uses a content-based publish/subscribe model for
flexible and scalable data dissemination. Publishers of con-
text sources in Solar are called “sources” and applications
can “subscribe” to sources in Solar to get the desired con-
text information. Solar also allows an application to specify
data operators, such as filters for pre-processing the source
data.

For our testing, we replay real-world data traces as So-
lar sources and let a group of applications subscribe to the
sources. Each subscribing application specifies a filter for
its processing needs. The group-aware filtering service then
deploys, according to a filter’s type and quality require-
ments, a group-aware filter object on the source node. The
union of the output of all source-sharing filters is published
via Solar’s overlay multicasting service to the remote ap-
plications. To compute end-to-end latency based on time
stamps, we deploy the subscribing applications on the same
node as the data source to eliminate time skew in a network.
Here we assume the real end-to-end latency is the time dif-
ference we will measure between a tuple published from
the source and the time it arrives in an application, plus
a constant number that captures overlay multicasting cost.
In past deployments of Solar in a small (7-node) overlay
network in Emulab,? Solar’s overlay multicasting delay was
about 130 ms. This paper does not focus on the network
aspects of group-aware filtering and we do not measure net-
work behavior while performing group-aware filtering. We
thus measure the performance on the node where stream
data are filtered. The source node is an Apple Powerbook
with 1.67 GHz PowerPC G4 and 1 GB memory. Our code is
written in Java and ran with Java 1.5.0 on Mac OS 10.4.9.

5.2 Data sources

We chose data from real deployments of sensing devices
for which the data stream has a sub-second data rate, so fil-
tering is necessary and saving bandwidth for dissemination
of the data is important.

The Networked Aquatic Microbial System (NAMOS) of
the CENS project at UCLA® deployed embedded and net-
worked sensors in Lake Fulmor for a marine scientific study
during August 2006. The water was monitored by an array
of thermistors and fluoro-meters, among others, installed
on buoys of the lake. The data traces have data rates of

2http://www.emulab.net is a cluster for distributed-
systems research

3http://cens.ucla.edu

66

GROUP NAME FILTER

DC(fluoro, 0.0301, 0.0150)
DC(fluoro, 0.0702, 0.0301)
DC(fluoro, 0.0500, 0.0250)
DC(fluoro, 0.0702, 0.0100)
DC(tmpr2, 0.0460, 0.0153)
DC(tmpr4, 0.0310, 0.0103)
DC(tmpr4, 0.0310, 0.0155)
DC(tmpr4, 0.0620, 0.0310)
DC(tmpr4, 0.0480, 0.0240)

DC_Fluoro

DC_Hybrid

DC_Tmpr

Table 1. Specifications for groups of filters.

100 measurements per second and contain more than ten
thousand measurements. These measurement traces make
ideal data sources for our testing. Each NAMOS buoy
trace tuple contains six temperature readings (we call them
tmpr readings), one reading from a fluoro-meter (we call it
the fluoro reading), a timestamp, and some other weather-
related readings. We create a source in Solar that replays
the NAMOS buoy trace at about 10 ms per tuple, observing
the original time intervals of the trace data.

5.3 Filters for testing

The goal of the NAMOS buoy deployment is to help
marine biologists to collect multi-scale high-resolution in-
formation, such as the spatial and temporal distribution of
the chlorophyll level in the lake, for scientific analysis. Us-
ing delta-compression filters or sampling filters is a valid
way to enforce multi-scale granularity of the collected buoy
data for these applications.

Due to limited space, we only show our experiments with
Delta-Compression (DC) filters (For experiments with other
types of filters, see [?]). Each DC filter has three param-
eters: the data attribute(s) that the filter is interested in,
a delta value for compression, and a corresponding qual-
ity slack it can tolerate. Table 1 shows the groups of fil-
ters we used for our testing. To set parameters for the
DC_Fluoro and DC_Tmpr filter groups, we computed the
average changes, srcStatistics, of two consecutive tuples in
the source time series and then randomly picked delta val-
ues in the range of srcStatistics and 3*srcStatistics, which
ensured a reasonable data compression that had a non-
trivial output data volume. Then we set slack values to
be about 50% of the corresponding delta values. This ap-
proach prevented a tuple from being included in more than
one candidate set for a filter, and also ensured large candi-
date sets for us to see the benefit of group-aware filtering.
For the DC_Hybrid filter group, we randomly picked delta
values from the range of srcStatistics and 20*srcStatistics
and randomly picked slack values that were less than 50% of
corresponding delta values. Below, we also evaluate slack’s
effect on the performance of the delta-compression filtering.

5.4 Metrics

ABBREVIATION MEANING
SI Self-Interested filter
RG Region-based Greedy filter
PS Per-candidate-Set greedy filter
+C with timely Cuts
+C(x) with timely Cuts, x is the name of a time spec.
(B) with Batched output strategy
(B)-x with Batched output strategy, x is input tuple window
(Pcs) with Per-candidate-set output strategy

Table 2. Filter type notations

The metric we use to measure the benefit of our group-
aware filtering approach is the O/I ratio, that is, the out-
put vs. input ratio defined as the total number of output
tuples over the number of input tuples. A lower O/I ra-
tio means low bandwidth consumption. It measures the
bandwidth-saving benefit of group-aware filtering. We ex-
pect group-filtering should have an O/I ratio no more than
that of self-interested filtering. We measured the filtering
cost with CPU time per tuple, representing the CPU over-
head of group-aware filtering. We also measured data time-
liness with source-to-application latency per tuple, which
shows the delay induced by group-aware filtering to each
output tuple. Again, this paper does not focus on the net-
work aspects of group-aware filtering and we do not measure
network behavior while performing group-aware filtering.

Table 2 shows the notations we use for filters in the re-
sults. Figure 7 shows the O/I ratios for three groups of
filters. All group-aware filtering algorithms consumed less
than 80% of the bandwidth consumed by self-interested fil-
ters. PS filters had a performance comparable to RG filters,
which in theory should have better performance guarantee.
The addition of timely cuts had little impact on O/I ratio
in this experiment, as we set the group time constraint big
enough that few regions were cut.

It is easy to imagine that the bigger the slack value is,
the more likely the candidate sets of the delta-compression
filters overlap. Figure 8 shows that when we decreased the
slack values from 50% to 3% of the corresponding delta
values in DC_Fluoro’s specifications, the portion of saved

. . O/I ratio
bandwidth, that is, 1 — 5735 also decreased
/ ratloselflnterested

from 21.15% to 0.217%, almost linearly. When the slack
value is decreased to 0, the group-aware filtering is in effect
the same as self-interested filtering: with 0% saved band-
width.

groupAware

Figure 9 shows the CPU cost per tuple for the DC_Fluoro
group. (The results are in a box-plot, which plots a sum-
mary of the minimum, 25% quartile, median, 75% quartile,
and maximum of the ten results. The circles represent out-
liers.) Group-aware filters were more than 10 times more
expensive than self-interested filters. However, it took only
1ms for processing each tuple for group-aware filters, which
is fast enough for an input stream with a data rate of 100

67

NAMOS Data Set
0.6

0.5 0.475

0.4 53635 0.368 0.3826 0.3829
0.3549 0.3422 0.3534
03373 0.3267 0.3265 0.3337 03334

O/1 ratio
o o o
= N w

=]
RG

7
a

RG

0
a

RG

7
a

RG+C
PS+C
sI
RG+C
PS+C
Sl
RG+C
PS+C
SI

DC_Fluoro DC_Hybrid

algorithm

DC_Tmpr

Figure 7. O/l ratios for three groups of group-
aware filters.

NAMOS Fluoro Data
25.00%

21.150%

N

0.00%

15.857%
15.00%

10.00% 0.848%
€703%

5.00% -
3774%

portion of saved bandwidth

0 HE0%
[10 20 30 40 50
slack (% of delta)

0.00%

Figure 8. Slack’s effect on O/l ratio

tuples per second. Figure 10 shows the latency per tuple
for the DC_Fluoro group. Since the group-aware filtering
gathers tuples in a region before releasing output, it is un-
derstandable that the latency incurred for group-aware fil-
ters (about 70ms per tuple) was much greater than that for
self-interested DC filters (about 12ms). The average region
size of the filters was about 6 tuples; since tuples arrived
at 10ms intervals, it is clear that the 58ms difference of la-
tency was mainly due to waiting for the tuples to arrive for
processing in segments. Due to limited space, we omit the
CPU and latency results for the other two groups, but the
conclusion was similar to that of DC_Fluoro group.

Next, we compare the performance of algorithms that
enforce timely cuts. By decreasing the maximum time for
closing a region from 125ms in RG + C(01) filters, to a
time 16-fold less in RG + C(05) (8ms), the resulting av-
erage latency per tuple consistently dropped from above

60

CPU cost per tuple (ms)

latency (ms)

15

1.0

0.5

80

60

40

20

NAMOS Fluoro Data

—_

S

T T T T T
PS PS+C RG RG+C SI

algorithm

Figure 9. CPU cost for DC Fluoro.

NAMOS Fluoro Data

_
J— !
4 J—
FEHe +— =
_— ——
o
]
pr—
T T T T T
PS PS+C RG RG+C SI
algorithm

Figure 10. Latency for DC Fluoro.

68

NAMOS Fluoro Data

70

latency per tuple (ms)
60
Il

8

. ==

—_

40

T T T
RG+C(01) RG+C(03) RG+C(05)

algorithm(spec. #)

Figure 11. Cuts affect latency for DC'Fluoro.

70ms/tuple to about 20ms/tuple (see Figure 11), thus prov-
ing that timely cuts were effective. Figure 12 shows that
the CPU cost to enforce cuts, less than 1.5ms, is acceptable
for a fast stream with a 10ms tuple interval. The percent-
age of regions cut consistently increased by decreasing the
maximum time allowed for a region (Figure 13). Cuts af-
fected the O/I ratio only slightly (less than 3% difference),
which is understandable because cutting a region will affect
the optimality of the solutions found and it is a necessary
trade-off for a latency-sensitive filter.

Finally, we evaluate the output strategies with DC_Fluoro
filter group (Figure 14 and Figure 15). The latency was
affected mostly by the size of the average region a group-
aware filter used before producing outputs. In the batched
output pattern, when the batch size was much bigger than
the size of a natural region, the latency increased dramat-
ically due to backlogging of the tuples in the filters un-
til enough tuples were processed. The per-candidate-set
output strategy helped to decrease the latency from above
70ms to a little above 50ms. In terms of CPU cost, the
batched output pattern did not require sophisticated check-
ing on whether a natural region is closed, which cut 1ms
from the original 1.3ms CPU time.

To sum up, our prototype-based experiments validated
the effectiveness of group-aware stream filtering in further
saving of the bandwidth, compared with self-interested fil-
tering. Its low CPU overhead justified that group-aware
stream filtering is suitable for fast stream processing. The
increased delay in output tuples was due to the batch pro-
cessing in group-aware filtering. Compared with application-
level multicast delay we measured, it is considered minor.
Timely cuts were effective in curbing the latency in output
tuples, yet its CPU overhead and its effect on O/I ratio were
both small. Output strategies had the anticipated effect on
output’s timeliness, thus they provide knobs for the system
to tune the performance of group-aware stream filtering for

NAMOS Fluoro Data

o
o e
1 -
0 | —
> - |
g — - w
E ‘
o
2 ‘
2 S
3 24 —/— — — |
Q I
o —_
o}
o
o
wn
©
Q
T T T
RG+C(01) RG+C(03) RG+C(05)

algorithm(spec. #)

Figure 12. CPU cost of cuts for DC Fluoro.

NAMOS Fluoro Data

% of regions cut
= N w B n (2] ~ o)
o © &6 &6 © o6 o o

o

RG+C(01) RG+C(02) RG+C(03)

algorithm

Figure 13. Percent of
DC Fluoro.

RG+C(04)

RG+C(05)

regions cut for

69

NAMOS Fluoro Data

o
n — o
(30
o —
S |
™
o
7 &
E
[0
2 o
5]
g
g B
c
Q
©
o
8 -
_—
3 - ———
———
e - T T T T
PS PS(B) PS(Pcs) sl
algorithm

Figure 14. Output strategy affects data time-
liness.

NAMOS Fluoro Data

o
o
m
SR — -
o '
S o] T =
BT :
?
Q
o
=}
o
© 9 |
o
———
—
T T T T
PS PS(B) PS(Pcs) S|
algorithm

Figure 15. CPU cost of output strategies.

data timeliness.

6. Related work

Our work exploits the semantics of a stream process-
ing application to improve resource management in a dis-
tributed dissemination system. IBM’s Gryphon [14] also
leverages the semantics of subscribing applications to com-
press a sequence of data updates that have the same effect
on applications’ ultimate states. Zhao et al. [15] propose
a special rule-based language to specify an application’s
sophisticated processing needs, specifically, the semantic
equivalence of outputs to a remote application in face of
retransmitted and disordered data. Rather than using a
complicated language to describe the needs, our implemen-

tation provides a simple framework with customizable fil-
ters and functions to facilitate applications to describe the
approximate nature of their filtering requirements.

Bandwidth-reduction mechanisms, such as sampling, sum-
marising, and filtering, have been actively studied in re-
cent years in the systems community [2, 3, 4, 9, 12]. Most
of the mechanisms are discussed in the context of a sin-
gle streaming application. Only a few research efforts have
looked into group optimization for streaming applications,
but these mechanisms are either based on traditional com-
piler rewriting techniques, or the simple grouping of state-
less filters [1, 6, 7, 11, 13]. When data reduction is based on
simple filters, grouping the filters for evaluation of common
sub-expressions in the filters has been shown to save CPU
time [11, 13]. We have different objectives for our filter-
ing; the goal of our work is to trade computation time for
savings in communication.

Johnson et al. [9] summarized a general structure for
sampling operators. The structure also contains candidate
set admitting and output deciding stages, as we propose
for the general group-aware filtering process. If we see the
group-aware filtering from a sampling point of view, our
algorithm is a special kind of sampler in that it picks an
output from a candidate set of outputs for each filter. But
our process involves coordination across a group of appli-
cations, which never occurs in Johnson’s single-application
sampling.

7.

Summary

This paper provides a general framework that gives a
complete treatment to the group-aware filtering problem.
We formally define the optimization problem in group-aware
filtering for continuous data streams, and prove its NP-
hardness. We treat data quality management as the ulti-
mate guidance to group-aware filtering: all our proposed
heuristics-based algorithms for preserving bandwidth are
subject to meeting the data granularity and timeliness re-
quirements of the filters. We show that the group-aware fil-
tering process is general enough to go beyond simple delta-
compression filters, and supports many sophisticated data
filters such as stratified sampling. We demonstrate the ef-
fectiveness of our algorithms with an implemented system
for disseminating real-world data sets. The encouraging re-
sults show that group-aware filtering is a quality-managed
tool in exploring further opportunities to preserve band-
width for data dissemination in low-bandwidth networks.

8. References

[1] S. Aryangat, H. Andrade, and A. Sussman. Time and
space optimization for processing groups of
multi-dimensional scientific queries. In Proceedings of the
18th Annual International Conference on Supercomputing
(ICS), pages 95-105, 2004.

70

[2] B. Babcock, M. Datar, and R. Motwani. Sampling from a
moving window over streaming data. In Proceedings of the
Thirteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 633-634, 2002.

Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Sampling
algorithms: lower bounds and applications. In Proceedings
of the Thirty-third Annual ACM Symposium on Theory of
Computing (STOC), pages 266-275, 2001.

S. Chaudhuri, R. Motwani, and V. Narasayya. On random
sampling over joins. In Proceedings of the 1999 ACM
SIGMOD International Conference on Management of
Data (SIGMOD), pages 263-274, 1999.

G. Chen, M. Li, and D. Kotz. Design and implementation
of a large-scale context fusion network. In Proceedings of
the First Annual International Conference on Mobile and
Ubiquitous Systems (MobiQuitous), pages 246—255. ACM
Press, 2004.

J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ:
a scalable continuous query system for Internet databases.
In Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages
379-390, 2000.

R. Cheng, B. Kao, S. Prabhakar, A. Kwan, and Y. Tu.
Adaptive stream filters for entity-based queries with
non-value tolerance. In Proceedings of the 31st
International Conference on Very Large Data Bases
(VLDB), pages 37-48, 2005.

T. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, second edition,
2001.

T. Johnson, S. Muthukrishnan, and I. Rozenbaum.
Sampling algorithms in a stream operator. In Proceedings
of the 2005 ACM SIGMOD international conference on
Management of data (SIGMOD), pages 1-12. ACM Press,
2005.

M. Li. Group-Aware Stream Filtering. PhD thesis,
Dartmouth College Computer Science, Hanover, NH, May
2008. Available as Technical Report TR2008-621.

S. Madden, M. Shah, J. M. Hellerstein, and V. Raman.
Continuously adaptive continuous queries over streams. In
Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages
49-60. ACM Press, 2002.

D. P. Mitchell. Consequences of stratified sampling in
graphics. In Proceedings of the 23rd Annual Conference on
Computer Graphics and Interactive Techniques
(SIGGRAPH), pages 277-280. ACM Press, 1996.

C. Olston, J. Jiang, and J. Widom. Adaptive filters for
continuous queries over distributed data streams. In
Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages
563-574, 2003.

R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller,
B. Mukherjee, D. Sturman, and M. Ward. Gryphon: An
information flow based approach to message brokering. In
International Symposium on Software Reliability
Engineering (ISSRE), 1998.

Y. Zhao and R. Strom. Exploiting event stream
interpretation in publish-subscribe systems. In Proceedings
of the 20th Annual ACM Symposium on Principles of
Distributed Computing (PODC), pages 219-228, 2001.

[4

[5]

[6]

[7

(8]

(9]

(10]

(11]

(12]

(13]

14]

(15]

