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Abstract

Computer simulation has been used extensively as an effective tool in the design and evaluation of systems.
One should not, however, underestimate the importance of validation—the process of ensuring whether a
simulation model is an appropriate representation of the real-world system. Validation of wireless network
simulations, particularly wireless ad hoc routing protocol simulations, is difficult due to strong interdepen-
dencies among protocols at different layers as well as uncertainty in the wireless environment. In this paper,
we present an approach of coupling direct-execution simulation and traces from real outdoor erperiments
to wvalidating simple wireless models that are used commonly in simulations of wireless ad hoc networks.
This paper documents a common testbed that supports direct execution of a set of ad hoc routing protocol
implementations in a wireless network simulator. The testbed reads traces collected from real experiments,
and uses them to drive direct-execution implementations of the routing protocols. Doing so we are able to
reproduce the same network condition as in the real experiments. By comparing routing behavior measured
in the real experiment with behavior computed by the simulation, we are able to validate the models of ra-
dio behavior upon which protocol behavior depends. We conducted two multi-protocol outdoor experiments
with forty and twenty-two 802.11-enabled laptops, respectively. From the validation study we conclude that,
contrary to popular belief, it is possible to have fairly accurate results using a simple wireless model. The
routing behavior, however, is sensitive to the model’s parameters. We recommend that one should choose to
i) use a more complex wireless model that explicitly models point-to-point path loss, ii) use measurements
from an environment typical of the one of interest, or i) study behavior over a range of environments to
identify the sensitivities of the protocol’s performance under different network conditions.

* A preliminary version of this paper appeared in the Proceedings of the 18th Workshop on Parallel and Distributed Simulation
(PADS 2004) [20].
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1 Introduction

Computer simulation has become the primary tool for evaluating the performance of routing protocols in
mobile ad hoc networks (MANET), as manifested by the increasing number of research papers published in
conferences (such as MobiCom and MobiHoc) that use simulation to conduct performance evaluations. In
contrast to real field experiments, which generate unrepeatable results and are difficult to realize, simulation
provides a controlled environment for testing the design of routing protocols in a network that can be easily
scaled up to thousands or even millions of mobile stations. Simulation enables fast exploration of the design
space of the routing protocols under different network conditions—the geographic environment, the user
mobility pattern, the application traffic load, and so on.

Using simulation, one must remember that the model may not reflect reality. Validation is a process that
determines whether a simulation accurately represents the target system (see [15] for a detailed discussion
on this subject). Validation of MANET simulations is particularly difficult because not only must the
implementation of a simulated protocol be verified against its design specifications, but the model must also
be able to capture lower-level characteristics of the wireless environment with a proper level of abstraction [9].
It is known that the performance of the ad hoc network protocols heavily depend on the performance of
lower layers of the protocol stack (i.e., the MAC and PHY layers) as well as the wireless channel [29, 30].
Complex models that capture high-level details of the lower protocol layers and the RF propagation and
interference can certainly provide more confidence in the validity of the simulation results. However, these
models incur expensive computation, which is unlikely to be accommodated by using parallel simulations
alone. As a consequence, we find the MANET community diverges in the use of wireless models in the
simulation [14]. Questions remain on what would be an appropriate level of abstraction (for a particular
objective of a simulation study), and whether one can use simple models as a viable approach to obtain
fairly accurate results, particularly in simulations of large-scale mobile ad hoc networks.

We set out to address these problems, using direct-execution simulation and real field measurements to
validate wireless models, particularly simple stochastic RF models. Direct-execution simulation alleviates the
need to maintain separate code bases for the routing protocol by executing the same code designed for real
systems directly inside a wireless network simulator. We compile the routing protocol’s source code with the
simulator’s source code with only moderate changes. The protocol’s logic is executed inside the simulator
and is driven by the simulator’s time advancing mechanism. Particularly in an event-driven simulation
paradigm, the routing protocol code is invoked as a result of the simulator processing events stored in the
event queue. Since each protocol instance communicates with other simulated mobile stations by sending
and receiving packets through well-defined system calls, we substitute these system calls with calls to the
simulator. The packets are redirected to go through the simulated wireless network—all transparent to
the protocol implementation. Using direct-execution simulation is also desirable for prototyping a protocol
implementation, which, after initial simulation evaluation, can be deployed directly in a real network.

In this paper, we are interested in the ability of direct-execution simulation to help us bypass the veri-
fication stage of the routing protocols in simulation—the process determining whether the computer model
accurately represents the conceptual description and the actual implementation of the protocols. This paves
the way for us to validate the wireless models in the network simulator using measurements from real field
experiments. We run the same routing protocol and application traffic generator code both in simulation
and in the real experiment. We also include in the simulation a detailed model of the IEEE 802.11 MAC
layer protocol—the same protocol is used in the real experiments. The model was originally ported from
GloMoSim [1], which has been used widely in the research community and we assume to be accurate. In
a real experiment, packets are transmitted via the wireless channel and are subject to delays and potential
losses due to signal fading and collision. In simulation, these packets are translated into simulation events
scheduled with delays calculated by the radio channel model. Depending on the modeling details, the simu-
lation result may or may not reflect what would happen in reality. Such comparison provides us a valuable
opportunity to investigate the effect of details of wireless models on the fidelity of a simulation study.

More specifically, this paper documents our effort in supporting direct execution of a set of wireless ad
hoc routing protocol implementations and using the direct-execution simulation to validate the underlying
wireless models by comparing the results from the simulations and the real-world experiments. We ported
five routing protocol implementations for direct execution: APRL [12], AODV [24], GPSR [13], ODMRP [16],
and STARA [8]. Versions of all five protocols were implemented as part of the ActComm project, the goal of



which is to provide information access through a wireless network to soldiers in the battlefield.! We created
a common testbed for direct execution of these protocols in simulation and we instrumented the testbed to
include various logging functions in the routing protocol code. We did two large outdoor experiments over
the course of two years. In the first experiment, we ran four routing protocols on forty laptop computers. In
the second experiment, we had twenty-two laptop computers. The laptops were carried by people walking
randomly in an outdoor athletic field. Each laptop computer had a Global Positioning System (GPS) device
and periodically recorded its location information and average receiving signal quality from other laptops. We
later transformed these logs into traces of node mobility and radio connectivity. We adapted the simulator
to read the traces and combined them with different stochastic radio propagation models to mimic the test
scenario inside the simulator. We compared the results from running these routing protocols in simulation
with the measurements collected from the real experiments to reveal the effect of different wireless models
on the behavior of ad hoc routing algorithms.

The contributions of this paper are three-fold. The first is the development of the testbed that facilitates
the validation of wireless models in mobile ad hoc network simulations. The testbed supports direct execution
of a set of ad hoc routing protocol implementations in a wireless network simulator. In particular, the testbed
can read traces generated from real experiments and use them to drive direct-execution implementations
of the routing protocols. Doing so we reproduce the same network conditions as in real experiments for
our validation study. Our second contribution is the use of extensive measurements from two carefully
designed outdoor experiments to validate the simple wireless models popular in the MANET community.
By comparing routing behavior measured in real experiments with behavior computed by the simulation, we
are able to isolate and therefore validate the models of radio behavior upon which protocol behavior depends.
We are the first in doing so. Our third contribution is the recommendations made from the validation study
for the use of simple wireless models. We conclude that it is possible to have fairly accurate results using a
simple stochastic RF model, but the routing behavior is quite sensitive to one of this model’s parameters.
The implication is that one should ¢) use a more complex (and more computationally expensive) radio model
that explicitly models point-to-point path loss, or i) carefully parameterize the model using measurements
from an environment typical of the one of interest, or iii) study behavior over a range of environments to
identify sensitivities.

The paper is organized as follows. Section 2 provides an overview of the implementations of the routing
protocols and outlines the architecture of our wireless network simulator on which we directly executed these
protocol implementations. In Section 3 we briefly describe issues related to direct-execution simulation.
Section 4 presents the augmented simulation testbed designed for validation purposes. We focus on the
experiments and results in Section 5. Section 6 offers a discussion on the benefits and, more importantly,
limitations of our approach. We provide a brief summary of related work in Section 7 before we conclude
the paper in Section 8.

2 Background

In this section, we provide an overview of the routing protocol implementations and the wireless network
simulator that we adapted to directly execute protocol implementations.

2.1 The Routing Protocols

We ported five protocols for direct execution. Any-Path Routing without Loops (APRL) is a proactive
distance-vector routing protocol [12]. Rather than using sequence numbers, APRL uses ping messages
before establishing new routes to guarantee loop-free operation. Ad hoc On-Demand Vector (AODV) is an
on-demand routing algorithm: routes are created as needed at connection establishment and maintained
thereafter to deal with link breakage [24]. Greedy Perimeter Stateless Routing (GPSR) uses GPS positions
of the mobile stations to forward packets greedily along a path toward the target’s physical location [13].
GPSR uses a perimeter-following algorithm to forward packets around the boundaries of empty regions
that contain no mobile stations (and hence cause greedy forwarding to fail). On-Demand Multicast Routing
Protocol (ODMRP) maintains a mesh, instead of a tree, for alternate and redundant routes for each multicast

Thttp://actcomm.thayer.dartmouth.edu/.
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Figure 1: Implementation of routing protocols at user space using IP tunneling.

group [16]. It does not depend on another unicast routing protocol and, in fact, can be used for unicast
routing. System and Traffic Dependent Adaptive Routing Algorithm (STARA) uses shortest-path routing [8].
The distance measure is calculated by the mean transmission delay instead of the hop count. An empirical
comparison of four of these protocols can be found in [6].

Although APRL and STARA are not typical choices of ad hoc routing protocols, we believe our selection
provides a representative subsection of the algorithmic design space. Both APRL and STARA are proactive
routing protocols. Despite their differences in complexity, both protocols actively maintain routes to all other
mobile stations. In contrast, both AODV and ODMRP are reactive routing protocols: routes are established
on demand, subject to the traffic requirement. AODV and ODMRP differ primarily in ODMRP’s ability
to support multicast. GPSR, different from the approaches above, makes use of geographical information.
Because of the diversity in the protocol selection, it is important that we build the direct-execution simulation
testbed able to accommodate routing algorithms belonging to different algorithmic classes.

We (and others) implemented these protocols for the ActComm project in C++ on Linux. All five
implementations performed their routing as user-level applications using IP tunneling and UDP sockets, as
shown in Figure 1. An IP tunnel is a virtual network device with two endpoints: one as a regular network
interface, and the other as a Unix device file (in the /dev directory). Packets sent to the network interface,
via a standard UDP socket, can be read from the file by any (authorized) user process, while packets written
to the file are delivered by the kernel as if they had arrived over the network interface. Each mobile station
had a virtual IP address associated with the network interface of the tunnel, and a physical IP address
associated with the network interface of the physical wireless device. The application communicated using
virtual IP addresses. We configured the standard kernel routing tables so that all packets destined to virtual
IP addresses were forwarded to the IP tunnel device. At the source, a packet sent from the application was
forwarded first through the IP tunnel to the routing algorithm reading the device file (tun0O in Figure 1).
The routing algorithm then converted the virtual addresses to physical addresses and then selected the next
hop to which to forward the packet in accordance with its current routing table. All packets were forwarded
to their neighbors using UDP sockets through the physical (wireless) network device (eth0 in Figure 1). At
an intermediate node, the UDP packet was received from the physical network device (eth0) and given to
the routing algorithm through the UDP socket interface. The routing algorithm again selected the next hop
(using the packet’s physical IP address) and forwarded the packet to it using the UDP socket interface, which
sent out the packet from the physical network device (eth0). Once a packet reached its destination, the
physical addresses were translated back into virtual addresses and the routing algorithm wrote the packets
to the device file of the IP tunnel (tun0), which then delivered the packet to the application via the virtual
network interface.

Using IP tunneling and UDP sockets not only simplifies the development and testing of ad hoc routing
protocols in real networks, but also makes a straightforward transition from real-world implementations to
direct-execution simulation, as we discuss below in Section 3. The drawback of this approach is the overhead



associated with moving packets between the kernel and the user space. Although this performance penalty
has no significant impact on the ActComm applications, designed to run on laptop computers with significant
computing resources, it could become unwieldy for performance-critical applications running on less-powerful
hardware platforms. In this case we should consider implementing the routing protocols in the kernel space
to take advantage of optimizations unavailable at the user level. For the purpose of this validation study, we
chose implementation simplicity over efficiency.

Another common feature in the ActComm implementations of the routing protocols is that they are
all event-driven. At the center of each routing protocol implementation is an event loop that dispatches
callback functions in response to timeouts or packet arrivals. As we show later, these implementation features
tremendously eased the transition of the routing protocols from real systems to the simulated environment.

2.2 The Wireless Network Simulator

We developed a high-performance simulator called SWAN, as an integrated, flexible, and configurable sim-
ulation environment for evaluating different wireless ad hoc routing protocols, especially in large network
scenarios. SWAN is based on DaSSF, a parallel discrete-event simulator that has been proven successful
in simulating large-scale wired networks.? SWAN uses novel synchronization algorithms to achieve bet-
ter performance on parallel platforms for large-scale wireless network simulations [18]. The detail of these
synchronization algorithms is beyond the scope of this paper.

Conceptually, the architecture of SWAN can be divided into two sub-models: the environment model
and the node model. The environment model consists of radio channel models, user mobility models,
and geographical terrain information. The node model describes the software structure within a mobile
station, which consists of a stack of protocol layers interacting through a standard interface. We ported
and implemented models of several protocols that are used frequently in wireless ad hoc networks, such as
the IEEE 802.11 wireless LAN protocol and AODV. These protocol models can be readily assembled as a
protocol stack within each simulated mobile station. One can configure and change the properties of these
protocols at run-time using a specially designed configuration language.

In this paper, we study the effect of several radio signal propagation models on the behavior of the ad hoc
routing algorithms in simulation. In particular, we examine three simple but frequently used stochastic radio
propagation models: a Friis free-space model, a two-ray ground reflection model, and a generic propagation
model. The Friis free-space model assumes an ideal radio propagation condition: radio signals travel in a
vacuum space without obstacles. The power loss is proportional to the square of the distance between the
transmitter and the receiver. The two-ray ground reflection model adds a ground reflection path from the
transmitter to the receiver. This model is more accurate than the free-space model when the distance is
large and there is no significant difference in elevation between the mobile stations. The generic propagation
model describes the radio signal attenuation as a combination of two effects: small-scale fading and large-
scale fading. Small-scale fading captures the characteristic of rapid fluctuation in signal power over a short
period of time or a small change in the node’s position—a result primarily due to the existence of multiple
paths on which the signals travel. The classic models that predict the small-scale fading effect include
Rayleigh and Ricean distributions. Large-scale fading is mostly caused by the environmental scattering of
the signals and can be further divided into two components: the distance path loss is the average signal power
loss as a function of distance and is proportional to the distance raised to a specified exponent; the shadow
fading effect describes the variations in signal receiving power measured in decibels and can be modeled as a
log-normal distribution. Readers can refer to a textbook on wireless communications (such as Rappaport’s
book [25]) for a detailed discussion on the stochastic radio propagation models.

One must understand that these simple models only provide “correct” radio propagation behavior in a
statistical sense for particular wireless environments within their design perimeters. Specifically, they do not
provide enough modeling details to represent signal propagation in a real environment, and therefore cannot
offer an exact match to the real experiment results. We elaborate this point in a later section.

2http://www.cs.dartmouth.edu/research/DaSSF.



3 Direct Execution

In this section, we describe the methods we used to directly execute the routing protocol implementations
in the wireless simulation environment. In simulation, multiple instances of a routing protocol must run
simultaneously, driven by the same event queue. Conceivably, each routing protocol can run as a separate
process and interact with the simulation kernel through inter-process communication mechanisms. We only
need to substitute the system calls related to either communications (such as sending or receiving packets)
or time (such as querying for the current wall-clock time or blocking the user process) with calls to the
simulator. The replacement can be done either at link time (using linker wrapper functions) or at run-
time (by preloading dynamic linking libraries or using the packet capturing facilities in the kernel). The
major attraction of this approach is its generality and that no source-code modification is necessary. The
drawback, however, lies in its complexity related to and the potential overhead introduced by inter-process
communications.

We chose a faster yet slightly more complex approach that allows multiple instances of the same routing
protocol to execute in the same address space. The method involved only moderate modifications to the
source code. It must be understood that our approach does not intend to be general, but rather effective in
enabling direct-execution simulation for a range of routing protocols implemented in a common framework
for the ActComm project. The goal is to use direct-execution simulation to bypass the verification problem
in cases where different programs are developed separately for real systems and for simulation. We ported
all five ActComm routing protocols together with related programs, such as the application traffic generator
used in the real experiments. The number of lines changed in the source code accounted for only 3.8% of the
total. Most changes were repetitive and related to creating and configuring the routing protocols individually
in each simulated mobile station, and therefore were separate from the protocols’ primary control flow.

3.1 Encapsulations

We modified the protocol code only slightly to allow multiple instances of a routing protocol to run simul-
taneously inside the simulator. Since multiple instances are expected to execute in the same address space,
we need to provide wrappers so that these instances can be identified and separated in the same execution
environment.

We created a protocol session object to represent each routing protocol instance in the simulator. The
protocol’s interaction with the operating system, such as the system calls for sending and receiving packets,
was replaced by method invocations of the protocol session. These methods redirect the calls to simulator. We
also replaced global variables in the routing protocol implementations with member data of the corresponding
protocol session. We replaced the original main function in the routing protocol implementations with a
method of the protocol session that configures and initializes the instance.

3.2 Communications

The routing protocol implementations use system calls for communications, such as sendto for sending
messages through a UDP socket. As mentioned earlier, we replaced these system routines with those supplied
by the simulator. Rather than replacing them manually at all places in the source code, we provided a base
class that contained methods with the same names as the system routines and with the same prototype. In
this way, all classes in the protocol implementations default to call the methods in the base class. The base
class contains a reference to the protocol session that represents the routing protocol instance. The methods
in the base class forward control through the reference to the protocol session, which then passes on the
messages through the simulated protocol stack. This method is guaranteed to work as long as we make sure
that all system routines we intend to replace are redefined properly in the base class and that they are called
within the methods of the classes deriving from the base class in the protocol implementations.

We added support in the simulator for UDP sockets. A UDP protocol session master manages the UDP
sockets on top of the IP layer, whose primary function is to multiplex and demultiplex UDP datagrams.
Using the class inheritance technique, we replaced system calls related to UDP sockets, such as socket,
bind, sendto, recvfrom, and setsockopt, with methods that interact with the UDP protocol session. We
also implemented the IP tunnel device in the simulator. The device is treated as a network interface below



the IP layer in the protocol stack. Packets sent by the application with virtual destination addresses (via
UDP sockets) are diverted to the tunnel device by the IP layer. The routing algorithm accesses the IP tunnel
through a regular file descriptor. We replaced the file access functions, specifically open, read, write, and
close, to distinguish the file descriptor for the tunnel device from other regular files. We did not replace
operations to regular files since they are used by the directly executed code for logging purposes.

3.3 Timings

The routing protocols executed inside the simulator must be driven by simulation time rather than real time,
which means that we must deal with all time-sensitive system calls carefully. We replaced gettimeofday,
which returns the wall-clock time of the mobile station, with a call to the simulator querying for the current
simulation time. We also replaced select, whose function is to block the running process until any one
of the specified set of file descriptors is ready for reading or writing, or a given timeout interval has been
elapsed. The ActComm protocol implementations all center on an event loop that contains only one call to
the select function. When the control returns from this function—upon timeouts or incoming messages—
the algorithm invokes the corresponding event handlers to process the event. To provide the same function in
an event-oriented simulation world-view, we bypassed the event loop and directly invoked the event handlers
whenever a timeout occurred or a message arrived at the protocol session.

One also has to be aware of the ramifications from the lack of a CPU work model in the wireless
simulator. The simulator uses function invocations for packets to travel up and down the protocol stack
without advancing the simulation time. This bears no side-effect for a carefully designed protocol model,
where the packet processing time is simulated with proper delays, but may create problems for a directly
executed protocol implementation that pays no special attention to the packet processing. The ActComm
implementations do not explicitly specify delays for packets that pass through system facilities (such as
the IP tunnel). If in simulation we assume zero packet processing time, the behavior of all instances of a
routing protocol could be synchronized in simulation time. This synchrony could then lead to an unnaturally
high probability of packet loss caused by collisions at the wireless channel. To deal with this problem, we
introduced random packet jitters at the interface between the simulator and the directly executed code.
Each time a message goes through a UDP socket, we added a random delay to model the time needed by
the operating system for processing the packet. We also encountered a case in the STARA implementation
where the lack of a work model caused an underflow in a floating-point calculation and threw the simulation
into an infinite loop. At each iteration the algorithm consistently chose to schedule an event with a zero
delay. The problem would be corrected automatically in a real network since the wall-clock time advances
independently. To solve the problem in simulation, we added a small jitter delay whenever the directly
executed code scheduled a zero-delay event.

Note that using jitter delays does not provide an accurate representation of the use of computational
resources needed by the real system to process the packets traversing through the protocol stack. These
delays are especially important when the system is operating in a resource limited environment, where
an accurate CPU model is needed to simulate the packet forwarding delays, which become significant in
determining the performance of the entire system. In our real experiments, the ad hoc routing protocols are
running on laptops with ample processing power. Therefore, an accurate modeling of the CPU consumption
(which is costly to simulate) was never called for; the jitter delays were used in this case simply to model
the randomness and asynchrony in the packet processing in the system.

4 Support for Simulation Validation

In this section we discuss our support for validating a wireless simulation by comparing results from the
real experiments and the direct-execution simulation. We developed the testbed to facilitate the validation
of the stochastic radio propagation and interference models that are widely used in simulation studies in
the MANET research community. It must be understood that there is no definitive approach to validating
the models, because i) the RF environment in a real experiment cannot be reproduced exactly, and i) the
wireless models are stochastic and, if valid, can only produce statistically “correct” results that match the
real experiment. Here, by validation we mean to find out how these wireless models affect the results used
in performance evaluations of ad hoc routing algorithms.
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Our approach used real experiments as the base for comparison. In particular, we ran the routing protocol
implementations together with other applications directly in the simulator. We derived both node mobility
and radio connectivity traces from the real experiment and combined them with a stochastic RF model in
an attempt to recreate the real network conditions in simulation. We compared the results against those
from the real experiment to assess the validity of the underlying wireless models. Since the application layer
and the ad hoc routing protocols were the same in the real experiments and in simulation, and we assumed
that the detailed model of the IEEE 802.11 at the MAC layer was accurate, our focus was on the fidelity of
the radio propagation and interference models.

In all five ActComm routing protocol implementations we embedded a sophisticated logging mechanism,
as shown in Figure 2. When we ran the routing protocol, it generated an event log including all types of
events related to the routing algorithm, such as sending or receiving a packet. We used the event log both
for analyzing the performance of the routing algorithm and for debugging. The application traffic generator
is a simple program running simultaneously with the routing protocols. The traffic generator models an
on-off process: it waits for an exponentially distributed off period and during the on period randomly selects
a target mobile station, to which it sends a number of data packets separated by exponentially distributed
random intervals. We instrumented the traffic generator with logging functions to record every packet sent
and received. We later used this log to calculate application-level statistics, such as packet delivery rate and
end-to-end delay. Furthermore, when we directly executed the traffic generator in the simulation experiment,
the traffic generator used this log to recreate exactly the same traffic behavior as in the real experiment.

We also ran a third program called the service module in the real experiment together with the routing
protocol and the application traffic generator. The program periodically queried the attached GPS device
at the mobile station to log its current geographical location. The program also used iwspy to periodically
record link quality information. iwspy allows the user to specify a list of network addresses.® The wireless
device driver updated link quality information (i.e., the signal strength) whenever a packet was received
from one of the listed addresses. The service module periodically collected the most recent values in the last
sampling interval and recorded them in the signal quality log. Moreover, the service module periodically
broadcasted beacon messages that contained position information of all known mobile stations. The original
ActComm applications used them to keep every soldier in the field updated with the positions of other
soldiers. We recorded the beacon messages and used them to refresh the link quality information. Since the
beacon messages were sent periodically at low frequency, we expected that the perturbation was insignificant.

In the simulation experiment, the routing protocols were running directly as part of the simulator together
with the application traffic generator and the service module. One might think it unnecessary to run the
service module in simulation—the location of any mobile station is, after all, always available from the

3We made a minor modification to the standard Linux Card Manager services to increase the maximum number of tracked
sources to accommodate the forty laptops we used in the real experiment.



simulator’s mobility model. We chose to directly execute the service module since we needed to reproduce
the beacon messages and their effect on the state of the wireless network (particularly at the MAC and PHY
layers). In this way, the simulation produced the same set of logs as in a real experiment.

Before simulation, we processed the position log from the real experiment to produce a mobility trace,
which showed how each mobile station moved over time during the experiment. In addition, we generated a
radio connectivity trace from the beacon logs recorded by the mobile stations during the real experiment. The
connectivity trace states whether a mobile station can receive a packet from another mobile station over the
wireless channel at any given time. We derived radio connectivity using the following method. The beacon
log contains the times at which the beacon messages from other mobile stations were received. Receiving
a beacon successfully indicates a link from the sender to the receiver, while missing several consecutive
beacons indicates that the receiver may be beyond the transmission range of the sender. If node A could
hear a beacon message from node B, we assume there was a direct link from node B to node A during the
next sampling interval. After that, however, if node A did not receive the next beacon message, it only
means that either node A moved out of the transmission range of node B, or simply the beacon from B was
dropped as a result of corruption or collision with another transmission. To deal with the latter case, we did
not immediately remove the link from B to A, but instead only did so when three beacon messages from B
were missing in succession.

The signal quality log recorded a series of averaged signal-to-noise ratios for packets received at each
mobile station. The signal quality log is not included in this study. However, as an alternative to the beacon
log, this information could be used to reconstruct radio connectivity of the wireless network. The recorded
link quality information is presumably better at capturing the signal propagation and interference scenario
than the beacon logs, since the link quality information is collected at the wireless device driver (presumably
at the signal level) regardless of whether an entire packet is successfully received.

Note that, even with the radio connectivity traces, reproducing the state of the wireless environment is
difficult. An inappropriate radio channel model can produce misleading simulation results. To have a detailed
trace that records every bit of change in the state of the wireless network would require an extremely large
amount of storage space even for a short duration. And even if we successfully created a detailed trace,
we would still face the problem if we wanted to introduce a slight modification to the application traffic
behavior. We used the radio connectivity trace as a baseline to determine whether two mobile stations could
directly communicate with each other. It should be noted that the connectivity information does not capture
the state of interference—collisions could happen due to the presence of “hidden terminals.” For example, if
node B can hear both node A and node C situated on either side, but node A cannot talk to C and vice versa
because they are out of each other’s radio propagation range, it is possible that node B cannot faithfully
receive a packet from A if node C is transmitting another packet to node B simultaneously. Although the
802.11 MAC layer protocol, which arbitrates packet transmissions over the wireless medium, allocates the
radio channel before each transmission, it cannot totally prevent collisions. In this case, the simulator must
use an interference model to simulate what would happen when two packets arrive at the receiver. It is
possible that one of the packets can be accepted if its receiving power is significantly higher than the other,
or both packets are lost due to the presence of interference.

Since the interference model relies on the receiving signal power to determine packet receptions, we need
a radio propagation model to simulate the signal power attenuation. In the next section, we provide some
preliminary results on the effect of three simple stochastic radio propagation models, with and without the
connectivity trace, and study their effect on the behavior of the routing protocols.

5 Performance and Validation Studies

We conducted two sets of experiments. The first experiment compared the direct-execution simulation of
the ActComm AODYV protocol implementation with an AODV protocol model implemented natively in the
SWAN simulator. This experiment was used to verify two independent protocol implementations against
each other and to assess the cost of using direct-execution simulation in support of future studies using this
method. The second experiment compared the results from two outdoor experiments and the simulation of
a mobile network running multiple ad hoc routing algorithms. The goal of this experiment is to validate the
wireless models and, more importantly, to reveal the sensitivity of the performance of the routing protocols
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Figure 3: Packet delivery ratio with varying traffic load (in log scale).

to the wireless models used in simulations.

5.1 AODV vs. AODV

In this experiment, we compared the direct execution of the ActComm AODYV protocol implementation
with an AODV protocol model implemented natively in SWAN. We ran both protocol implementations in
simulation under the same simulated network conditions, with the same application traffic pattern, and using
the same radio propagation model. Our goal is to verify both protocol implementations against each other
and determine how much overhead direct-execution simulation requires.

We tested a network of 50, 100, and 200 mobile stations, out of which we chose 20 mobile stations as
traffic sources. Each traffic source randomly selected a target among other mobile stations and sent to it a
packet of 1 KB in size before switching to another randomly selected target after an exponentially distributed
random interval. We deployed these mobile stations in a square area, sized so that each mobile station had
seven neighbors on average (796, 1126, and 1592 meters for each dimension, respectively). We used the
random way-point node mobility model: each node moves to a randomly selected point in the area with a
speed chosen uniformly between 1 and 10 meters/s; when reaching the point, it pauses for 60 seconds before
selecting another point to which to move. We chose the IEEE 802.11 protocol for the MAC and PHY layer
with standard parameters according to the IEEE specification (with 11 Mb/s bandwidth), and we used the
generic radio propagation model (with an exponent of 2.5 and shadow fading log-normal standard deviation
of 6 dB) to compute the signal path loss.

The behaviors of the two implementations differed slightly owing to variations in treatment of the AODV
specifications. In addition, the ActComm AODYV ran in user space using IP tunneling and UDP sockets,
while the SWAN AODYV ran directly on top of IP. The messages from the application traffic generator, when
delivered to the ActComm AODYV protocol through the IP tunnel, were wrapped with UDP and IP headers.
Both the data and control messages used by the ActComm AODV were also augmented with UDP headers
by UDP sockets. Nonetheless, we found that, with varying traffic load (by changing the mean packet inter-
arrival time), the overall packet delivery ratio—the total number of packets received by the application layer
divided by the total number of packets sent—differed only slightly between these two implementation, as
shown in Figure 3. Both implementations achieved similar output (less than 3% difference). The similarity
in the behavior of the two implementations ensures that using the two implementations to assess the cost of
direct execution is meaningful.

Figure 4 shows the difference in total execution time and peak memory usage between the two implemen-
tations of the AODV protocol. Clearly, the ActComm AODV (direct-execution) implementation required
more computational resources, but marginally so. The greatest increase in the execution time (about 18%)
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Figure 4: The execution time and peak memory usage for the two AODV implementations with varying
traffic load (in log scale).

was at larger network sizes and heavier traffic load. The increased execution time was mostly caused by the
overhead of copying and serializing real packets. The memory overhead of the ActComm AODV (over 100%)
was more significant. We attribute it to the additional data structures used by the direct-execution protocol
session, the IP tunnel device, and the UDP socket layer, which are proportional to the number of simulated
mobile stations. Moreover, in simulation, the directly executed routing protocol implementation and the
application sent and received real packets with real message headers and real payloads. The overhead grew
with increasing traffic intensity as packets stayed longer in the wireless network due to more contentions.

In conclusion, direct-execution simulation requires more computational resources, especially in memory
usage. The benefit of directly executing a routing protocol implementation in simulation is the assurance
that the protocol implementation exhibits the same behavior as in a real network. A routing protocol
model implemented natively in the simulator, however, may benefit from computational optimizations such
as eschewing actual message headers and payloads. Thus, a protocol model is more suitable to be used in
situations where the resource requirement is critical, such as in a simulation of a large-scale wireless network.
On the other hand, the extra costs of direct-execution are not so onerous to disqualify the technique as a
means of experimentation. There are obvious advantages to maintaining a common code base between a
protocol’s actual implementation and that used to study its behavior in a simulator.

5.2 Simulation vs. Reality

As the second step in our validation study, we compared the results from two outdoor routing experiments
with our simulation results. In particular, we compared the results from the real experiments with the
simulation results using different RF models. As mentioned earlier, the simulation results using the simple
stochastic wireless models cannot match exactly with the results from the real experiments. By validation
we mean we want to find out whether the simulation can provide us enough confidence in the claims we
make to the performance of the routing protocols. In other words, the purpose of this study is to reveal the
sensitivity of the performance of the routing protocols to the underlying wireless models. It is not our focus
here to compare these protocols. We analyzed the behavior and compared the performance of the protocols
in another paper [6].

5.2.1 The Real Experiments

We conducted two outdoor routing experiments in two years on the same rectangular athletic field measuring
approximately 225 by 365 meters. The field was divided into four equal-sized quadrants, one of which was
approximately two meters lower in elevation than the rest of the field. The hills from the higher to lower
elevation were steep and short, and thus did obstruct the wireless signal, increasing the frequency with which
the routing algorithms needed to find a multi-hop route. We chose this field to conduct the experiments

11



because it was at a distance away from the college campus and its wireless network. We used a different
wireless channel in the experiments to further reduce the potential interference.

The first experiment was conducted in October 2003 with forty laptop computers. The second experiment
was conducted in October 2004 with twenty-two laptop computers. Each laptop was a Gateway Solo 9300
with a 700 MHz Pentium IIT CPU, 256 KB of CPU cache, 256 MB of main memory, and a 20 GB hard drive,
and ran Linux kernel version 2.2.19 with PCMCIA Card Manager version 3.2.4. Each laptop had a Lucent
(Orinoco) 802.11 wireless card operating in peer-to-peer mode fixed at 2 Mb/s, and the Card Manager was
configured to use the wvlan_cs, rather than orinoco_cs, driver so that we could collect signal-strength
statistics for each received packet. Finally, each laptop had a Garmin eTrex GPS unit attached via the serial
port. These GPS units did not have differential GPS capabilities, but were accurate to within a few meters
during the experiment.

The first experiment included four routing protocols: APRL, AODV, ODMRP and STARA. The second
experiment included only APRL, AODV, and ODMRP. GPSR was still under development at the time of
the outdoor experiments and therefore was not included in this study. The laptops, whose clocks were set
to the time reported by the GPS unit, automatically ran each routing algorithm for 15 minutes (in the first
experiment) or 20 minutes (in the second experiment), with two minutes of network quiescence between
each algorithm to handle cleanup and setup chores. After each routing algorithm had been running for one
minute, providing time to reach an initial stable routing configuration, the laptops automatically started
a traffic generator that generated “streams” of UDP packets. The number of packets in each stream was
Gaussian distributed with mean 5.5 and standard deviation v/2; the time between streams was exponentially
distributed with mean 15 seconds; the time between packets inside a stream was exponentially distributed
with mean 3 seconds; every packet contained approximately 1200 data bytes; and the target laptop for each
stream was uniformly randomly selected from among the other laptops. We chose these numerical parameters
to approximate the traffic volume observed during an earlier demonstration of a military application [5]—
approximately 423 outgoing data bytes (including UDP, IP and wireless Ethernet headers) per laptop per
second, a relatively modest traffic volume. The uniform random target selection simply ensured that traffic
flowed to all parts of the network. The routing algorithm parameters, such as the beacon interval for APRL
and the forwarding group lifetime for ODMRP, were set to “standard” values taken from the literature and
our own experience.

During the course of the first experiment, the laptops were continuously moving. At the start, the
forty participants were divided into equal-sized groups of ten, each of which was instructed to randomly
disburse in one of the four quadrants of the field. The participants then walked continuously, always picking
a quadrant different than the one in which they were currently located, picking a random position within
that quadrant, walking to that position in a straight line, and then repeating. This approach was chosen
since it was simple, but still provided continuous movement to which the routing algorithms could react, as
well as similar laptop distributions across each of the four routing algorithms. In the second experiment, we
used the same strategy in node movement, however, using only three quadrants of the field. Construction
prevented us from using the lower quadrant (the one that was two meters lower in elevation than the others).
The laptops moved within the remaining three L-shaped quadrants at approximately the same elevation.
The difference in the number of laptops and the movement patterns between the two experiments caused
variations in the performance of the protocols as expected.

Each laptop recorded extensive logs as described in Section 4. At the end of the first experiment,
we discovered that seven laptops failed to generate any data or routing traffic due to misconfiguration or
hardware problems. Thus, the experiment in practice reduced to a thirty-three-laptop experiment and
the logs from these thirty-three laptops were used as the starting point for comparing the real-world and
simulation results. In the second experiment, the traffic generators in two nodes were found misconfigured
when we ran AODV. We made adjustments accordingly in the simulation to reflect the real situation.

5.2.2 The Simulation

We processed the logs from the real experiments to derive the node mobility and radio connectivity traces for
each laptop for the duration of running each routing algorithm. We ran the simulation of each algorithm for
the designated period. We directly ran the routing protocol and the service module in each simulated mobile
station. We modified the application traffic generator to read the application log and generate the same
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Figure 5: Comparing the data delivery ratio from the real experiments with various radio propagation
models. “With connectivity” means the connectivity trace was used.

packets as in the real experiment. To compare with results from the first real experiment, we focused only
on the thirty-three laptops that actually transmitted, received, and forwarded packets in the real experiment.
To reproduce the traffic pattern in simulation, the application traffic generator on each of the thirty-three
nodes still included the seven crashed nodes as potential packet destinations.* For the second experiment, we
included all twenty-two laptops in the simulation of the routing protocols, but discarded the traffic generation
of the two laptops that were misconfigured in the AODV run.

The mobile stations in simulation followed the mobility trace generated from the real experiments. We
examined three radio propagation models: a free-space model, a two-ray ground reflection model, and a
generic propagation model. The simulator delivered each transmitted packet to all neighbor stations that
could receive the packet with an average receiving signal power above a minimum threshold. We used the
propagation models to determine the power loss for each packet transmission and thus the signal-to-noise ratio
to quantify the state of interference at the receiver—to determine whether a packet that arrived at a mobile
station could be received, or should be dropped. We combined the three models with the connectivity trace
derived from the beacon logs, leading to six different radio propagation models: three using the connectivity
traces and three not. In the first three cases, we used the connectivity trace to determine whether a packet
from a mobile station could reach another mobile station, and then we used the radio propagation models
to determine the receiving power for the interference calculation. Comparison of models with measured
connectivity with those without provides us a means of refining a model’s power—if a model is seen to
require connectivity information to work well, it is not a robust model because its power of prediction comes
from measurements. On the other hand, if a model without measured connectivity information works about
as well as does the version with it, then the model itself contains accurate predictive power for connectivity.

5.2.3 The Results

We first examine the packet delivery ratio. Figure 5 shows the packet delivery ratio from the real experiments
and the simulation runs with six radio propagation models (three of which used the connectivity trace derived
from the real experiment to determine the reachability of the signals). Each simulation result is an average of
five runs; the variance is insignificant and therefore not shown for the sake of clarity. The generic propagation
model used typical parameters to describe the outdoor environment of the real experiment: we used 2.8 as
the path-loss exponent and 6 dB as the standard deviation for shadow fading. (We later show the sensitivity
of the results to these parameters). We have several observations:

e Different wireless models predicted vastly different protocol behaviors. The difference is significant
enough in some cases to result in misleading conclusions, for example, when comparing the performance

4Therefore, the packet-delivery ratios, both from the real experiment and the simulation, should be slightly lower than
expected, since those packets with unknown destinations could not be delivered.
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of AODV and ODMRP using the free-space model. The inaccuracy in the model prediction is non-
uniform and can undermine a performance comparison study of different protocols.

e The simple generic propagation model with typical parameters for the outdoor test environment of the
real experiment offered an acceptable prediction of the performance of the routing algorithms.

e For AODV, APRL, and STARA, the figure shows a large exaggeration of the packet delivery ratio
using the free-space model and the two-ray ground reflection model. Both models overestimated the
transmission range of radio signals causing shorter routes and better packet delivery ratio under the
test traffic intensity. Even with the connectivity trace, the free-space model and the two-ray model
overestimated the performance of the AODV, APRL, and STARA protocols. None of the two models
captured the lossy characteristic of the radio propagation environment—no packets were dropped due
to variations in the receiving signal strength.

e STARA’s low packet delivery ratio is attributed to the high volume of control packets (measured over
150 per application packet in the experiment), which simply overwhelmed the wireless network. STARA
periodically sent dummy data packets to update delay estimates for high latency routes. Optimizations
in control packet handling can significantly improve STARA’s performance [7]. Our implementation
did not take advantage of these optimizations and therefore the result should not be used to represent
the overall performance of the algorithm. The implementation, however, can still serve as a good test
case in our simulation validation study. Note that, because of the congestion at the wireless channel,
the connectivity trace derived from the beacon messages does not provide an accurate estimate of the
network condition.

e The performance of ODMRP was underestimated in the first experiment. ODMRP, which is a multicast
routing algorithm that delivers packets using multiple paths to their destinations, has a higher demand
on the network bandwidth. The overestimated transmission range in the free-space and two-ray models
and the assumptions of the omni-directional radio coverage in simulation caused more contentions and
created a negative effect on the throughput. The situation was improved in the second experiment
with fewer laptops moving at the same elevation.

e The propagation models that used the connectivity trace generally lower the packet delivery ratio,
when compared with the propagation models that did not use the connectivity trace. This result is
not surprising: the connectivity trace, to some degree, can represent the peculiar radio propagation
scenario of the test environment. Without connectivity traces, the propagation models assumed an
omni-directional path loss dependent only on the distance, which resulted in a more densely connected
network (with fewer hops for packet transmissions) and therefore a better delivery ratio under the given
traffic intensity. The difference was more pronounced in the first experiment because the experiment
included the lower quadrant—significant elevation changes in the test field led to possible obstruction
of radio signals between laptops.

The packet delivery ratio does not reflect the entire execution scenario of the routing algorithm. From
the routing event logs, we collected statistics related to each particular routing strategy. Figure 6 shows
a histogram of the number of hops that a data packet traversed in AODV, before it either reached its
destination or was dropped along the path. For example, a hop count of zero means that the packet was
dropped at the source node; a hop count of one means the packet went one hop: either the destination was
the source’s neighbor or the packet failed to reach the next hop. The figure shows the fraction of the data
packets that traveled the given number of hops. We see clearly the free-space and two-ray models without
connectivity trace resulted in fewer hops because of the exaggerated transmission range. The problem was
again more pronounced in the first experiment due to the possible obstruction of the signal propagation
resulting in longer routing paths. From the figure we also see that the connectivity trace was helpful in
predicting the route lengths, more likely in the first experiment for the same reason.

A bigger problem with the free-space and two-ray models was that they did not consider packet losses
caused by variations in the receiving signal power. We illustrate this point in Figure 7, which plots the
beacon reception ratio—the fraction of beacon messages received over the total number of beacon messages
sent—at different distances between the transmitter and the receiver, during the AODV run in the first
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Figure 7: The beacon reception ratio at different distances between the sender and the receiver.

experiment. We divided the distance range into buckets of 25 meters each and calculated the fraction of
successful beacon receptions at each bucket. For better exposition, the figure shows the reception ratio
at each distance bucket as a point (in the middle of the bucket). The beacon reception ratio was lower
for models with the connectivity trace because of the additional precondition for the signals’ reachability.
The ratio generally decreased over longer distances because weaker signals were dropped when collisions
happened. The generic propagation model provided the best fit for the real experiment results. In contrast,
the two-ray model exhibited a sharp cliff in the curve—without variations, the quality of the modeled wireless
channel changed abruptly from relatively good to none as soon as the distance threshold was crossed. Since
we assumed 15 dBm as the radio transmission power and -81 dBm as the receiving threshold, the two-ray
model had a maximum transmission range of 251 meters. For the free-space model, the range was 604
meters, longer than the maximum separation of laptops in the real experiment. The generic model with a
path-loss exponent of 2.8 had a transmission range of only 97 meters. Because of the variations (modeled as
a log-normal distribution with correlations over time), the reception ratio decreased gradually as in the real
case.

The generic propagation model with typical parameters to represent the outdoor test environment offered
a relatively good prediction of the performance of the routing algorithms. One must, however, choose the
correct parameters carefully to reflect the wireless environment. The exponent for the distance path loss
and the standard deviation in the log-normal distribution for the shadow fading are heavily dependent on
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the environment under investigation. In the next experiment, we ran a simulation with the same number of
mobile stations and with the same traffic load as in the real experiment. Figure 8 shows AODV performance
in packet delivery ratio with the same network settings, but varying the path-loss exponent from 2 to 4
and the shadow log-normal standard deviation from 0 to 12 dB—the ranges suggested for modeling outdoor
environments [25].

The AODV behavior was more sensitive to the path-loss exponent than to the shadow standard deviation.
That is, the signal propagation distance had a stronger effect on the algorithm’s performance. A shorter
transmission range means packets must travel through more hops (via longer routes) before reaching their
destinations, and therefore have a higher probability to be dropped. A larger shadow standard deviation
caused the links to be more unstable, but the effect varied. When the path-loss exponent was small and
the signals had a long transmission range, the small variation in the receiving signal strength did not have
a significant effect on routing, causing only infrequent link breakage. When the exponent was large, most
nodes were disconnected. A variation in the receiving signal power helped establish some routes which were
impossible if not for the signal power fluctuation. Between the extremes, a larger variation in the link quality
generally caused more transmission failures, and therefore resulted in a slightly lower packet delivery ratio.

The critical implication of this sensitivity study is that we cannot just grab a set of large-scale fading
parameters, use them, and expect meaningful results for any specific environment of interest. On the one
hand, pre-simulation empirical work to estimate path-loss characteristics might be called for, if the point of
the experiment is to quantify behavior in a given environment. Alternatively, one may require more complex
radio models (such as ray-tracing) that include complex explicit representations of the domain of interest.
On the other hand, if the objective is to compare protocols, knowledge that the generic propagation model
is good lets us compare protocols using a range of path-loss values. While this does not quantify behavior, it
may allow us to make qualitative conclusions about the protocols over a range of environments. We emphasize
the necessity of experimenting with a range of parameters, as different protocols may perform better under
different conditions.

To summarize, we used simple stochastic radio propagation models and the traces generated from carefully
designed real experiments. Direct-execution simulation provided a common baseline for comparing the
behavior of routing protocols both in the real experiment and in simulation. We found that it is critical to
choose a proper wireless model that reflects a real-world scenario for studying the performance of ad hoc
routing algorithms. In contrast to earlier studies [29], we found that using a simple stochastic RF model
with parameters typical to the outdoor environment can produce acceptable results. We must recognize,
however, the results are sensitive to these parameters. It is for this reason we caution that the conclusions

16



drawn from simulation studies using simple propagation models should apply only to the environment they
represent. The free-space model and the two-ray model, which exaggerate the radio transmission range and
ignore the variations in the receiving signal power, can largely misrepresent the network conditions.

6 Discussion

It is difficult to design real experiments to offer a good coverage of diverse experimental settings, such as
different geographical terrains and different network conditions (traffic, mobility, and so on). Furthermore,
a large-scale outdoor experiment that involves many people and a large amount of hardware equipment
can easily become difficult to manage and maintain, not to mention that it is also quite costly to organize.
Because of these barriers, using large-scale real experiments for validation cannot be adopted as a general
approach. This is why simulation remains to be important for performance evaluation studies in the MANET
community. One would argue, and we agree, that one should validate individual components of the simulation
models—one at a time, whenever possible. Actually, the simple stochastic RF models were all tried and
true within their design perimeters where the models are applicable. The question is how sensitive is the
simulation-based performance evaluation to the wireless models applied without us knowing the exact design
perimeters. Here, using data from the carefully designed real experiments can help answer this question.
Our approach in coupling direct execution and the traces from the real experiments helps isolate and reveal
the effect of the interdependent models in ad hoc network simulations.

The aforementioned drawbacks of conducting large real experiments lead to the limitations of our ap-
proach. The two outdoor experiments, described in Section 5, only provide us with a few reference points in
studying the effect of underlying wireless models on the performance evaluations of ad hoc routing protocols
in simulation. Other experiments are needed to explore sensitivities under different settings. For example,
we have yet to compare the results from our indoor tabletop experiments with the simulation results [6],
in which case, the simple stochastic RF models are highly questionable for representing the indoor environ-
ments. Furthermore, it remains a challenge to generalize the results from our validation studies to large
network scenarios (with hundreds of or more mobile stations).

We applied statistical goodness-of-fit tests to compare the results from the real experiments with the
simulation results. We choose not to show the test results simply because the null-hypothesis that the results
from the real and simulation experiments are from the same probability distribution is obviously incorrect.
For example, the packet delivery ratio is an aggregate statistic over tens of thousands of packets transmitted
during each experiment and therefore allows only small Monte Carlo errors. A confidence-interval validation
test would simply reject the hypothesis in this case, unless the packet delivery ratios are very close to each
other. Nonetheless, a statistical test can provide a common base for comparing different models and their
effect on the performance of the routing protocols. For instance, a chi-square test comparing the hop-count
distributions for AODV runs in the first outdoor experiment and simulation clearly shows that both free-
space and 2-ray ground reflection models without connectivity trace were way off and the generic model
provided much better match. We can simply draw the same conclusions by inspecting the graphs.

For future work, we are currently investigating using the link quality information collected by the wireless
device driver to improve the accuracy of the connectivity trace. Also, we want to translate the terrain
information of the real experiment into a radio propagation gain matrix for a more realistic representation
of the wireless environment, and study the effect of such modeling details on the performance evaluation of
wireless ad hoc routing protocols. Furthermore, our comparative studies assumed that the model for the
802.11 MAC layer protocol is valid. We would like to validate the model using simple real test scenarios and
the validation testbed described in this paper.

7 Related Work

There are varying degrees of complexity involved in the direct execution of routing protocols inside a sim-
ulator. Previously, we ported WiroKit, a portable router for wireless ad hoc networks, developed by BBN
Technologies, to execute directly in SWAN [19]. To maintain platform independence, WiroKit has only a
few well-defined interaction points with the supporting operating system, which include memory allocations,
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communications, and accessing the real-time clock. We applied only small changes at the interaction points
to allow direct-execution simulation.

Nsclick directly executes the Click Modular Router inside the ns-2 network simulator [22]. The Click
Modular Router provides a layer of abstraction, and a flexible and configurable environment for developing
ad hoc routing protocols. Similar to our approach, the integration of Click with ns-2 requires visible changes
to the original source code. Recently, Dimitropoulos and Riley incorporated a public-domain implementa-
tion of the Border Gateway Protocol (BGP), from the routing software called Zebra, into simulation [3].
The transition involves sophisticated changes to the original source code, including the use of event-driven
scheduling to replace the original process-oriented design. Our work differs from theirs in that our approach
is more specific to the ActComm framework where source-code transformation is straightforward and can
be done manually.

Direct-execution simulation has been used extensively in areas such as parallel architectures (e.g., [4, 26]),
and distributed algorithms (e.g., [2]). They aim at obtaining an execution profile of the directly executed
code. The former is concerned with measuring the execution time of running applications on the simulated
computer platforms, whereas the latter is about assessing the efficiency of a parallel algorithm in a distributed
environment. These are different from our case of direct-executing routing protocols in an ad hoc network
simulation—measuring the execution time of the routing algorithms is of less importance than simulating
packet routing across the network and therefore is often ignored in such models unless one wants to study
a network in a resource-constrained situation. In this respect, Liljenstam et al. recently proposed a way to
efficiently model CPU and memory resources in large network simulations [17].

Direct-execution simulation is closely related to emulation. Emulation requires that the simulation clock
be synchronized with the wall-clock time. Typically, emulation involves running unmodified software proto-
types to interact with the emulated entities. For example, a network emulator provides a controlled network
environment to facilitate network protocol development and application performance evaluation. Distributed
applications, such as web services, may run unmodified to supply traffic to go through the emulated network.
A number of techniques can be used for executing unmodified software, including kernel virtualization [10],
network packet capturing [27], dynamic linking library [28], and executable modification [21]. We are cur-
rently investigating these approaches.

Validation of simulations in general and wireless ad hoc network simulations in particular has been a focal
point surrounding the applicability of simulation studies. Johnson first suggested using the log information
from running ad hoc routing algorithms during a real experiment to simulate identical node movement and
communication scenarios [11]. We have not seen such validation efforts in realization. There has been
research in wireless network emulation based on traces [23]. In their approach, the traces are modulated and
reduced to a simple wireless network model that preserves the end-to-end characteristics of a real wireless
network. Our approach collects traces from the application layer down to the signal reception, which are
used selectively to exercise and validate different components of a detailed wireless model.

Finally, Takai and others provide a study of the effect of wireless physical layer and radio channel
modeling on the performance evaluation of ad hoc routing algorithms [29, 30]. Their study considers the
effect of several factors—including signal preambles, radio propagation models, and interference and noise
calculations—on routing protocols in simulation. Our research is inspired by their studies, but differs in our
focus on using real experiments to support our simulation studies.

8 Conclusions

This paper reports on our efforts to support direct-execution simulation of a set of wireless ad hoc routing
protocols to facilitate validation of wireless network models. We conducted two real experiments running
multiple protocols on laptop computers in an outdoor environment. We embedded a sophisticated logging
mechanism in the protocol implementations. All activities related to the routing algorithms and the appli-
cations were recorded in files. In particular, we constantly recorded the GPS location of the mobile stations,
which were later translated into a mobility trace. Each mobile station also recorded the beacon messages from
its neighbors, which were used to reconstruct the radio connectivity of the mobile stations. Post-processing
these files resulted in traces that we used in simulation to reproduce the same network condition. Using
direct-execution simulation together with the traces from the real experiments, we are able to isolate and
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validate the effect of the underlying wireless models on the performance evaluation of the ad hoc routing
protocols.

We found that one can use a simple stochastic radio propagation model to predict the behavior of the
routing protocols with fairly good accuracy, but the results are quite sensitive to the model’s parameters. We
argue that choosing a proper wireless model that represents the wireless environment of interest is critical in
performance evaluation of the routing algorithms. Because of the sensitivity of the behavior to the underlying
radio model, one should either choose a more complex radio model for a more accurate representation of the
wireless environment, or use a simple model with caution. In the latter case, we suggest that one should
either use models that incorporate measurements from an environment typical of the one of interest, or study
the protocol behavior over a range of environments for a more complete representation.
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