
Adapt-lite: Privacy-aware, Secure, and Efficient mHealth
Sensing

Shrirang Mare
Computer Science

Dartmouth College, USA
shrirang@cs.dartmouth.edu

Jacob Sorber
Computer Science; ISTS
Dartmouth College, USA

jacob.m.sorber@dartmouth.edu

Minho Shin
Computer Engineering

Myongji University
South Korea

shinminho@gmail.com

Cory Cornelius
Computer Science

Dartmouth College, USA
cory.t.cornelius@dartmouth.edu

David Kotz
Computer Science; ISTS
Dartmouth College, USA
kotz@cs.dartmouth.edu

Abstract
As healthcare in many countries faces an aging population
and rising costs, mobile sensing technologies promise a new
opportunity. Using mobile health (mHealth) sensing, which
uses medical sensors to collect data about the patients, and
mobile phones to act as a gateway between sensors and elec-
tronic health record systems, caregivers can continuously
monitor the patients and deliver better care. Although some
work on mHealth sensing has addressed security, achieving
strong security and privacy for low-power sensors remains a
challenge.

We make three contributions. First, we propose Adapt-
lite, a set of two techniques that can be applied to exist-
ing wireless protocols to make them energy efficient without
compromising their security or privacy properties. The tech-
niques are: adaptive security, which dynamically modifies
packet overhead; and MAC striping, which makes forgery
difficult even for small-sized MACs. Second, we apply these
techniques to an existing wireless protocol, and demonstrate
a prototype on a Chronos wrist device. Third, we provide
security, privacy, and energy analysis of our techniques.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols

General Terms
Security

Keywords
mhealth, healthcare, sensor network, network protocol, pri-
vacy, security

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’11, October 17, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-1002-4/11/10 ...$10.00.

1. INTRODUCTION
Recent improvements in mobile computing and develop-

ments in miniature medical sensors have enabled mobile
health (mHealth) sensing. An mHealth sensing system can
deliver continuous health monitoring to patients throughout
their daily activities with the potential to simultaneously
reduce cost and improve the quality of healthcare [9, for
example]. However, there are strong privacy and security
concerns associated with mHealth sensing. For instance, a
woman wearing a wireless fetal heart monitor, during her
daily activities, may not want people around her knowing
that she has such a device or observing the data transmit-
ted by the device. In a wireless network, an adversary can
observe a device’s transmissions and may learn the contents
of the transmissions or the type of the device [8, 12]. Thus,
mHealth sensing requires protocols that provide strong pri-
vacy and security guarantees with low-energy consumption.

There exist some privacy-preserving wireless protocols that
provide security and privacy properties like unlinkability,
data confidentiality, data integrity, and data authentication.
These protocols, however, add various forms of overhead
that makes them unsuitable for low-power mHealth sens-
ing networks, which have small sized payloads. Reducing
the transmission overhead will make these protocols energy
efficient, but reducing the transmission overhead will also
makes them less secure (e.g., reducing the message authen-
tication code size will make the protocol less secure against
forgery attacks). In this paper we propose techniques to
make the privacy-preserving wireless protocols energy effi-
cient by reducing the transmission overhead without signif-
icant loss in their security or privacy.

We make three contributions:

1. We propose Adapt-lite , a set of two techniques that
can be applied to existing wireless protocols to make
them energy-efficient (by reducing the transmission over-
head) without significant loss in their security or pri-
vacy properties. Thus, one can use existing proto-
cols that are otherwise unsuitable for low-power sen-
sor networks due to their large transmission overheads.
The techniques are: i) adaptive security, which dy-
namically changes the transmission overhead to main-
tain security while limiting overhead, ii)MAC striping,
which makes a protocol strongly resistant against se-

137

lective forgery for small-sized message authentication
codes (MACs). Adapt-lite provides strong security and
privacy when needed (e.g., when a network is under at-
tack), otherwise it uses small transmission overhead to
save energy.

2. We applied the Adapt-lite techniques to a variant of
SlyFi [2] (a state-of-the-art privacy-preserving wireless
protocol), and implemented the modified protocol on
TI’s eZ430 Chronos wireless devices. We demonstrate
experimentally that it is feasible to get strong security
and privacy guarantees on low-powered devices. Due
to space constraints, we only explain the two Adapt-
lite techniques mentioned above. For details on the
modified protocol that we implemented, we point the
reader to our technical report [3].

3. We provide a security, privacy, and energy analysis of
Adapt-lite techniques.

We briefly describe the privacy-preserving wireless proto-
cols in Section 2. We present MAC striping in Section 3,
and adaptive-security model in Section 4. Section 5 ana-
lyzes Adapt-lite, and we present an evaluation of Adapt-lite
in Section 6. In Section 7 we describe the related work.

2. PRIVACY-PRESERVING WIRELESS PRO-
TOCOLS

Due to the broadcast nature of wireless networks, there are
many ways in which a user’s private information is leaked;
for example, an adversary can infer some information about
the data being transmitted, or the device transmitting the
data, based on any identifying information in the packet
(e.g., source or destination node address), the size of the
packet, or the timing of the packet sequence. Thus, the goal
of privacy-preserving wireless protocols is to obfuscate such
information so that the adversary cannot infer any sensitive
information about the data or about the device transmit-
ting the data. There are several privacy-preserving wireless
protocols proposed in the literature [2, 11]. These protocols
provide several properties: data confidentiality (an adver-
sary should not be able to learn the contents of the under-
lying data in the packet), data authenticity (an adversary
should not be able to forge a packet without being detected),
data integrity (an adversary should not be able to modify a
packet without being detected), and unlinkability (given two
packets transmitted to/from the same node, the adversary
should not be able to link the packets with high probability).

Typically in privacy-preserving wireless protocols, a packet
consists of three parts: header, payload, and message au-
thentication code (MAC). To achieve data confidentiality
and authenticity the privacy-preserving wireless protocols
use standard encryption techniques and message authenti-
cation codes respectively, and to achieve unlinkability, these
protocols ensure that the header, the payload, and the MAC
change with each packet such that the entire packet appears
as a pseudorandom string to an adversary. The receiver,
however, is able to filter incoming packets using the packet
header. We assume that the privacy-preserving wireless pro-
tocols use strong cryptographic algorithms to compute the
MAC, and choose header non-deterministically such that the
only way for the adversary to forge the header or the MAC
is by a brute-force attack.

H(j) MPayload

h bits n bits m bits

H(j)

h bits (n+m) bits

Figure 1: Session packet format: a) Before MAC
striping, b) After MAC striping (the dashed lines
represent the m MAC bits)

The packet overhead (header and MAC) of these protocols
is usually high (e.g., SlyFi [2] overhead is 32 bytes). This
overhead is not significant in a Wi-Fi setting, where payloads
are large (e.g., 1000 bytes), but for mHealth sensing, where
the sensor data is small (1-50 bytes), 32 bytes of overhead
is significant.

In this paper we describe the Adapt-lite techniques using
the SlyFi protocol, but note that these techniques can be
applied to other protocols as well (we discuss this in more
detail in Section 6.3).

3. MAC STRIPING
Figure 1a) shows the format of a session packet in the

SlyFi protocol. The header H(j) is a function of the ses-
sion packet number j. The payload is encrypted using a
key (shared during discovery1; that is, when the two nodes
find each other and share keys to secure the communication),
and the MAC M is computed over the entire packet (i.e.,
header||payload) using another key (also shared during dis-
covery). Thus, for an adversary to forge a packet with a pay-
load of his choice (i.e., selective forgery), he requires work
proportional to 2h+m (he needs to guess the correct h-bit
header and m-bit MAC). An adversary, however, may learn
the header by intercepting and then disrupting a packet,
reducing the selective forgery work to 2m.

MAC striping changes the packet format slightly (as shown
in Figure 1b). The MAC bits are interspersed in the pay-
load at different offsets, represented by dashed lines in Fig-
ure 1b. These bit locations are different for each packet,
and are generated by a pseudorandom sequence generator
function f (we use AES):

〈x0, x1, ..., xm〉 = f(k, j, n,m), (1)

where xi (< n+m) is the offset for the ith most significant
bit of the MAC M, k is the key that was also shared during
discovery, j is the session message number, n is size of the
payload, and m is size of the MAC. Note that these offsets
are computed by the receiver and sender independently.

When a node (sender or receiver) receives a session mes-
sage with a valid header, the node computes the pseudoran-
dom sequence 〈x0, x1, . . . , xm〉, and separates the MAC bits
from the payload (to recover a packet of the format in Fig-

1Our technical report [3] contains details about the discovery
process.

138

ure 1a). Then the node proceeds with the MAC verification
to determine whether the message is authentic.

The advantage of MAC striping is that even with small
sized MAC (i.e., smallm) it provides strong resistant against
selective forgery. We explain this in detail in section 5.

4. ADAPTIVE SECURITY
In wireless protocols the receiver node uses the header to

filter incoming packets (that is, to determine whether the
incoming packet is addressed to this node), and it uses the
MAC M to verify whether the received packet is authentic.
The overhead (header and MAC) in these protocols is usu-
ally fixed, and for strong security, the protocols choose long
header and long MAC. However, a node is not always in a
hostile environment, so using large overhead all the time is
inefficient. In many mobile devices, the transmission is ex-
pensive (energy-wise), so a low-power sensor network should
have a small transmission overhead.

Adaptive security provides strong security when required
(e.g., when a network is under attack), but saves energy, at
both the sender node and the receiver node, when strong
security is not required. To achieve this, the nodes dynam-
ically change the size of the header and the MAC sent in
the packet. That is, instead of using a fixed large overhead,
the nodes use a small packet overhead that expands dynam-
ically if the node detects the presence of an adversary who
is trying to forge a packet.

4.1 Adaptive security: How to adapt
Consider a simple body area sensor network (BASN) with

a sensor node (SN), and a mobile node (MN, e.g., a smart-
phone). The MN chooses the header and MAC sizes to be
used by all the SNs in the BASN. When the MN decides
that it needs to change either the header or the MAC size
(see below for a discussion on how), it notifies the SN by
sending a reissue message. During this adaptive process,
the MN ensures that communication is not disrupted due to
inconsistency in packet overhead sizes.

The MN maintains a set σMN with pairs representing sizes
of header and MAC: one pair representing the old header
and MAC sizes (currently being used by the SN), and the
second pair representing new header and MAC sizes that
the MN wants the SN to use. When the MN receives a
message, it parses the message to get the header using the
new header size from σMN . If the message header is valid,
but the message MAC is wrong, the MN will parse the same
message with the old header size (if any) from σMN . This
ensures that the MN can receive messages sent by the SN
using either the old or new values for header and MAC sizes.
Once the MN knows that the SN has successfully adapted
to the new header and MAC sizes (i.e., when it receives a
message from SN with the new header and MAC sizes), it
removes the old pair from σMN .
Figure 2 shows how the MN and the SN adapt their header

and MAC sizes from (h0,m0) to (h1,m1). In the figure we
show a set σSN for the SN; this set will always contain one
pair of values representing the header and MAC sizes that
the SN will use to parse incoming messages, and to send
messages to the MN.. Thus, the MN will be able to receive
a message from the SN if σSN ⊆ σMN .
As shown in Figure 2, at time t0 (i.e., during discovery),

the MN shares the values (h0,m0) with the SN. Later, at
time t1, the MN wants to change the message overhead size

σMN = {(h0,m0)}

σMN = {(h1,m1),

(h0,m0)}

σSN = {(h1,m1)}

σMN = {(h1,m1)}

σSN = {(h0,m0)}
t0

t1

t2

t3

σSN = {(h0,m0)}

Figure 2: Adaptive security at work (D = data, A
= ack, R = reissue)

to (h1,m1); it adds (h1,m1) to σMN . After time t1, when
the MN receives a message from the SN (the overhead for
this message will be (h0,m0)), it receives the message (be-
cause (h0,m0) ∈ σMN), and replies back to the SN with
a reissue command message that tells the SN to start us-
ing (h1,m1). The SN, however, may not receive the re-
sponse (as shown in the figure), in which case the SN will
continue to send messages with overhead of size (h0,m0),
which is okay because the MN can receive those messages as
(h0,m0) ∈ σMN . Eventually, at time t2, the SN receives the
reissue message, and replaces (h0,m0) in σSN with (h1,m1).
At time t3, when the MN receives a message from SN, it
knows that the SN has updated its σSN , and so the MN will
remove the old values (h0,m0) from the σMN . In a BASN
with more than one SN, the set σMN may contain more than
two elements, depending on how quickly SNs adapt.

4.2 Adaptive security: When to adapt
The MN decides when the BASN must adapt to new

header and MAC sizes; the decision on when to adapt can
be based on many factors, such as application requirements,
desired security against forgery, and network bandwidth op-
timization. An in-depth analysis of these factors is outside
the scope of this paper, but we suggest below an example,
and use it in our experiment.

The MN uses the header to filter incoming messages. When
the header of the incoming message is valid, the MN does
MAC verification to determine whether the message is au-
thentic. If the MAC verification fails, it implies that the
incoming message was from the SN but got corrupted in
transit, or that the message is of a neighboring BASN that
happened to use a header considered valid by the MN, or
that the message is a forgery attempt. It is hard for the
MN to distinguish between the latter two cases. We take a
cautious approach, and consider a failed MAC verification
to be a forgery attempt.

In adaptive security MN dynamically changes the header
and MAC sizes (to save energy) while maintaining a certain
level of security. We can define this certain level of security
as: the probability that an adversary will successfully forge
a message should always be less than β, where β is chosen
by the application/patient.

Let T be a time period and ρ be the probability of success-
ful forgery during that time period T . The SN’s lifespan can

139

be considered as a series of time periods. Thus, to maintain
the security guarantee we get the condition:

β ≥ 1− (1− ρ)a (2)

where a is the number of time periods in the lifespan of the
node; that is, lifespan of the sensor =

∑a
i=1 Ti.

For a given T and ρ, the adaptive security model main-
tains the successful forgery probability for this period less
than ρ irrespective of the number of forgery attempts by the
adversary.

The MN tracks the number of failed MAC verifications,
and conservatively considers each failed MAC verification
as a forgery attempt by an adversary. Thus, the probability
of a successful forgery when the adversary attempts once
is 2−m, where m is the MAC size, and the probability of
successful forgery in x forgery attempts is

P = 1− (
1− 2−m)x

(3)

We want this probability to be less than ρ. Thus, solving
ρ ≥ P for x we get

x ≤ log (1− ρ)

log (1− 2−m)
(4)

Whenever the number of failed MAC verifications exceeds
log (1−ρ)

log (1−2−m)
, the MN will first increase the header size, and

then the MAC size. Increasing the header size will reduce
the rate of failed MAC verifications if the source of those
failed MAC verifications was the neighbouring BASN traffic
or an adversary trying to randomly guess the packet. How-
ever, against a clever adversary that intercepts messages to
learn valid headers from packets sent by the SN, increasing
the header size will not help. So against such an adversary
the MN increases the MAC size m (by observing the number
of transmission attempts and number of failed MAC verifi-
cations, the MN can guess if the failed MAC verification
was due to random/exhaustive header guessing or if the ad-
versary knows the header). Once x exceeds the threshold
(Equation 4), the MN does not accept any messages, but if
the message is valid, the MN sends a reissue command to
indicate the change in header/MAC size.

The MN falls back to smaller header and MAC sizes after
the time period T expires. The MN can choose to keep T
and ρ constant, but it can optimize by initially choosing ρ
value close to β and then varying ρ and T for future time
periods, to maintain the condition in Equation 2 throughout
the lifespan of the sensor.

5. SECURITY AND PRIVACY ANALYSIS
SlyFi provides three security and privacy properties: un-

linkability, data confidentiality, and data authentication. We
explain how Adapt-lite preserves these properties.

Unlinkability.
SlyFi prevents the adversary from linking packets by mak-

ing each packet seem random to the adversary. It does so
by encrypting the entire packet (i.e., header and payload)
using AES. Thus, the header, the payload, and the MAC
of each session packet is different, and it appears random
to an adversary. Adapt-lite truncates the header and the
MAC. Since the original header and MAC were pseudo-
random strings generated using AES encryption, their trun-
cated strings will also be pseudo-random strings. Therefore,

the adversary cannot link session messages to each other in
Adapt-lite. Thus, Adapt-lite preserves unlinkability.

Data confidentiality.
SlyFi achieves data confidentiality by using AES (a stan-

dard stream cipher) to encrypt the payload. To avoid the
adversary identifying two packets having the same payload,
it generates different ciphertexts even for the same payload
by adding randomness to the encryption: the sequence num-
ber changes for each packet, and is used in encrypting both,
the header and the payload. Adapt-lite does not modify
payload. It truncates the header and the MAC, which are
not related to the payload. Thus, Adapt-lite preserves the
data confidentiality of the payload.

Data integrity and authenticity.
SlyFi achieves data integrity and authentication by using a

message authentication code (MAC). The adversary may at-
tempt to alter the packet content or construct a new packet
without being detected; such an attack is called forgery at-
tack . We consider two types of forgery attacks: selective
forgery (when the adversary tries to forge a packet with a
payload of his choice), and existential forgery (when the ad-
versary tries to forge a packet with any payload).

Selective forgery: In selective forgery the adversary
chooses a payload, which is a ciphertext, and tries to find the
corresponding MAC.2 Since the adversary does not know
the MAC key (shared during discovery), the adversary picks
a random MAC out of {0, 1}m, where m is the length of the
MAC. To successfully forge a packet the adversary needs
to get the right header and right MAC for a given payload.
We, however, assume that the adversary can obtain the right
header (by intercepting packets). So for a successful selec-
tive forgery the adversary only needs to guess the right MAC
for a payload of his choice.

Without MAC striping (Figure 1a), the probability that
the attacker succeeds with one random guess is 2−m. With
MAC striping, the MAC bits are interspersed with the pay-
load bits at locations determined by Equation 1. Without
knowing the key k and the message number j, it is com-
putationally hard for the adversary to determine which bits
among the (n+m) bits are the MAC bits, where n is the size
of the payload. For example, when the payload is 10 bytes
long and the MAC is 2 bytes long (i.e., n = 80,m = 16),
the success probability of selective forgery without MAC
striping is 2−16, and with MAC striping it becomes approxi-
mately 2−75 (since

(
96
16

) ≈ 259). Therefore, the MAC striping
technique drastically decreases the success probability of se-
lective forgery (from 2−16 to 2−75 in the example) without
increasing the MAC size.

Existential forgery: In existential forgery the adversary
tries to find any matching payload-MAC pair that the MN
would accept; the adversary has no control over the pay-
load content. Without knowing the MAC key, the adver-
sary can only guess, choosing a (n+m)-bits long string (i.e.,
payload||MAC) out of {0, 1}n+m. Out of 2n+m possible
such strings, only 2n payloads exist, thus the success proba-

2For the adversary to inject sensor data chosen by itself, the
adversary needs to compute the corresponding ciphertext,
which is difficult because it requires the knowledge of the
encryption key. As a selective forgery attack, however, it
suffices to make the MN accept the ciphertext chosen by the
adversary.

140

bility of such a random guess is 2−m. This probability is the
same with and without MAC-striping if the guess is made
uniformly at random. However, the user can choose the
probability of success for a forgery attack, and the adaptive
security model will ensure that the probability of a successful
forgery is always less than that, as shown in Section 4.2.

Remarks on MAC striping: The adversary cannot eas-
ily locate MAC bits in a message because there are

(
n+m
m

)

possible MAC-bit locations and these locations change with
every message in a random pattern protected by key k.

6. EVALUATION
To evaluate the efficacy of Adapt-lite, we applied Adapt-

lite to a variant of SlyFi and implemented the modified pro-
tocol on the eZ430 Chronos wireless wrist device [1] from
Texas Instruments (henceforth, for brevity, we will refer to
this modified protocol as Adapt-lite). The Chronos wrist
device integrates a 16-bit ultra low-power MCU (MSP430),
a CC1101 wireless transceiver, 32KB flash and 4KB RAM
into a single chip. The platform also features in-hardware
AES-128 encryption. The device includes three integrated
sensors (3-axis accelerometer, pressure, and temperature),
that we use as a proxy for mHealth sensors in our experi-
ments.

Using this hardware setup, our experiments focus first on
measuring Adapt-lite’s ability to respond to an attack, and
second on the impact that using Adapt-lite has on the energy
consumption of the system.

6.1 Adaptive security
In our first experiment we use three Chronos watches,

acting as an SN, an MN and an adversary. We use a watch
for the MN, instead of a phone, because the Chronos allows
us to implement a protocol at the link layer. The MN and SN
use Adapt-lite, and the adversary tries to forge a message.
The goal of the experiment is to observe how the MN adapts
to forgery attempts, and how the SN and MN coordinate the
change in the number of security bits used.

Experiment setup: The SN imitates a temperature sen-
sor that sends a reading every 15 seconds; the sensor pay-
load is 6 bytes. We assume a strong attacker, who knows
the valid headers, and only needs to guess the MAC bits in
order to forge a packet. The adversary attempts to forge
messages for 10 minutes at a rate of 100 forgery attempts
per second (this rate saturates the wireless channel), after
which communication returns to normal.

Figure 3 shows the result of this experiment. The number
of security bits used is shown over time for the MN, then SN,
and SPINS [5]. SPINS is a security protocol for low-power
wireless sensor networks, and we use it as one benchmark
for comparison. SPINS uses a 64-bit MAC as protection
against message forgery. When not under attack, Adapt-
lite achieved much lower overhead than SPINS. During the
attack, Adapt-lite increased its overhead; however, the over-
head never needed to be raised to SPINS’s level, because the
attack did not last for very long.

During the experiment, both the MN and SN start using
a 2-byte header and 3-byte MAC (total overhead= 40 bits).
The MN chooses β = 2−24, ρ = 2−16 and T = 30 min.
Beginning at time t = 60 sec the attacker transmits packets
with random payload-MAC bits but using a valid header.
Such a strong attacker only has to transmit 256 messages to
force the MN to increase its MAC size m (see Equation 4).

0 500 1000 1500 2000

0
20

40
60

80

Time (s)

S
ec

u
ri

ty
 B

it
s

Attack

MN
SN
SPINS

Figure 3: MN and SN adapting in response to an
attack.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Work done by an adversary (lg scale, number of attempts = 2x)

B
it−

le
ve

l s
ec

ur
ity

 o
f p

ro
to

co
l

SlyFi (256−bit)
SPINS (64−bit)
Adaptlite

Figure 4: Adaptive security against forgery attack

After the MN increases m to 32 bits, the attacker must send
216 messages before m increases again, but the attack ended
before that. After the attack ended, the MN and SN both
return to their previous security level after the time period
T .

In this experiment, the attack was limited to 10 minutes.
Figure 4 shows how Adapt-lite would adapt in the presence
of a persistent attack. In this unlikely case, the MN will con-
tinue to increase the overhead size (i.e., header+MAC sizes)
in response to an increasing number of forgery attempts (log-
scale x-axis). The y-axis represents the overhead size (i.e.,
security bits) used by the protocol. In the plot, initial over-
head size is set 48 bits, and ρ is set to 2−16. The plot also
compares Adapt-lite’s overhead to that of the SlyFi (256-bit)
and SPINS (64-bit) protocols.

6.2 Energy analysis
In our second experiment, we measured the energy re-

quired to run a SlyFi-like privacy-preserving wireless proto-
col, SPINS, and Adapt-lite. We simulated the traffic pro-
duced by a six-electrode ECG sensor, which sends 10-byte
packets (a timestamp and 1 byte per electrode) at a rate of

141

Table 1: Comparing energy cost of three protocols
SlyFi SPINS Adapt-lite

Overhead 256-bit 64-bit variable
Security & Privacy1 Yes No Yes
Avg. power (mW) 27.60 14.74 13.11
Battery life (hr) 25.49 47.74 53.68

1That is, whether the protocol achieves the security and privacy

goals described in Section 5.

50 Hz. We measured the energy consumed using a Monsoon
power monitor [4]. Table 1 presents the comparison of the
three protocols.

Since communication cost dominated the energy consump-
tion, among the three protocols, Adapt-lite had the least
overhead and hence it consumed less power and had greater
battery life — twice more than SlyFi and 12% more than
SPINS.

6.3 Limitation
Adapt-lite techniques cannot be applied to every proto-

col. These techniques can be applied to the protocols where
only the receiver and sender share the knowledge of a unique
value associated with each packet, and this unique value
should not be transmitted in the packet. This is true for
most privacy-preserving wireless protocols. For example,
in SlyFi the header is a function of packet number, and
both the sender and receiver can compute it independently,
and only the sender and receiver know the packet num-
ber; note that the packet number is not the same as the
sequential number of the packet as seen on the medium.
Thus, Adapt-lite techniques can be applied easily applied to
privacy-preserving wireless protocols.

7. RELATED WORK
Adapt-lite presents two techniques: MAC striping, and

adaptive-security. There are models related to our adaptive-
security model in the literature but to the best of our knowl-
edge, this paper is the first to suggest the MAC striping
technique. Compared to our adaptive-security model, the
models in the literature differ in how the protocols adapt
and under what conditions they adapt.

Prasad et al. [7] suggest using three modes of security:
low-level, medium-level, and high-level security; the differ-
ent levels of security use different cipher algorithms. Por-
tilla et al. [6] propose changing ECC parameters to provide
different levels of security depending on the energy budget
of the node. Both of these papers adapt cryptographic prim-
itives (encryption or MAC algorithms) rather than reducing
network overhead, which (as in Adapt-lite) would provide
more energy savings then the proposed computational adap-
tation.

The hybrid security model proposed by Shon et al. [10]
is the closest work to our adaptive security model. In their
adaptive scheme they propose using MAC of different sizes
to provide different levels of security, which they choose ac-
cording to the network characteristics (public, commercial,
or private) and the data characteristics (application data
or control data). Classifying data sensitivity and determin-
ing which level of security would be reasonable for a given
data type, while reducing energy used, can be tricky. For
mHealth sensing, where the medical data is considered sen-

sitive, their approach would always choose the highest-level
security, which would be energy inefficient. Our Adapt-lite
model, however, adapts the security level dynamically in re-
sponse to an attack by an adversary, and in absence of an
adversary it adapts to reduce the overhead.

8. CONCLUSION
We propose Adapt-lite, a suite of techniques that can

be applied to existing privacy-preserving wireless protocols
to make them efficient by reducing transmission overhead.
Adapt-lite consists of two techniques: MAC striping, and
adaptive security. Through experiments, we demonstrate
that it is feasible to implement and use Adapt-lite on low-
power devices. In fact, as shown in our experiments, using
Adapt-lite makes existing privacy-preserving wireless proto-
cols energy-efficient and hence suitable for low-power sen-
sors. We also show that the Adapt-lite techniques preserves
the security and privacy properties of these protocols.

9. REFERENCES
[1] TI eZ430 Chronos.

http://processors.wiki.ti.com/index.php/EZ430-Chronos.

[2] B. Greenstein, D. McCoy, J. Pang, T. Kohno, S. Seshan, and
D. Wetherall. Improving wireless privacy with an identifier-free
link layer protocol. In Proceedings of the International
Conference on Mobile Systems, Applications, and Services
(MobiSys), pages 40–53. ACM, June 2008. DOI
10.1145/1378600.1378607.

[3] S. Mare, M. Shin, J. Sorber, C. Cornelius, and D. Kotz.
Hide-n-sense: Privacy-aware secure mHealth sensing. Technical
Report TR2011-702, Dartmouth College, 2011. Online at
http://www.cs.dartmouth.edu/reports/abstracts/TR2011-702.

[4] Monsoon power monitor.
http://www.msoon.com/LabEquipment/PowerMonitor/.

[5] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler.
SPINS: security protocols for sensor networks. Wireless
Networks, 8(5):521–534, Sept. 2002. DOI
10.1023/A:1016598314198.

[6] J. Portilla, A. Otero, E. de la Torre, T. Riesgo, O. Stecklina,
S. Peter, and P. Langendörfer. Adaptable security in wireless
sensor networks by using reconfigurable ECC hardware
coprocessors. International Journal of Distributed Sensor
Networks, 2010. DOI 10.1155/2010/740823.

[7] N. R. Prasad and M. Alam. Security framework for wireless
sensor networks. Wireless Personal Communications,
37:455–469, 2006. DOI 10.1007/s11277-006-9044-7.

[8] M. Salajegheh, A. Molina, and K. Fu. Privacy of home
telemedicine: Encryption is not enough. Journal of Medical
Devices, 3(2), Apr. 2009. Online at http://www.cs.umass.edu/
˜kevinfu/papers/salajegheh-DMD09-abstract.pdf.

[9] L. A. Saxon, D. L. Hayes, F. R. Gilliam, P. A. Heidenreich,
J. Day, M. Seth, T. E. Meyer, P. W. Jones, and J. P. Boehmer.
Long-term outcome after ICD and CRT implantation and
influence of remote device follow-up: The ALTITUDE survival
study. Circulation, 122(23):2359–2367, Dec. 2010. DOI
10.1161/CIRCULATIONAHA.110.960633.

[10] T. Shon, B. Koo, H. Choi, and Y. Park. Security architecture
for IEEE 802.15.4-based wireless sensor network. In
Proceedings of the International Symposium on Wireless
Pervasive Computing (ISWPC), pages 1–5, Feb. 2009. DOI
10.1109/ISWPC.2009.4800607.

[11] D. Singelée and B. Preneel. Location privacy in wireless
personal area networks. In Proceedings of the ACM Workshop
on Wireless Security (WiSe), pages 11–18. ACM, 2006. DOI
10.1145/1161289.1161292.

[12] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M.
Masson. Uncovering spoken phrases in encrypted voice over IP
conversations. ACM Transactions on Information and System
Security (TISSEC), 13(4):35:1–35:30, Dec. 2010. DOI
10.1145/1880022.1880029.

142

