
Secure Context-sensitive Authorization

Kazuhiro Minami and David Kotz

Department of Computer Science, Dartmouth College

Hanover, NH, USA 03755

{minami, dfk}@cs.dartmouth.edu

Abstract

There is a recent trend toward rule-based authorization systems to achieve flexible security policies. Also, new sens-
ing technologies in pervasive computing make it possible to define context-sensitive rules, such as “allow database
access only to staff who are currently located in the main office.” However, these rules, or the facts that are needed
to verify authority, often involve sensitive context information. This paper presents a secure context-sensitive autho-
rization system that protects confidential information in facts or rules. Furthermore, our system allows multiple hosts
in a distributed environment to perform the evaluation of an authorization query in a collaborative way; we do not
need a universally trusted central host that maintains all the context information. The core of our approach is to
decompose a proof for making an authorization decision into a set of sub-proofs produced on multiple different hosts,
while preserving the integrity and confidentiality policies of the mutually untrusted principals operating these hosts.
We prove the correctness of our algorithm.

1 Introduction

Pervasive computing leads to an increased integration between the real world and the computational world. Many
such applications adapt to the user’s context, that is, the user’s situation and environment. We consider a class of
applications that wish to consider a user’s context when deciding whether to authorize a user’s access to important
physical or information resources. Such a context-sensitive authorization scheme is necessary when a mobile user
moves across multiple administrative domains where they are not registered in advance. Also, users interacting with
their environment need a non-intrusive way to access resources, and clues about their context may be useful input into
authorization policies for these resources.

There are several rule-based authorization systems [3, 4, 9, 18] that allow a resource owner or a manager to define
authorization rules that refer to the context of the requester. These existing context-sensitive authorization systems
have a central server that collects context information, and evaluates policies to make authorization decisions on
behalf of a resource owner. A centralized solution assumes that all resource owners trust the server to make correct
decisions, and all users trust the server not to disclose private context information. In many realistic applications
of pervasive computing, however, the resources, users, and sources of context information are inherently distributed
among many organizations that do not necessarily trust each other. Resource owners may not trust the integrity of
context information produced by another domain, and context sensors may not trust others with the confidentiality
of data they provide about users. An authorization rule that refers to user location, for example, may raise concerns
about location privacy [5, 10, 11, 18], because the information might allow others to infer their activities (e.g., a
secret business meeting). A policy that depends on the medical condition of patients must respect HIPAA rules about
the confidentiality of medical records [1]. To the best of our knowledge, no previous work addresses the issue of
information confidentiality in authorization rules.

This paper is a near-final pre-publication version of an article that will appear in the journal “Pervasive and Mobile Computing (PMC)”
published by Elsevier. The final published version as it appears in the journal (PDF and HTML) will be available only on an Elsevier site. A much
shorter version of the paper will appear at PerCom, March 8–12, 2005.

1

David Kotz
THIS COPY IS THE AUTHORS' PRE-PUBLICATION VERSION; it may differ slightly from the official published version.
See: Journal of Pervasive and Mobile Computing, March 2005.
doi:10.1016/j.pmcj.2005.01.004. ©Copyright Elsevier. �

Sub−proof
 tree

Sub−proof
 tree Sub−proof

 tree

(b) Decentralized multiple authorization servers(a) Centralized authorization server

Proof tree

Host A Host B

Host C

Host A

Query

Query

Sub−query Sub−query

Figure 1. Decentralized evaluation of an authorization query. The proof of a query is de-
composed into sub-proofs and produced on distributed multiple hosts. On the left, Host A
generates a whole proof on a centralized server. On the right, Host A, B, and C produce only a
subtree of the proof.

We propose a secure, distributed, context-sensitive rule-based authorization system. When a client requests access
to a resource, the resource owner constructs a logical statement (query) that, if proven TRUE, indicates that access
may be granted; otherwise access is denied. Although the resource’s host has a knowledge base containing rules
that represent authorization policies and facts about the users, it may not have all of the necessary information and
thus collaborates with other hosts to attempt to construct a proof for the query. Thus, rather than depending on a
central trusted server (Figure1a), we decompose a proof into sub-proofs produced by multiple hosts (Figure1b).
This collaboration is only possible if the querier can trust the integrity of other hosts (to provide correct facts and to
properly evaluate rules) and if the other hosts can trust the querier with confidential facts. We assume that these trust
relationships are defined byprincipals, each of which represents a specific user or organization, and that each host is
associated with one principal (e.g., the owner of a PDA, or the manager of a server).

Our approach provides several benefits:

Confidentiality: Information used for making an authorization decision is protected according to access-control poli-
cies defined by the owner of that information.

Integrity: Proofs are evaluated by principals (hosts) that are trusted by the queriers.

Scalability: By distributing the knowledge base and proof construction we off-load work from a resource that may
have limited processing or communication capability.

In the following sections, we introduce our authorization rule language and how this language can define integrity
and confidentiality policies. Section4 describes our authorization system for the simpler case, where policies apply
only to facts. We describe the architecture of our system and introduce the concept of distributed processing for an
authorization query. We next describe our enforcement mechanism for confidentiality policies and give some key
algorithms for handling queries in a distributed way. We give an example application at the end of the section. In
Section5, we describe the general case that supports policies on rules as well, following the structure of the preceding
section. We describe the representation of a proof and the algorithm that can verify the integrity of the proof. Section6
proves that our algorithm ensures the integrity and confidentiality policies of the principals constructing an arbitrary
proof tree. We discuss related work in Section7. Section8 covers some design issues and security properties in our
system, and Section9 concludes.

2

2 Background

In this section, we describe our language for defining authorization policies and introduce the concept of a proof
tree, which is constructed when evaluating an authorization query.

2.1 Authorization rule language

In rule-based authorization systems, authorization policies are represented as logical expressions. We express
access-control policies with Horn clauses since they are expressive enough to support the rules in existing rule-based
authorization systems [3, 4, 9]. We do not use a general first-order logic, which is not decidable in general. The syntax
of a Horn clause isb ← a1 ∧ a2 . . . ∧ an , which says that simple statements calledatomsa1 throughan, if all true,
imply b. The atomb is called theheadof the clause, and the atomsa1, . . . , an the bodyof the clause. An atom is
usually used to state a fact. An atom is formed from a predicate symbol followed by a parenthesized list of variables
and constants. We can express the fact “Bob is in Hanover” aslocation(Bob,Hanover), for example.

Example authorization rules. The teams responding to a large-scale disaster are coordinated by experts drawn
from multiple disciplines (fire, police, medical) and often multiple jurisdictions (city, state, federal). Increasingly, in-
cident commanders use software to assist with incident management and situational awareness. The National Incident
Management System [13] defines clear roles for the many participants in a large-scale response, so role-based access
control (RBAC) [19] is a natural basis for protecting resources in an incident management system (IMS). Such an IMS
needs to dynamically link people, resources, and information from multiple domains, providing information to those
who need it in a time of crisis.

Suppose that an incident occurs in an airport. There is a surveillance camera image server managed by the airport,
and the chief of operations (bob) wishes to use the camera images to improve his awareness of the situation. Figure2
shows a set of rules that define the airport’s policy to grant access to the camera resource, which allows the local police
chief access to the images whenever he is in the airport, as determined by either his Wi-Fi network connection or by
the GPS tracking device in his radio. Rule 1 says that principalP must hold the roleoperationchief to be granted,
and rule 2 defines the two conditions to hold that role. The first condition specifies the prerequisite rolepolice chief
in a police department, and the second requires principalP to be in the airport. Rules 3–5 specify how we derive the
location of principalP from the raw location information of a device.

2.2 Proof tree

To make an authorization decision, we must check whether a proof tree for query?grant(P) can be constructed
with a given set of rules and facts. The proof tree consists of nodes that represent rules (or facts) and edges that
represent the unification that replaces an atom in the body of a rule in a parent node with the atoms in the body of a
rule or a fact in a child node. Every leaf node contains a fact that has no atom in its body.

Given the facts listed in Figure2, we can construct the proof tree shown in Figure3 by unifying the query with the
first four rules, substituting variables as needed. We return to this example in Sections4.6and5.6 to explain how we
construct this proof in a distributed fashion.

3 Security policies

Each principal definesconfidentiality policiesto protect information in its knowledge base. It also definesintegrity
policiesto specify whether it believes that evaluation results or rules received from other principals are correct.

3.1 Rule patterns

We first introduce the notion ofrule patterns, which are mechanisms for expressing these security policies in
our security model. A rule pattern is just a regular Horn clause to be unified with a rule or a fact in the knowl-
edge base. We use a rule pattern to specify to which rules and facts a given policy is applied, because it is
infeasible to specify a policy on each instance of a rule or a fact. A rule pattern is associated with a set of
rules or facts that match it throughunification, a pattern-matching process that makes a rule pattern and an actual

3

Rules:

grant(P) ← role(P, operationchief) (1)

role(P, operationchief) ← roleIn(P, police chief, police dept) ∧ location(P, airport) (2)

location(P,L) ← owner(P,D) ∧ location(D,L) (3)

location(D,L) ← wifi(D,A) ∧ in(A,L) (4)

location(D,L) ← gps(D,X, Y) ∧ closeTo(X, Y, L) (5)

Facts:

roleIn(bob, police chief, police dept). Bob is chief of the local police department. (6)

owner(bob, pda15) Bob owns device pda15 (7)

wifi(pda15, ap39). pda15 is associated with access point ap39. (8)

in(ap39, airport). Access point ap39 is at the airport. (9)

Figure 2. Sample set of rules. We use uppercase for variables and lowercase for constants
and names.

PSfrag replacements

?grant(bob)

grant(bob)← role(bob, operation chief)

role(bob, operation chief)← roleIn(bob, police chief, police dept) ∧ location(bob, airport)

location(bob, airport)← owner(bob, pda15) ∧ location(pda15, airport)

location(pda15, airport)← wifi(pda15, ap39) ∧ in(ap39, airport)

location(D,L)← gps(D,X, Y) ∧ closeTo(X,Y, L)

roleIn(bob, police chief, police dept)

owner(bob, pda15)

wifi(pda15, ap39) in(ap39, airport)

Figure 3. Example proof tree based on the rules in Figure 2.

4

rule in the knowledge base identical by instantiating variables in the rule pattern. For example, the rule pattern
location(bob,X) is matched with the factlocation(bob, hanover) in the knowledge base, because the variableX
can be instantiated tohanover. It does not match with the factlocation(alice, hanover), however. The rule pattern
role(X, Y) ← occupation(X, Y) ∧ location(X, hospital) can be matched with the rulerole(P, physician) ←
occupation(P, physician) ∧ location(P, hospital) by instantiatingX to P andY to physician.

A principal may define as many security policies as it sees fit to define. Each security policy(rp, t) is represented
as a rule patternrp and a set of trusted principalst.

3.2 Integrity policies

Integrity policies express trust in the correctness of rules and facts. Our definition is based on the information flow
theory [6] whose focus is confidence on the accuracy of information rather than alternation of information. When
a principalpi defines the integrity policy(rp, t) it means thatpi trusts those principals int, which we often denote
trusti(rp), to be correct in whatever rules or facts match patternrp. We use subscripti in the trust policy to denote
which principal defines the policy.

The integrity of a fact means that the boolean value representing a fact is correct. For example, if principalp0

includes principalp1 in its trust0(loc(P,X)), then principalp0 believes thatp1’s evaluation (true or false) of a location
query of the form?loc(P,X) (e.g.,?loc(bob, hanover)) is correct. On the other hand, the integrity of a rule means
that the rule itself is able to correctly derive a new fact. For example, if principalp0 includes principalp1 in its rule
patterntrust0(loc(P,X)←WiFi(P, Y)∧in(Y,X)), thenp0 believes thatp1’s rule loc(bob,X)←WiFi(bob, Y)∧
in(Y,X) is a correct rule to resolve the query of the form?loc(bob, hanover). In other words, principalp0 believes
that the queryloc(bob, hanover) is replaced with two sub-queries?WiFi(bob, Y) and?in(Y, hanover). Principalp0

can verify that principalp1 applied the rule correctly to derive the conclusion by checking the proof as we describe in
Section5.1.

Notice that trust on a fact is a stronger notion than trust on a rule. Trust on a fact implicitly trusts the rules used to
derive that fact. For example, the trust on the rule patternloc(X, Y) implicitly indicates trust of any rule whose head
can be unified withloc(X, Y).

3.3 Confidentiality policies

Confidentiality policies protect facts and rules in a principal’s knowledge base. A fact must be protected if it
contains confidential information. A rule must be protected if confidential information may be inferred from reading
the rule. For example, the rulegrant(P) ← loc(bob, sudikoff) says that any principalP is granted access whenbob
is at the location ofsudikoff building. If a request is granted, the requester may infer that bob is at Sudikoff, which
might not be public knowledge.

When a principalpi defines the confidentiality policy(rp, t), it means thatpi trusts those principals int, which we
often refer to as the access control listacli(rp), with facts or rules matching rule patternrp. Principalp0 only responds
to a queryq from principalp1 if there exists a rule patternrp that can be unified with the queryq and principalp1

belongs toacl0(rp). For example, suppose that principalp0 defines the policyacl0(location(bob, L)) = {p1, p2};
principalp0 responds to a query?location(bob, hanover) from principalp1, because rule patternlocation(bob, L)
matches withlocation(bob, hanover).

3.4 Assumptions

In this paper we make a few assumptions to maintain our focus on the confidentiality and integrity issues in dis-
tributed context-sensitive authorization systems. First, the integrity and confidentiality policies of each principal are
public knowledge. Second, a public-key infrastructure is available and every principal can obtain the public key of
other participants, so that they can establish secure channels with a session key and verify the authenticity of messages
with digital signatures. Third, we assume that there is a directory service that knows which principal handles what
types of queries.

For purposes of simplifying our explanation, we consider the basic case that supports security policies only on facts
first in Section4, and then the general case that supports security policies on facts and rules in Section5.

5

Host

Host

Host

Host

Host

Host

Authorization
Query

Query
Logical

ServiceUser
Request

Figure 4. Architectural overview. The hosts enclosed in the dotted lines make an authorization
decision in a collaborative way.

4 Authorization for the basic case

In this section, we describe our authorization system for the basic case that supports security policies only on facts.

4.1 Architecture

With no central server to make authorization decisions, we use multiple hosts that are administered by different
principals. Without loss of generality, we assume that each hosti is administered by a different principalpi, although
in many realistic environments there may be principals that own or manage many hosts. Each host stores a local
copy of its principal’s integrity and confidentiality policies. Each host provides an interface for handling queries from
remote hosts, and may ask other hosts to resolve any subqueries necessary. In Figure4, a user sends a request to the
server that provides some service, and the server issues an authorization query to a host it chooses in order to make a
granting decision.

The structure of a host is shown in Figure5. The query handler handles queries from other hosts and enforces the
local confidentiality policies. The inference engine constructs a proof tree for a given query based on the rules and facts
in the local knowledge base. If some query cannot be evaluated locally, the inference engine issues a remote query to
another host through the query issuer. The query issuer refers to its local integrity policies to choose a principal whose
evaluation of the query is trusted; the integrity policies serve as a directory service to choose a principal to which it
sends a query. The query issuer receives a response and checks its integrity based on the integrity policies. The event
handler converts events that contain new context information into corresponding facts and updates the knowledge base;
these events may be delivered by a context-dissemination service such as Solar [7].

4.2 Proof object

The response to a query is aproof object represented as(pr, n, (value)Kr), wherepr is a receiver principal. The
proof object contains a noncen that is attached with the query to prevent replay attacks by an adversary that is capable
of intercepting the encrypted messages between principals. We omit the field of a noncen in the proof object for
brevity in the following discussion. Thevalue is a query result, which is a boolean value (TRUE or FALSE), a
conjunction of boolean values, or the valueREJECT. The valueREJECTis used when a given query is not handled
because the querier principal does not satisfy the handler principal’s confidentiality policies. Otherwise, the handler
principal constructs a proof tree locally, then includes the query’s result (TRUEor FALSE) in the proof object. (We
name the returned object aproof objectbecause, in the general case in Section5, it contains a proof tree that shows
how the query result is derived.) The receiver principalpr might not be the principal that issues queryq (we explain

6

policies
Confidentiality

policies
Integrity

Event handler

Query
handler

Query
issuer

add/delete facts

Context events

Knowledge base

Inference engine
Query

Proof treeProof tree

Query

Figure 5. Structure of a host.

why, below), and, therefore, the name of the receiver principal needs to be included in the proof object, so that the
receiver principal can decrypt an encrypted value. The value must be encrypted with receiver principalpr ’s public key
Kr to enforce the confidentiality policies of the publisher principal. The public key encryption is performed to prevent
intermediate principals from reading the value. Furthermore, the whole proof object is transmitted via a secure channel
established with a session key between a querier and a handler principal to prevent an eavesdropper from reading the
content of the proof object. The digital signature of a proof signed by a handler principal ensuresnonreputabilityof
the handler; that is, the handler principal is not able to falsely deny later that it sent the proof.

A principalp0 that handles queryq0 might issue subqueries to other principals, and the returned proofs from those
principals might contain encrypted query results that principalp0 cannot decrypt. Therefore, the queryq0’s result
depends on the encrypted values in the proofs for the subqueries thatp0 issues, and principalp0 returns a proof for
queryq0 that contains the query results for the subqueries as follows. Suppose that principalp0 issues subqueriesqi

for i = 0, . . . , n−1, and receives severalpfi = (pr(i), (valuei)Kr(i)) wherepr(i) is the receiver principal of the proof,
valuei is the queryqi’s result, andKr(i) is principalpr(i)’s public key. The queryq0’s result isTRUEonly if p0 can
verify thatvaluei is TRUEfor all i in the proof. If anypfr(i) (for whichr(i) = 0) is FALSE, p0 returns a simple proof
(pr, (FALSE)Kr

). Otherwise, if there are some subproofs thatp0 cannot decrypt (becauser(i) 6= 0), then principalp0

returns the proof(pr, (Πi(pr(i), (valuei)Kr(i)))Kr
) for all r(i) 6= 0, as a response to queryq0. The proof contains the

concatenated subproofs encrypted with public keyKr. The query result of the proof isTRUEif the conjunction of all
thevaluei (i.e.,∧i(valuei)) is TRUE.

4.3 Decomposition of a proof tree

When a querier issues a query to a principal that the querier trusts with the integrity of evaluating the query, the
principal that handles the query only returns a proof that contains the query’s result (TRUE, FALSE, or REJECT),
and the proof tree that derives the query’s result does not have to be disclosed to the querier. If multiple principals
are involved in processing a query, no single principal obtains all the rules and facts in the proof tree of the original
query. Instead, the proof tree for the query is decomposed into multiplesubtreesevaluated by different principals in
a distributed environment. In other words, there is no single principal that maintains a whole proof; instead, each
principal maintains a subproof of the whole proof.

Figure6 shows that the proof tree for queryq0 is constructed by principalp0, p1, andp2 in a distributed way.
Principalp0 receives queryq0 and issues subqueryq1 to principalp1 to construct a proof treeT0, and principalp1

similarly issues queryq2 to principalp2 to construct a proof treeT1. The facts or rules in the proof treesT0, T1, and
T2 are not disclosed to other principals; the result of evaluating each proof tree is returned to the querier as a boolean
value or conjunction of encrypted boolean values.

7

Proof tree

Proof tree

Proof tree

PSfrag replacements

Principal p0

p1

p2

Node n0

n1

Query q0

q1

q2

T0

T1

T2

Figure 6. Decomposed proof tree. Principals p0,p1,and p2 construct a proof tree for query q0

in a distributed way. Nodes n0 and n1 are leaf nodes of proof trees T0 and T1 respectively.
Principal p0 that handles query q0 issues query q1 to principal p1 to obtain the fact in node n0,
and principal p1 similarly issues query q2 to principal p2.

Example. Figure 7 shows the proofs in the evaluation of the query?grant(bob), involving p1, p2 and p3.
The query ?grant(bob) from principal p0 to p1 is decomposed into two sub-queries?role(bob, doctor) and
?location(bob, hospital) according to the rulerule1 ≡ grant(X)← role(X, doctor)∧ location(X, hospital), and
those subqueries are handled by principalp2 andp3 respectively. Principalp2 has the matching factrole(bob, doctor)
in its knowledge base and returns the proof(p1, TRUE) to principal p1. Principal p3 also returns the proof
(p1, TRUE). Principalp1 trusts the integrity of the proofs fromp2 andp3 according to its integrity policies, and
internally constructs the proof tree that contains the rulerule1 as a root node and the factsrole(bob, doctor) and
location(bob, hospital) as its children nodes. Principalp1 concludes that the statementgrant(bob) is trueand returns
the proof(p0, TRUE).

4.4 Enforcement of confidentiality policies

The enforcement of each principal’s confidentiality policies is different from that in many existing authorization
systems, which check the privileges of a requester principal before divulging information directly to the requester. In
our system, a principal that publishes a proof chooses the receiver of the proof from a list of upstream principals in the
whole proof tree. The principal may make that choice because its confidentiality policy does not allow it to divulge the
information to the querier, but may allow the information to be released to another principal further up the tree. The
encrypted result will become part of the querier’s response up the tree; eventually the receiver principal may decrypt
the result and compute the conjunction to see whether the tree istrue.

We formally define the ordered list of upstream principals as follows. We say that a principalrepresentsa proof-tree
node when a rule or a fact contained in that node is published by that principal. We denote the principal that represents
noden asrep(n), and the ordered list of principals that represent a corresponding ordered list of nodess asrep(s).
Suppose that principalp represents a noden in a proof tree. We denote the ordered list of nodes on the path from the
root of the proof tree ton, excludingn, asupstream nodes(n). That is, the nodes are ordered from the root node
downward.

The list of upstream principals forp is defined asrep(upstream nodes(n)), which we denote asreceivers(p). In

8

Security policies

Knowledge base Knowledge base

Knowledge base / Security policies

PSfrag replacements

p0

p1

p2
p3

rule1

rule1 ≡ grant(P)← role(P, doctor) ∧ location(P, hospital)

(p0, TRUE)

(p1, TRUE) (p1, TRUE)

?grant(bob)

?role(bob, doctor) ?location(bob, hospital)

role(bob, doctor) location(bob, hospital)

trust(grant(P)) = {p1}

trust(role(P, doctor)) = {p2}

trust(location(P,L)) = {p3}

Figure 7. Example of distributed query processing. The solid arrows are labeled with queries
and the dashed arrows are labeled with returned proofs. The rounded rectangles with dotted
lines represent the knowledge bases and security policies of those principals respectively. The
definition of rule1 is enclosed in the rectangle at the bottom of the figure.

9

PSfrag replacements

p0 p1 p2

p3

p4

q0 q1

q2

q3

pf
1
≡ (p0, ((pf3))K0

) pf
2
≡ (p1, ((pf3)(pf4))K1

)

pf
3
≡ (p0, (value3)K0

)

pf
4
≡ (p1, (value4)K1

)

Figure 8. Enforcement of confidentiality policies. Principal p0’s query q0 is handled by principals
p1, p2, p3, and p4 in a distributed way. Principal pi handles query qi−1, and returns the proof pfi,
for i = 1 to 4.

Figure8, principalp0’s issuing queryq0 causes principalsp1 andp2 to issue subqueriesq1, q2 andq3. Principalp3’s
list receivers(p3) is < p0, p1, p2 >, for example.

When a publisher principal chooses a receiver from the listreceivers(p), the receiver must satisfy the following
two conditions. First, it must satisfy the publisher’s confidentiality policies. For example, suppose that principalp4

choosesp1 as the receiver of queryq3’s result. Principalp1 must satisfyp4’s confidentiality policies for queryq3; that
is, p4 must have confidentiality policy(rp, t) where rule patternrp matches queryq3 and principalp1 belongs to a set
of principalst.

Second, the receiver principal must satisfy the constraints due to recursive encryption of a proof at each princi-
pal. A principal that handles a query might issue subqueries to other principals. If that principal cannot decrypt the
query results in those subproofs, it includes the subproofs into its proof and encrypts them with the public key of a
receiver principal. This recursive encryption is necessary to prevent a untrusted intermediate principal on the path
towards the receiver from knowing the query result by decrypting some subproof whose query result isFALSE. Be-
cause such embedded encrypted subproofs are encrypted recursively by intermediate principals until they reach their
receiving principals, the intermediate principals have to make sure that their encryption on embedded subproofs are
decrypted when the proof reaches the receiving principals of the subproofs. Otherwise, the embedded subproofs pass
the receiving principals without being decrypted, and the proof fails.

In Figure8, principalp3 choosesp0 as the receiver of proofpf3 ≡ (p0, (value3)K0) wherevalue3 is queryq2’s
result andK0 is p0’s public key, andp4 choosesp1 as the receiver of proofpf4. Principalp2 embeds those proofs
from p3 andp4 into proof pf2, becausep2 cannot decrypt those proofs. Suppose that both principalp0 andp1 in
receivers(p2) satisfy the first condition; they satisfyp2’s confidentiality policies for queryq1. Principalp2 must
choosep1 as the receiver to satisfy the second condition. Because principalp1 decrypts and evaluates the proofpf4,
p1 only embedspf3 into proofpf1, which is decrypted by principalp0, if the evaluation ofpf4 is TRUE. (Otherwise,p2

drops the proofpf3 and return a proof that contains aFALSEvalue.) If principalp2 choosesp0 as the receiver of proof
pf2 instead, the proofpf4, which is embedded in proofpf2, is forwarded top0 without being decrypted byp1 and the
proof is not usable byp0.

In general, a proof contains any number of encrypted subproofs. Suppose that principalpi’s list receivers(pi) is
< p0, . . . , pi−1 >, andpi returns proofpfi that contains subproofspfj for j = 0, . . . , n− 1 to principalpk. Let pr(j)

be the receiver principal for proofpfj , andindex(p, s) be the function that returnsp’s index in the ordered lists. The
second condition for selecting a receiver is stated as follows.

∀j ((index(pr(j), receivers(pi)) ≤ index(pk, receivers(pi))) ∨ (r(j) = i))

If there is more than one principal that satisfies the above two conditions, principalpk chooses the principal of the
minimum index (closest to the root). This guideline is important not to narrow the choices of the receivers made
by the upstream principals. Note that the proof fails if the path to the root does not permit these decryptions and
validations; the failure results because the integrity and confidentiality policies of the principals involved will not
allow the necessary information sharing. We, therefore, anticipate that an addition of rules or policies by principals
would increase the false negative rate of authorization decisions.

10

String query
Principal[] receivers
Hashtable i_policies

Proof

Query

Querier Handler

Figure 9. Query interface.

4.5 Algorithms

Each host (run by some principal) provides an interfaceHANDLEREMOTEQUERY for handling a query from a
remote host. It takes as parameters a query stringq, a list of upstream principalsreceiversdefined in Section4.4, and
a querier principal’s integrity policiesi policies, as shown in Figure9. The functionHANDLEREMOTEQUERY calls
the functionGENERATEPROOF to obtain a proof.

Figure10shows the algorithm for the functionGENERATEPROOF, run on principalp1’s host to build a proof while
enforcing confidentiality policies of the handler principal. The algorithm handles the simpler case that a proof from
a remote principal contains a query result (not concatenated subproofs). We describe how to handle concatenated
subproofs in Section5.5. The function takes several parameters: principalp0 that issues a query, principalp1 that
handles a query, a query stringq, a list of upstream principalsreceivers for p1 (i.e., receivers(p1)), p0’s integrity
policiesi policies0, p1’s integrity policiesi policies1, p1’s confidentiality policiesc policies1, andp1’s knowledge
baseKB1. If p0 is an initial querier, it includes itself into the listreceivers.

Lines 2–3 check whether there is any principal in the listreceivers that satisfies the handler principalp1’s confi-
dentiality policies. The principals that belong to the intersection ofreceivers and the union of the access-control lists
in p1’s confidentiality policies for queryq are eligible to receive a proof fromp1. We treat the ordered listreceivers
as a set in line 2, and denote the result set ass. If there is no such principal (i.e., the sets is empty), line 4 returns a
proof with aREJECTvalue to querier principalp0.

Line 5 sets the receiver principal of a proof in the case that the query result in the proof is obtained locally. The
chosen receiver is the principal that belongs to lists and has the minimum index in the ordered listreceivers. We
choose that principal withminIndex(s, receivers) in line 5.

Line 7 checks whether the handler principalp1 satisfies the querierp0’s integrity policies (we use the symbol ‘|’ to
denote “such as” in our algorithm for brevity). If not, line 8 returns a proof with aFALSEvalue to principalpr. Line 9
checks whether queryq matches factf in p1’s knowledge base. If so, line 10 returns a proof with aTRUEvalue to
principalpr.

Lines 11–19 cover the case that queryq matches the head of ruler in p1’s knowledge base. Line 12 unifies queryq
and ruler ≡ A← B1, . . . , Bn, resulting in the instantiated ruleA′ ← B′

1, . . . , B
′
n. Lines 13–14 obtain subproofs for

the subqueriesB′
1, . . . , B

′
n iteratively. If principalp1 can decrypt all the values in the subproofs, and all the subproofs

contain aTRUEvalue, then line 16 returns a proof with aTRUEvalue to principalpr. Line 17 checks whether the
subproofs decrypted byp0 contain aTRUEvalue, and if so, line 18 checks whether there is some principalpr′ that
satisfies the constraint due to the recursive encryption we describe in Section4.4; that is,pr′ ’s index in the ordered list
receivers must be greater than or equal to the index ofpr(i) in receivers if r(i) 6= 1. If there is such a principalpr′ ,
line 19 returns a proof containing the subproofs whose values could not be decrypted byp1 with principalpr′ as the
recipient.

When lines 7–19 fail to construct a proof that derives queryq, our algorithm does not return a proof that contains
FALSEimmediately. Instead, it tries to obtain a proof from a remote principal in lines 21–25. Line 21 checks whether
there is any principalpl that satisfiesp1’s integrity policies for queryq. If that holds true, line 22 appendsp1 into the
ordered listreceivers, and line 23 calls the functionISSUEREMOTEQUERY. Line 24 returns the returned proof. If
line 21 fails to find such a principalpl, then line 25 returns a proof with aFALSEvalue.

11

GENERATEPROOF(p0, p1, q, receivers, i policies0, i policies1, c policies1,KB1)
1 � Check whether there is any principal inreceivers that satisfiesp1’s confidentiality policies.
2 s← receivers ∩ (

⋃
i ti) for all policies(rpi, ti) ∈ c policies1 whererpi matchesq

3 if s = ∅� if sets is empty.
4 then return (p0, (REJECT)K0)
5 pr ← minIndex(s, receivers)
6 � Check whether principalp1 satisfies querierp0’s integrity policies.
7 if ¬(∃ policy p = (rp, t) | ((p ∈ i policies0) ∧ (rp matchesq) ∧ (p1 ∈ t)))
8 then return (pr, (FALSE)Kr

)
9 if ∃ factf | ((f ∈ KB1) ∧ (f matchesq))

10 then return (pr, (TRUE)Kr)
11 elseif∃ rule r ≡ A← B1, . . . , Bn | ((r ∈ KB1) ∧ (A matchesq))
12 then unify q andA← B1, . . . , Bn, resulting inA′ ← B′

1, . . . , B
′
n

13 for i← 1 to n
14 do pfi ← GENERATEPROOF(p1, p1, B

′
i, receivers, i policies1, i policies1, c policies1,KB1)

wherepfi = (pr(i), (valuei)Kr(i)), andr(i) is a receiver principal ofpfi
15 if ∀i ((pfi = (p1, (valuei)K1)) ∧ (valuei = TRUE))
16 then return (pr, (TRUE)Kr)
17 elseif∀i ((pfi = (pr(i), (valuei)Kr(i))) ∧ (((r(i) 6= 1) ∨ ((r(i) = 1) ∧ (valuei = TRUE))))
18 then if ∃ pr′ | (∀i (((pr′ ∈ s) ∧ (index(pr(i), receivers) ≤ index(pr′ , receivers)) ∧ (r(i) 6= 1))

∨(r(i) = 1)))
19 then return (pr′ , (Πi pfi)Kr′)

for all i wherepfi = (pr(i), (valuei)Kr(i)) ∧ (r(i) 6= 1)
20 � If we fail to construct a proof that derives the query locally, we try to obtain a proof from a remote principal.
21 if ∃ principalpl (∃ policy p = (rp, t) ((p ∈ i policies1) ∧ (rp matchesq) ∧ (pl ∈ t)))
22 then appendp1 to receivers
23 proof← ISSUEREMOTEQUERY(pl, q, receivers, i policies1)
24 return proof
25 else return (pr, (FALSE)Kr)

Figure 10. Algorithm for generating a proof.

12

PSfrag replacements

?grant(bob)p0 p1

p2

p3 p4

p5 p6

p7

p8

?role(bob, operation chief)

?role(bob, police chief, police dept) ?location(bob, airport)

?owner(bob, pda15) ?location(pda15, L)

?wifi(pda15, ap39)

(p1, (p1, (TRUE)K1
))

(p2, (TRUE)K2
) (p1, (TRUE)K1

)

(p4, (TRUE)K4
) (p4, (TRUE)K4

)

(p6, (TRUE)K6
)

grant(P) ← role(P, operation chief)

role(P, operation chief) ← role(P, police chief, police dept) ∧ location(P, airport)

location(P,L) ← owner(P,D) ∧ location(D,L)

location(D,L) ← in(A,L) ∧ wifi(D,A)

role(bob, police chief, police dept) owner(bob, pda15)

owner(bob, pda15)

in(ap39, airport)

wifi(pda15, ap39)

acl(role(P,R)) = {p1}

acl(role(P,R, police dept)) = {p1, p2}
acl(location(P,L)) = {p1}

acl(owner(P,D)) = {p4}
acl(location(D,L)) = {p4}

acl(wifi(D,L)) = {p6}

Figure 11. Example of an emergency response system. Principal p0 is a first responder whose
role is “operation chief”. Principal p1 represents a surveillance camera image server. Principal
p2 is the role membership server of an incident management system (IMS). Principal p3 is the
role membership server of a police department. Principal p4 represents a location-tracking
service. The arrows represent the flow of queries among the principals. Each arrow is labeled
with a query and a returned proof. The query is shown above the dashed line; the proof is
shown below the line. Each principal’s rules, facts and confidentiality policies are shown in a
dashed rectangle.

4.6 Example application

Consider again our initial example of an incident management system (IMS) shown in Figure2; a centralized
server would produce the proof tree in Figure3. Figure11 shows how userbob (principalp0) requests images from
the surveillance camera image server managed by the airport (principalp1). Bob’s request is handled by multiple
principalsp1, p2, . . . , p7. In Figure11, every principal issues queries to the principals that satisfy its integrity policies,
and every querier except for principalp2 satisfies the confidentiality policies of the principals to which it sends the
queries. Principalp2 does not satisfyp4’s confidentiality policies for query?location(bob, airport), becausep2

is temporarily assigned to manage the role server for the incident, and thus principalp4 does not establish a long-
term trust relation with principalp2. Fortunately,p1 that runs the surveillance camera image server satisfiesp4’s
confidentiality policies, principalp4 encrypts the query result withp1’s public key, and principalp2 embedsp4’s proof
into its own proof, then returns it top1. Principalp1 decrypts the query result in the proof fromp2, but it is not aware
of the fact that the query result is created by principalp4.

13

5 Authorization for the general case

In this section, we extend our authorization scheme so that it supports security policies on rules as well as on
facts. A proof contains a proof tree that describes the derivation of the query’s result if the evaluation of a query
is true, instead of simply the resultTRUE, in order to satisfy a querier principal’s integrity policies. This situation
occurs when the querier principal does not trust the integrity of the query result from the handler principal, but trusts
handler’s rule that is used to decompose the query into subqueries. We describe the integrity of a proof tree, the
representation of the proof that contains a proof tree, and the enforcement mechanisms for confidentiality and integrity
policies respectively.

5.1 Integrity of a proof tree

A principal trusts the integrity of a proof tree (that is, believes its result) for a query if it is consistent with its
integrity policies. We formally define the integrity of a proof tree from the viewpoint of an initial querier principalp0

inductively as follows. Suppose that principalp0 issues a queryq to principalp1.

Base case (single-node tree):If the proof from principalp1 contains a queryq’s result, and principalp0 has an in-
tegrity policy(rp, t) such that rule patternrp matches queryq andp1 belongs to the set of principalst, thenp0

trusts the results of the proof tree.

Induction step: If the proof fromp1 contains a proof tree whose root node represents a ruler, the head of ruler
matches queryq, p0 has an integrity policy(rp, t) such that rule patternrp matchesr andp1 belongs to the set
of principalst, andp0 trusts the integrity of the subproof trees under the root node representingr, thenp0 trusts
the proof tree.

5.2 Representation of a proof

We represent aproof using nested parentheses based on the grammar in Figure12. A proof contains five fields: a
sender principal, a receiver principal, a query, a nonce, and a proof tree optionally encrypted for a receiver. The sender
is the principal that publishes a proof, and the receiver is the intended receiver of the proof. The query is a query string
for which the proof is constructed, the nonce is a random number chosen by a querier principal, and the proof tree
represents how the evaluation result for the query is derived.

The hierarchical structure of a proof tree is built by embedding subproofs into a proof recursively. That is, the
proof contains a proof tree that consists of a root node (representing a rule) of the proof tree and the subproofs that
contain the subproof trees under the root node. Therefore, each node in a proof tree described in Section2.2 has a
corresponding proof (or an embedded subproof) that contains it as the root node of its proof tree. If a proof contains a
single-node proof tree, it only contains a query result or a set of proofs whose query results are encrypted as described
in Section4.4. The digital signature of a proof is attached with the proof so that a receiver principal can check its
authenticity. It also ensuresnon-reputabilityof the sender principal. When a proof tree is a single-node one, the field
for a proof tree contains a query result (value). If a query result depends on encrypted values, it is represented as a set
of value pairs that consist of a receiver principal and an encrypted query result, as we describe in Section4.2.

The first four fields in a proof are necessary to verify the integrity of its proof tree. The sender’s identity is necessary
to check the authenticity of a proof by checking a digital signature attached with the proof. To verify a proof, one must
verify the integrity of all the embedded subproofs in that proof, which are published by different principals. Therefore,
every principal that publishes the subproof needs to attach a digital signature with it. We omit the digital signature of
a proof from our syntax in Figure12 for brevity. The receiver’s identity is necessary when a proof tree is encrypted by
the receiver’s public key as we discuss in Section4.4. The nonce is necessary to prevent a malicious principal from
reusing a proof for an identical query at an earlier time.

When we verify the integrity of the query result in a proof, we check the principal that signs the proof. However,
when we also verify the integrity of a rule in a proof, we check the principal that defines that rule. That principal may
be different from the one that applies the rule to handle a query. Therefore, the rule is paired with the principal that
defines it so that the principal that receives a proof can obtain the digitally signed certificate of that rule separately to
check the integrity of the rule.

14

< proofs > ::= < proof > (< proof >) ∗
< proof > ::= ‘(’ < sender >,< receiver >,< query >, < nonce >, < proof tree > ‘)’

< proof tree > ::= ‘(’ < rule cert >, ‘(’ < proofs > ‘)’‘)’ | < proofs > | < value pairs > | < value >

< sender > ::= < identifier >

< receiver > ::= < identifier >

< query > ::= ? < atom >

< atom > ::= < predicate > ‘(’ < args > ‘)’
< predicate > ::= < identifier >

< args > ::= < arg > (, < arg >) ∗
< arg > ::= < identifier >

< nonce > ::= < number >

< rule cert > ::= ‘(’ < rule >,< signer > ‘)’
< rule > ::= < head >←< body >

< head > ::= < atom >

< body > ::= < atom > (∧ < atom >) ∗
< signer > ::= < identifier >

< value pairs > ::= < value pair > (< value pair >) ∗
< value pair > ::= ‘(’ < receiver >, < value > ‘)’

< value > ::= ‘TRUE’ | ‘FALSE’ | ‘REJECT ’

< identifier > ::= < string >

< string > ::= < string >< character > | < character >

< character > ::= a| . . . |z|A| . . . |Z|0|1|2|3|4|5|6|7|8|9
< number > ::= < number >< digit > | < digit >

< digit > ::= 0|1|2|3|4|5|6|7|8|9

Figure 12. Grammar for a proof. A sender principal attaches a digital signature with its
publishing proof, and optionally encrypts the proof tree field of a proof. We, however, omit the
digital signatures and encryptions from our syntax.

15

Knowledge base

Knowledge base Knowledge base

Security policies

PSfrag replacements

p0

p1

p2
p3

rule1 ≡ grant(P)← role(P, doctor) ∧ location(P, hospital)

role(bob, doctor) location(bob, hospital)

proof1 ≡ (p1, p0, ?grant(bob), (rule1, (proof2, proof3)))

proof2 ≡ (p2, p1, ?role(bob, doctor), TRUE) proof3 ≡ (p3, p1, ?location(bob, hospital), TRUE)

?grant(bob)

?role(bob, doctor) ?location(bob, hospital)

trust(grant(P)← role(P, doctor) ∧ location(P, hospital)) = {p1}

trust(role(P, doctor)) = {p2}

trust(location(P,L)) = {p3}

Figure 13. Construction of a proof tree. The solid arrows are labeled with queries and the
dashed arrows are labeled with returned proof trees. The rounded rectangles with dotted lines
represent the knowledge bases or security policies of those principals respectively. We omit
nonce and digital signatures in the proofs for brevity.

Example. The example in Figure13 is a modification of Figure7. Principalp0 has different integrity policies, and,
as a result, principalp1 returns a proof that contains a proof tree. Principalp0 does not trust the integrity ofp1 to
evaluate the query?grant(bob), but does trust the integrity ofrule1. Principalp1 constructs a proof that consists of
the rulerule1 as a root node and the sub-proofsproof2 andproof3 as leaf nodes and returns it to principalp0. The
proof tree constructed by principalp1 is trusted by principalp0 because principalp0 trustsrule1 in principalp1 and
the factsrole(bob, doctor) andlocation(bob, hospital) in principalsp2 andp3 respectively, according to its integrity
policies.

5.3 Decomposition of proof trees.

In the general case, a response to a query is a proof that contains a proof tree that satisfies the integrity policies of
a querier. If the integrity of the principal that handles a query is trusted by the querier, it only returns a single-node
proof tree that contains a query result. If there are such principals participating in evaluating a query, the whole proof
tree is decomposed into several subtrees and is evaluated by those principals in a distributed way. The facts and rules
used for evaluating a subtree do not have to be disclosed to a querier principal.

In Figure14, principalsp0, p1, . . . , p10 are the participants in evaluating a query, and each arrow shows how a proof
tree flows from one principal to another. We show only the fields for a sender and a receiver principals for brevity,
omitting other fields. The dashed lines show which principal’s integrity policies are applied to the principals enclosed
in the lines. Because principalp0 trusts principalp2 andp3 in terms of the integrity of the given queries; it is possible
to evaluate the query atp0, p2, andp3 rather than collecting all the rules and facts atp0. Principalsp2 andp3 construct
a proof tree locally based on their own integrity policies, and return only a single-node proof tree that contains a query
result. Therefore, principalp0 does not know how the query results fromp2 andp3 are derived.

5.4 Enforcement of confidentiality policies

We apply the same mechanism for enforcing confidentiality policies in Section4.4. The only difference is that a
receiver principal must be an upstream principal that evaluates a proof subtree. We, therefore, define a set of principals

16

PSfrag replacements

p0

p1 p2

p3 p4 p5 p6

p7 p8 p9 p10

p11

p12

p13

(p1, p0, ((p3, p1), (p4, p1))) (p2, p0)

(p3, p0)
(p4, p0) (p5, p2) (p6, p2, ((p9, p2), (p10, p2)))

(p7, p3) (p8, p3) (p9, p2) (p10, p2)

p0’s integrity policies

p2’s integrity policiesp3’s integrity policies

Figure 14. Example of subproofs. Principals p0, . . . , p10 are the participants in evaluating a
query. Each arrow shows how a proof tree flows from one principal to another. Each arrow is
labeled with the pair of a sender and a receiver principals in a proof, omitting the other fields of
the proof for brevity. The dashed lines show which principal’s integrity policies are applied to
the principals enclosed in the lines. The principals p0, p2, and p3 that represent the root node
of the nested subtrees are enclosed in the thick rectangles.

receivers(p) whose members are eligible to receive principalp’s proof as follows.
Suppose that in a proof tree there is a sequence of nodesn0, n1, . . . , nk on the path from the rootn0 to nodenk in

the proof tree, and principalpi represents nodeni and handles queryqi−1 from pi−1 for i = 1 to k. Principalpi where
i < k belongs to the setreceivers(pk) if it satisfies either of the following two conditions.

• Principalpi is p0.

• Principalpl belongs toreceivers(pk), pl has an integrity policy(rp, t) such that rule patternrp matches query
qi−1 andpi belongs to the set of principalst, and there is no other principalpj (wherel < j < i), that satisfies
this condition.

Notice that our new definition does not change the definition ofreceivers(p) in Section4.4, because every principal
issues a query to a principal that it trusts in terms of the integrity of evaluating the query. That is, if a querier principal
pi−1 in receivers(p) issues queryqi−1 to pi, pi belongs toreceivers(p) as well becausepi satisfies the second
condition above. In other words, all the upstream principals ofp belong to the setreceivers(p).

5.5 Algorithms

Each host provides the same remote interface for handling a remote query. We describe the extended version of the
function GENERATEPROOF, and then introduce the functionCHECKPROOFINTEGRITY that checks the integrity of a
proof tree that contains rules as intermediate nodes.

Algorithm for constructing a proof. In Figure15, we extend the algorithm in Figure10to support security policies
on rules. There are a few modifications as follows. First, a proof has additional fields such as a sender principal, a
query string, and a nonce according to the representation of a proof in Section5.2. We use the parameter namercvrs
instead ofreceivers for compactness.

Second, the algorithm handles a proof from a remote principal that contains multiple subproofs. The query result
of the proof is the conjunction of the query results of all the embedded subproofs. The query result isTRUE if all

17

the query results of the embedded subproofs have aTRUE value; otherwise, it isFALSE. Lines 15–19 construct a
proof from the proofspfi for i = 1 to n obtained by calling the functionGENERETEPROOF in line 14. Each proofpfi
contains either a query result or multiple subproofs. Therefore, the query result of the proof is the conjunction of the
query results of proofspfi for i = 1 to n, and, if proofpfi contains multiple subproofs, its query result is represented
as the conjunction of those embedded subproofs. Line 15 checks whether the handler principalp1 can read all the
query results of proofpfi, and all the query results are aTRUEvalue. The query result of the proof isTRUE if the
proof contains aTRUEvalue or all the embedded subproofs contains aTRUEvalue. If the condition in line 15 holds
true, line 16 returns a proof with aTRUEvalue. Line 17 handles the case that principalp1 cannot decrypt all the query
results in the proofspfi for i = 1 to n and all the decrypted query results have aTRUEvalue. If so, line 19 checks
whether there is a principalpr′ that satisfies the constraint due to recursive encryption. We need to consider all the
receiver principals of the embedded subproofs as well. If there exist such principalpr′ , line 19 returns a proof that
contains the subproofs whose query results cannot be decrypted by principalp1.

Third, we handle the case that principalp1 is not trusted byp0 in terms of the evaluation of a query, butp1’s
rule, which matches the query, is trusted by principalp0, in lines 21–27. Line 21 checks whether there is a rule
R ≡ A ← B1 ∧ . . . ∧ Bn in p1’s knowledge base whose headA matches queryq and querier principalp0 satisfies
p1’s confidentiality policies for ruleR. If there is such ruleR, line 22 checks whether querierp0 has an integrity
policy p = (rp′, t′) that trusts the integrity ofp1’s rule R. Line 23 unifies queryq and ruleR resultingR′ ≡ A′ ←
B′

1, . . . , B
′
n. Lines 24–25 obtain the proofs for the atomsB′

1, . . . , B
′
n iteratively. Line 26 checks whether there is a

receiver principalpr′ in the set of principalsrcvrs that satisfies the constraints due to recursive encryption described
in Section4.4. If that holds true, we return the proof that contains ruleR′ as the root node of the proof tree, and the
proofs forB′

1, . . . , B
′
n as the subproofs under the root node. The proof tree must contain the proofs whose proof trees

are decrypted byp1 to satisfy the receiver principal’s integrity policies.
Fourth, when principalp1 tries to construct a proof by issuing a remote query, we need to check whether querier

principalp0 trusts the integrity of the query result from handler principalp1. Line 30 checks that condition by checking
whetherp1 belongs torcvrs, because line 8 appendsp1 to rcvrs if the condition holds. If that holds true, line 32 issues
a remote query withp1’s integrity policiesi policies1. That is,p1’s integrity policies are applied to the succeeding
queries. Line 32 checks the integrity of the returned proof by calling the functionCHECKPROOFINTEGRITY. The
function returns a pair of a boolean value (true or false) and a simplified proof as we explain below. If the proof
satisfiesp1’s integrity policies, line 32 returns the proof returned by the functionCHECKPROOFINTEGRITY. If p1

does not belong torcvrs, line 35 issues a remote query with principalp0’s integrity policies; that is, the querier
principal’s integrity policies are applied to the succeeding queries. Line 36 returns the proof returned by the function
without checking its integrity. In other words, only principals trusted by their querier principals in terms of the integrity
of their query results need to enforce their integrity policies on proofs received from remote principals.

Algorithm for checking the integrity of a proof. The functionCHECKPROOFINTEGRITY in Figure 16 checks
whether a proof satisfies given integrity policies, based on the definition given in Section5.1. It takes as parameters
principal pc that checks the integrity of the proof, query stringq, noncenc, proof pf, andpc’s integrity policies
i policiesc. The function also converts the hierarchical proof tree in a proof into a flat one that contains encrypted
query results in the leaf nodes; that is, all the intermediate nodes are removed from the proof tree while checking the
integrity of those nodes.

Line 1 checks whether noncen in the proofpf is same as the noncen for the query. If that is not true, line 2
returnsfalse with no proof tree. Line 3 checks whetherpc trusts the integrity of principalps’s evaluating query
q. If that holds true, line 4 returnstrue with the proof given as a parameter. Line 5 checks whether principalpc

can decrypt the proof (i.e., principalpr is a receiver principal of the proofpf) and reads ruleR at the root of the
proof tree. Line 6 checks whether ruler signed by principalpd satisfiespc’s integrity policies. If that holds true,
lines 7–11 check whether all the proofs for the atoms of ruleR satisfiespc’s integrity policies by calling the function
CHECKPROOFINTEGRITY recursively. If all the proofs satisfy the integrity policies, line 11 returnstruewith the proof
that contains the concatenation of the subproofs that correspond to the leaf nodes of the initial proof tree.

Notice that it is necessary for the principal that checks the integrity of a proof to be able to read all the rules in the
intermediate nodes of the proof tree.

18

GENERATEPROOF(p0, p1, q, n, rcvrs, i policies0, i policies1, c policies1,KB1)
1 � Check whether there is any principal inrcvrs that satisfiesp1’s confidentiality policies.
2 s← rcvrs ∩ (

⋃
i ti) for all policies(rpi, ti) ∈ c policies1 whererpi matchesq

3 if s = ∅� if sets is empty.
4 then return (p1, p0, q, n, (REJECT)K0)
5 pr ← minIndex(s, rcvrs)
6 � Check whether principalp1 satisfies querierp0’s integrity policies.
7 if ∃ policy p = (rp, t) | ((p ∈ i policies0) ∧ (rp matchesq) ∧ (p1 ∈ t))
8 then appendp1 to rcvrs
9 if ∃ factf | ((f ∈ KB1) ∧ (f matchesq))

10 then return (p1, pr, q, n, (TRUE)Kr
)

11 elseif∃ rule r ≡ A← B1, . . . , Bn | ((r ∈ KB1) ∧ (A matchesq))
12 then unify q andA← B1, . . . , Bn, resulting inA′ ← B′

1, . . . , B
′
n

13 for i← 1 to n
14 do pfi ← GENERATEPROOF(p1, p1, B

′
i, n, rcvrs, i policies1, i policies1, c policies1,KB1)

wherepfi = (ps(i), pr(i), B
′
i, n, (pti)Kr(i)),

s(i) andr(i) are sender and receiver principals ofpfi respectively.
15 if ∀i ((r(i) = 1) ∧ (((pti = valuei) ∧ (valuei = TRUE))

∨((pti = Πj(pr(i,j), (valueij)Kr(i,j))) ∧ ∀j ((r(i, j) = 1) ∧ (valueij = TRUE)))))
16 then return (p1, pr, q, n, (TRUE)Kr

)
17 elseif∀i ((r(i) 6= 1) ∨ ((r(i) = 1) ∧ (((pti = valuei) ∧ (valuei = TRUE))

∨ ((pti = Πj(pr(i,j), (valueij)Kr(i,j))) ∧ (∀j ((r(i, j) 6= 1) ∨ ((r(i, j) = 1) ∧ (valueij = TRUE))))))))
18 then if ∃ pr′ ((pr′ ∈ s) ∧ (∀i ((r(i) = 1) ∨ (((pti = valuei)

∧(index(pr(i), rcvrs) ≤ index(pr′ , rcvrs))) ∨ ((pti = Πj(pr(i,j), (valueij)Kr(i,j)))
∧(∀j ((r(i, j) = 1) ∨ (index(pr(i,j), rcvrs) ≤ index(pr′ , rcvrs)))))))))

19 then return (p1, pr′ , q, n, ((Πi (pr(i), pti))(Πij (pr(i,j), (ptij)Kr(i,j))))Kr′)
where((pfi = (ps(i), pr(i), B

′
i, n, (pti)Kr(i)) ∧ (r(i) 6= 1))

∨((r(i) = 0) ∧ (pti = Πj(pr(i,j), (valueij)Kr(i,j))) ∧ r(i, j) 6= 1))
20 � Construct a proof with a rule that satisfies principalp0’s integrity policies andp1’s confidentiality policies.
21 if (∃ ruleR | ((R ∈ KB1) ∧ (R ≡ A← B1 ∧ . . . ∧Bn) ∧(A matchesq)))

∧(∃ policy p | ((p ∈ c policies1) ∧ (p = (rp, t)) ∧ rp matches ruleR)))
22 then if ∃ policy p′ = (rp′, t′) | ((p′ ∈ i policies0) ∧ (rp′ matchesR) ∧ (p1 ∈ t′))
23 then unify q and ruleR resultingR′ ≡ A′ ← B′

1, . . . , B
′
n

24 for i← 1 to n
25 do pfi ← GENERATEPROOF(p1, p1, B

′
i, n, rcvrs, i policies0, i policies1, c policies1,KB1)

wherepfi = (ps(i), pr(i), B
′
i, n, (pti)Kr(i)), and

s(i) andr(i) are sender and receiver principals ofpfi
26 if ∃pr′ ((pr′ ∈ s) ∧ (∀i (index(pr(i), rcvrs) ≤ index(pr′ , rcvrs))))
27 then return (p1, pr′ , q, n, ((R′, pc),Πi pfi)Kr′) wherepc is a signer principal of ruleR
28 � If we fail to construct a proof that derives the query locally, we try to obtain a proof from a remote principal.
29 if ∃ principalpl that is capable of handling queryq
30 then if p1 ∈ rcvrs
31 then proof← ISSUEREMOTEQUERY(pl, q, rcvrs, i policies1)
32 (trusted, proof ′)← CHECKPROOFINTEGRITY(p1, q, n, proof, i policies1)
33 if trusted
34 then return proof’
35 else proof← ISSUEREMOTEQUERY(pl, q, rcvrs, i policies0)
36 return proof
37 return (p1, pr, q, n, (FALSE)Kr

)

Figure 15. Algorithm for generating a proof.

19

CHECKPROOFINTEGRITY(pc, q, nc, pf, i policiesc)
1 if ¬((pf = (ps, pr, q, n, (pt)Kr

)) ∧ (nc = n))
2 then return (false, NULL)
3 if (∃ policy p = (rp, t) | ((p ∈ i policiesc) ∧ (rp matches queryq) ∧ (ps ∈ t)))
4 then return (true, pf)
5 elseif((r = c) ∧ (pt = ((R, pd), (Πn

i=1 pfi))
whereR is a rule,pd is the signer principal ofR, andpfi for i = 1 to n are subproofs.

6 then if ∃ policy p = (rp, t) | ((p ∈ i policiesc) ∧ (rp matches ruleR) ∧ (pd ∈ t)
∧(principalpc holds a valid digital signature forR signed bypd))

whereR ≡ A← B1 ∧ . . . ∧Bn

7 then for i← 1 to n
8 do (trust, pf ′i) = CHECKPROOFINTEGRITY(pc, Bi, pfi, i policiesc)
9 if ¬trust

10 then return (false, NULL)
11 return (true, (pc, pc, q, n, (Πi pf ′i)Kc

))
12 else return (false, NULL)
13 else return (false, NULL)

Figure 16. Algorithm for checking proof integrity.

5.6 Example application

We revisit the example of an incident management system (IMS); in Figure11, every querier principal trusts the
integrity of the principal that handles its query in terms of the correctness of the query’s result. This time, we have
some principals that define security policies on rules as well as facts.

Figure 17 shows how userbob (principal p0) requests images from the surveillance camera image server
managed by the airport (principalp1). Principal p1 agrees with the policy for roleoperation chief , that is,
role(P, operation chief) ← role(P, police chief, police dept) ∧ in(P, airport) is correct, and principalp2 that
runs the role-membership server of IMS uses that rule to evaluate a queryrole(bob, operation chief). However,
principalp1 does not trust the answer from principalp2, sincep2 is temporarily assigned to manage the role server for
the incident, and thus principalp1 does not establish a long-term trust relation with principalp2. Fortunately, princi-
pal p2 trusts the role-membership server of the police department and the location tracking service run by principals
p3 andp4 respectively, because those are long-running existing services. Principalp2 is thus able to return a proof
tree that contains the proofs from principalp3 andp4, and principalp1 trusts that proof. The proof tree also satisfies
the confidentiality policies of principalsp2, p3 andp4. Principalp4 only returns the evaluation result of the query
?location(bob, airport) because it belongs totrust(location(P,L)) = {p4} defined by principalp1.

6 Soundness of the algorithm

We show that our algorithm constructs a proof tree only if the confidentiality and integrity policies of every par-
ticipating principal are satisfied.1 We give the proof for the general case in Section5, which covers the basic case in
Section4 as its special case. We separate the proof into two parts: the proof on confidentiality policies, and the proof
on integrity policies.

6.1 Proof for confidentiality policies

We prove that our algorithm constructs a proof tree only if the confidentiality policies of every participating princi-
pal are satisfied by induction below.

1The other way (completeness of the algorithm) does not hold, as we discuss in Section8.1, and we leave it as our future work.

20

PSfrag replacements

?grant(bob)p0 p1

p2

p3 p4

p5 p6

p7

p8
grant(P) ← role(P, operation chief)

rule1 ≡ role(P, operation chief) ← roleIn(P, police chief, police dept) ∧ location(P, airport)

location(P,L) ← owner(P,D) ∧ location(D,L)

location(D,L) ← in(A,L) ∧ wifi(D,A)

acl(role(P,R)) = {p1}

acl(role(P,R, police dept)) = {p1, p2}

acl(location(P,L)) = {p1, p2}

acl(owner(P,D)) = {p4}
acl(location(D,L)) = {p4}

acl(wifi(D, airport)) = {p6}

roleIn(bob, police chief, police dept)

owner(bob, pda15)

in(ap39, airport)

wifi(pda15, ap39)

(p2, p1, ?role(bob, operation chief), (rule1, ((p3, p1, ?roleIn(bob, police chief, police dept), TRUE), (p4, p1, ?location(bob, airport), TRUE))

(p3, p1, ?role(bob, police chief, police dept), TRUE) (p4, p1, ?location(bob, airport), TRUE)

(p5, p4, ?owner(bob, pda15), TRUE) (p6, p4, ?location(pda15, airport), TRUE)

(p7, p6, ?wifi(pda15, ap39), TRUE)

?role(bob, operation chief)

?roleIn(bob, police chief, police dept) ?location(bob, airport)

?owner(bob, pda15) ?location(pda15, L)

?wifi(pda15, X)

trust(role(P, operation chief) ← role(P, police chief, police dept)) = {p2}

trust(role(P,R, police dept)) = {p3}

trust(location(P,L)) = {p4}

trust(location(D,L)) = {p6}

trust(wifi(D,L)) = {p7}

Figure 17. Example of an emergency response system. Principal p0 is a first responder whose
role is “operation chief”. Principal p1 represents a surveillance camera image server. Principal
p2 is the role membership server of an incident management system (IMS). Principal p3 is the
role membership server of a police department. Principal p4 represents a location-tracking
service. The arrows represent the flow of queries among the principals. Each arrow is labeled
with a query and a returned proof tree. The query is shown above the dashed line; the proof
is shown below the line. Each principal’s rules, facts and policies are shown in a dashed
rectangle.

21

PSfrag replacements

p0

p0

p1

p1

pl pk−1

pk−1

pk

pk

q0

q0

q1

q1

ql−1 ql qk−2

qk−2

qk−1

qk−1

Case 1: Only principal p0 belongs to the set receivers(pk).

Case 2: Some intermediate principal pl belongs to the set receivers(pk) as well.

Figure 18. Linear proof trees with and without an intermediate principal that belongs to the
set receivers. Black circles denote principals that belong to receivers, and white circles denote
principals that does not belong to receivers. Each circle is labeled with a principal name, and
each arrow is labeled with a query name.

Base case: We first show that our claim holds in the case of a single-node proof tree. Suppose that principalp0

makes queryq to principalp1, andp1, which does not issue any subqueries, returns a proof whose proof tree only
contains a root node. We only need to show thatp1’s confidentiality policies are satisfied, becausep0 does not disclose
any information in its knowledge base top1. To satisfyp1’s confidentiality policies,p1 must have a confidentiality
policy (rp, t) such that rule patternrp matches queryq andp1 belongs to the sett. The functionGENERATEPROOF in
Figure15ensures this condition in line 3. Therefore, principalsp0 andp1 construct a proof only if their confidentiality
policies are satisfied.

Induction step: We next show that, if our claim holds for a proof tree whose depth is less thank, then it also holds
for a proof tree of depthk. (The base case above considers a tree of depth 0.) Without loss of generality, we consider
the case that a proof tree is linear. Because our algorithm for enforcing confidentiality policies on each node depends
only on the nodes on the path from that node to the root in a proof tree; the node is not aware of the existence of the
nodes in other branches of the proof tree.

Suppose that there is a linear tree of depthk where nodesn0, . . . , nk are ordered from the root to the leaf. Let
p0, . . . , pk be the principals that represent nodesn0, . . . , nk respectively, andq0, . . . , qk−1 be the queries, whereqi

is the query bypi to pi+1. When principalp0 issues queryq0 to p1, we consider two cases in Figure18. In case 1,
only principalp0 belongs to a set of principalsreceivers(pk) defined in Section5.4. In case 2, there are some other
principals in the setreceivers(pk) besides principalp0.

We first consider case 1. Because principalp1 does not belong toreceivers(pk), principalp2 cannot distinguish
queryq1 issued by principalp1 from q1 issued by principalp0 instead, because all the parameters in those queries
are same in both cases; the setreceivers contains only principalp0 in both cases. The same can be observed for
p2, . . . , pk. In the latter case, by the induction hypothesis, our algorithm ensures that a proof tree for queryq1 is
constructed by principalsp2, . . . , pk if their confidentiality policies are satisfied. Because principalsp2, . . . , pk do not
distinguish the former case from the latter, our algorithm ensures that their confidentiality policies are preserved in
the former case as well. The functionGENERATEPROOF in Figure15 ensures principalp1’s confidentiality policies
in lines 3. Principalp0’s confidentiality policies are vacuously satisfied becausep0 does not disclose any information.
We, therefore, prove that our algorithm ensures the confidentiality policies of the principalsp0, . . . , pk with a proof
tree of depthk in case 1.

We next consider case 2. Without loss of generality, we assume that there is a single principalpl in receivers(pk)
between principalp0 andpk. There are two subcases to be considered. In the first, subcase 2a, principalpl can decrypt

22

all the nodesnl+1, . . . , nk in the proof tree for queryql; that is, principalspl+1, . . . , pk choosepl as the receiver of
their returning proofs. Because principalspl+1, . . . , pk do not choosep0 from receivers(pj) = {p0, pl} for j = l + 1
to k as the receiver principal of their proofs respectively, their algorithm works in the same way as the case where
the setreceivers(pj) = {pl} for j = l to k. Therefore, by the induction hypothesis, our algorithm ensures the
confidentiality policies ofpl+1, . . . , pk. Because principalpl returns a proof with a single-node proof tree, principals
p0, . . . , pl−1 are not aware of the fact that principalpl issues queryql for handling queryql−1. Therefore, by the
induction hypothesis, our algorithm ensures the confidentiality policies ofp0, . . . , pl−1. Principalpl’s confidentiality
policies are also satisfied because our algorithm for enforcing confidentiality policies onpl works in the same way
as the case thatpl does not issue any subqueries and constructs a single-node proof tree responding to queryql−1,
because there is no constraint onpl due to recursive encryption becausepl can decrypt all the nodes in the proof from
pl+1 to pk. Therefore, our claim holds for subcase 2a.

The second subcase 2b is that principalpl cannot decrypt some nodes in the proof tree received frompl+1. If
principal pl cannot decrypt nodenm betweennl and nk (i.e., l < m < k), the proof tree does not satisfypl’s
integrity policies, and the proof fails. We, therefore, only consider the case thatpl cannot decrypt leaf nodenk only.
When nodenk choosesp0 as a receiver principal, our algorithm for enforcing confidentiality policies works for nodes
n1, . . . , nk−1 in the same way as the case that nodenk is omitted (i.e., principalpk−1 does not issue queryqk−1 to
pk) becausepk ’s proof encrypted with principalp0’s public key does not interfere with the processes of principals
p1, . . . , pk−1 for choosing a receiver principal of their proofs from the setreceivers = {p0, pl} or {p0}. The depth
of the tree with nodesn1, . . . , nk−1 is k − 1. Therefore, by the induction hypothesis, our algorithm ensures that
a proof tree is constructed only when the confidentiality policies of principalsp1, . . . , pk−1 are satisfied. Principal
p0’s confidentiality policies are satisfied vacuously, andpk ’s confidentiality policies of principalpk are also satisfied
because our algorithm onpk works in the same way as the case thatpk constructs a proof tree of a single depth
responding to queryqk−1 issued by principalp0. Therefore, our algorithm ensures that a proof tree is constructed
only when the confidentiality policies of every principal is satisfied. We cover all the cases in terms of confidentiality
policies and conclude the proof.

6.2 Proof for integrity policies

We prove that our algorithm constructs a proof tree only if the integrity policies of every participating principal are
satisfied by induction below.

Base case: We first show that our claim holds in the case of a single-node proof tree. Suppose that principalp0

makes queryq0 to principalp1, andp1, which does not issue any subqueries, returns a single-node proof tree. We only
need to show thatp0’s integrity policies are satisfied, becausep0 does not disclose any information in its knowledge
base. To satisfyp0’s integrity policies,p0 must have an integrity policy(rp, t) such that rule patternrp matches query
q andp1 belongs to sett. Line 31 inp0’s functionGENERATEPROOF in Figure15 obtains a proof fromp1 by calling
the functionISSUEREMOTEQUERY, and line 32 in the function calls the functionCHECKPROOFINTEGRITY whose
line 3 ensures that the proof satisfies the above condition. Therefore, principalsp0 andp1 construct a proof if their
integrity polices are satisfied.

Induction step: We next show that if our claim holds for a proof tree whose depth is less thank, then it also holds for
a proof tree of depthk. We consider the case that a proof tree is linear as we do in Section6.1, because we can check
the integrity of a proof tree by checking whether every path from the root to each leaf node satisfies given integrity
policies. This claim is proved by induction as follows. The base case holds because there is only a single node in a
proof tree. Suppose that our claim holds for a proof tree of depthk − 1. By induction hypothesis, each subtree of
depthk − 1 satisfies given integrity policies if every path from the root node to each leaf node satisfies the integrity
policies. If every path from the root node to each leaf node in the proof tree of depthk satisfies integrity policies, the
root node must satisfy the policies as well. According to our definition of the integrity of a proof tree in Section5.1, a
proof tree of depthk satisfies given integrity policies if the root node and all the subtrees of depthk− 1 under the root
node satisfy the integrity policies. Therefore, our claim holds for the proof tree of depthk, and we conclude the proof
of the above claim.

We assume the same linear proof tree in Section6.1; that is, there is a linear tree of lengthk where nodesn0, . . . , nk

are ordered from the root to the leaf. Letp0, . . . , pk be the principals that represent nodesn0, . . . , nk respectively, and

23

q0, . . . , qk−1 be the queries as before. When principalp0 issues queryq0 to p1, we consider the same two cases in
Figure18.

We first consider case 1. Because principalp1 does not belong to the setreceivers(pk), principal p2 cannot
distinguish queryq1 issued by principalp1 from q1 issued by principalp0 instead, because all the parameters in those
queries are same in both cases. In the latter case, by the induction hypothesis, our algorithm ensures that a proof tree for
queryq1 is constructed by principalsp2, . . . , pk if their integrity policies are satisfied. Because principalsp2, . . . , pk

do not distinguish the former case from the latter, our algorithm ensures their integrity policies in the former case
as well. Principalp1 checks the integrity of the proof from principalp2 in the same way regardless of whetherp1’s
issuing queryq1 is for handling queryq0 or not. Therefore, by the induction hypothesis,p1’s integrity policies are
satisfied. Principalp0 checks the integrity of the proof from principalp1 with the functionCHECKPROOFINTEGRITY

as follows. The integrity of the rule in noden1 is ensured in line 6, and, by the induction hypothesis, the integrity of
the subtree of depthk − 1 from principalp2 is ensured in line 8 by checking the integrity of the proof tree whose root
node isn2 by calling the functionCHECKPROOFINTEGRITY recursively. Therefore, the function ensures thatp0’s
integrity policies are satisfied with the proof tree from noden1. We, therefore, prove that our algorithm ensures the
integrity policies of the principalsp0, . . . , pk with a proof tree of depthk in case 1.

We next consider case 2. Without loss of generality, we assume that there is a principalpl in receivers(pk) between
principalp0 andpk. There are two subcases to be considered. In the first, subcase 2a, the subproof from principal
pl is a single-node proof tree that contains a query’s result; principalspl+1, . . . , pk choosepl as the receiver of their
nodes. Because principalsp0, . . . , pl−1 are not aware of the fact that principalpl issues queryql, by the induction
hypothesis, the integrity policies of principalsp0, . . . , pl−1 are satisfied. The fact that principalp0 belongs to the list
receivers(pl) of queryql does not change the behaviors of principalspl+1, . . . , pk for handling queryql. Because
our algorithm works for principalspl, . . . , pk in the same way that principal issues queryql independently, by the
induction hypothesis, our algorithm ensures that principalpl’s integrity policies are satisfied for subcase 2a.

The second case 2b is that a proof from principalpl contains nodenk whose proof tree is encrypted withp0’s
public key, as it could be done in line 19 of the functionGENERATEPROOF in Figure15. The proof frompl does not
contain any other encrypted nodes becausepl needs to read the nodesnl+1, . . . , nk−1 to check the integrity of the
proof frompl+1. Principalpl checks whether the rules in nodesnl+1, . . . , nk−1 satisfiespl’s integrity policies, which
is done in line 6 of the functionCHECKPROOFINTEGRITY in Figure16. If principal pl cannot decrypt all the nodes
nl+1, . . . , nk−1, pl returns a proof that containsFALSEbecause its failure to check the integrity of the proof, and,
therefore, the proof tree for queryq0 is not constructed. Because principalsp0, . . . , pl−1 cannot distinguish whether
the encrypted boolean value in the proof frompl is generated by principalpl or its descendant principalpk, by the
induction hypothesis, our algorithm ensures that the integrity polices of principalsp0, . . . , pl−1 are satisfied ifp0

accepts a proof tree whose leaf nodenl contains an encrypted boolean value in nodenk.
We next consider the integrity policies of principalspl, . . . , pk. In order for principalpl to check the integrity of the

proof from principalpl+1, pl must read all the intermediate nodesnl+1, . . . , nk−1 in that proof. Therefore, principals
pl+1, . . . , pk−1 must choosepl as the receiver principal of their returning proofs. Principalpl+1, . . . , pk−1 work in
the same way as the case that principalpl issues queryql without receivingql−1 so, by the induction hypothesis, their
integrity policies are preserved. Principalpk ’s integrity policies are satisfied vacuously. Principalpl’s algorithm for
enforcing integrity policies does not read the encrypted value in nodenk and works in the same way regardless of
returning a proof topk−1 or not. Therefore, by the induction hypothesis,pl’s integrity policies are also preserved. We
cover all the cases and conclude the proof.

7 Related work

Although others have developed context-sensitive authorization systems, they all use a trusted central context server
that collects context information, and they do not address the protection of context information used in authorization
rules or facts. Cerberus [3] allows principals to define context-sensitive policies based on first-order logic. It expresses
context information with context predicates such as “Location” and “Temperature”, similar to our approach. Cerberus
has a monolithic context infrastructure that contains current and historical context information, and a single inference
engine evaluates all the authorization decisions. Generalized RBAC (GRBAC) [8, 9] introduces the environmental
role (ERole) to achieve context-aware authorization. Their approach is based on the concept of Role-based access-
control (RBAC). Constraints on environmental (context) variables can be defined with a Prolog-like logic language.
Authorization is based on an ordinary role and an ERole; in effect, the ERole is an additional condition to be satisfied
for an authorization decision. GRBAC has a central context management service that maintains a snapshot of current

24

environmental conditions. OASIS [4, 12] is an RBAC system that can evaluate contextual conditions at both role-
activation time and access time. The context conditions are expressed as context predicates in the Horn clauses of
role-activation rules. OASIS has a centralized object-relational database that stores context predicates. Myles [18]
provides a XML-based authorization language for defining privacy policies that protect users’ location information.
Users must trust a set of validators that collect context information and make authorization decisions.

SD3 [15] is an inference engine for a trust management system that constructs a proof tree for a given query so
that the querier can verify the correctness of the query result. Its focus is to retrieve certificates (that correspond to
facts in a knowledge base) from remote hosts automatically, and a whole proof tree is constructed on a central server.
Therefore, all the remote hosts must trust the central server to preserve the confidentiality policies of their facts.

The idea of delegating the evaluation of a proof to a trusted server also appears in some protocols used to verify a
certificate in a public-key infrastructure. To verify a certificate, one must construct a certificate chain from the certifi-
cate authority (CA) that issued the certificate to a CA that is trusted by a querier. The Simple Certificate Validation
Protocol (SCVP) [17] allows a client with limited processing and communication capabilities to ask a trusted server
about the validity of a certificate. The client can specify a list of trusted CAs in its validation policy to be observed by
the server. The client can ask the server to provide additional information, such as a certification path and correspond-
ing revocation status, depending on the trustworthiness of the server. Although it is similar to our work in the sense
that the protocol uses the client’s trust in the server to split the overhead of verifying a certificate between them, it is
specialized in handling certificate chains, and it does not support general rules. In addition, there is no mechanism that
addresses the confidentiality of rules or facts, because cross certificates (trust relations) among CAs are considered to
be public knowledge.

8 Discussion

In this section, we discuss several design issues and security properties of our system.

8.1 Completeness of our algorithm

The algorithm of the functionGENERATEPROOF in Figure 10 and Figure15 is not complete. That is, it does
not guarantee to find a proof that derives a granting decision, because when the function finds a proof that contains
encrypted subproofs from other principals, it stops searching other proofs. If the returned proof turns out to be invalid
because some encrypted subproofs derivesfalse, or because the evaluation is impossible due to tight integrity or
confidentiality policies, our algorithm fails to find a possibly existing proof with some other combination of rules and
facts. To address this problem, we need to modify our algorithm so that it continues to search for another proof from
the point of the search space where a previous proof is found.

8.2 Security assurance

Our authorization scheme ensures that each principal’s confidentiality policies are preserved while participating
in the evaluation of an authorization query. A malicious principal that represents an internal node of a proof subtree
cannot obtain a rule or a fact from other principals by modifying thereceiverslist in a subquery it issues, because each
principal discloses its rules or facts to other principals only if they satisfy its confidentiality policies as described in
Section6.1.

The malicious principal could also modify the integrity policiesi policiesin a subquery to disturb the evaluation of
a query. This attack can be prevented if every principal publishes its integrity policies with its digital signature on a
well-known server, and each principal can cache other principal’s integrity policies. Thei policiesin a query can then
be retrieved by identifying the principal specified by the last index of thereceivers list.

We use a nonce to prevent a reply attack by a malicious principal that is capable of intercepting and modifying a
message. All the participating principals that evaluate an authorization query use the same nonce because the receiver
of a proof might be different from a querier principal. The nonce in a proof must match the nonce in the query, for the
proof to be valid.

25

8.3 Complexity of policy definition

Although it seems difficult for each principal to define confidentiality and integrity policies for rules and facts, it is
possible for a principal to refer to the policies of other principals to reduce the administrative work for defining policies.
For example, principalp0 could define a meta-rule that says “if principalp1 trusts the integrity of the evaluation of a
queryq by principalp2, thenp0 trusts the integrity ofq in the same way.” This meta-rule would allow most users to
defer on many policies to a trusted administrator, for example.

When principals consider trust relations in terms of the confidentiality and integrity policiestransitive, it is possible
for each principal to expand its confidentiality and integrity policies automatically while collaborating with other
principals to construct proof trees. Here we assume that the integrity and confidentiality policies of each principal are
public knowledge as stated in Section3.4.

We first describe how each principal expands its integrity policies by issuing a query to another principal. Suppose
that principalp0 issues a queryq0 (?grant(p)) to principalp1 andp1 issues a subsequent queryq1 (?a(x)) to p2. If
principalp0 trustsp1’s integrity for evaluating queryq0 (i.e.,p1 ∈ trust0(grant(p)), p0 also trustsp2’s integrity for
evaluating queryq1 implicitly. Therefore,p0 should update its integrity policy for queryq1 such thattrust0(a(x)) =
trust0(a(x))∪ trust1(a(x)). Principalp0 could obtainp1’s integrity policytrust1(a(x)) with queryq0’s result from
p1. The handler principalp1 actually returns the integrity policy on the rule pattern that is matched with the queryq0;
that is, if principalp1 handling querygrant(bob) unifies queryq0 with rule grant(P) ← a(P) and issues a remote
query?a(bob), p1 returnstrust1(a(P)) so that a querier can update its policies on rule patterna(P) rather than on
its instancea(bob). If a handler principal obtains integrity policies from its downstream principals in the same way, it
forwards those integrity policies to its querier so that they are shared among the principals involved in constructing a
proof tree.

We can apply the same idea to update confidentiality policies of each principal. For example, suppose that principal
p1 issues a queryq1 (?a(x)) to principalp2. Principalp2 returns a query result ifp1 satisfiesp2’s confidentiality
policies (i.e.,p1 ∈ acl2(a(x))). If p1 allows another principalp0 to discloseq1’s result based on its policy (p0 ∈
acl1(a(x))), thenp2 should also allowp0 to disclose it; principalp2 updates its confidentiality policies such that
acl2(a(x)) = acl2(a(x)) ∪ acl1(a(x)).

8.4 Scalability

When many principals are involved in constructing a proof tree that contains a lot of rules and facts, the communi-
cation overhead (including work for security operations such as the verification of digital signatures) could cause long
latency. Although we leave the experiments to evaluate the scalability of our system as our future work, we discuss
several possible solutions to address this issue. First, each querier could set a timeout period to cancel a query request,
and the querier interprets the occurrence of a timeout event as that the query result isfalse.

Second, although our algorithm described in Section5.5chooses a querier in a depth-first manner, we could modify
our algorithm so that a querier principal can choose the handler principal that is most likely to reply with the minimum
latency from a list of principals capable of handling the query. Because we believe that most authorization granting
services and other query services are long-running, it may be possible for each principal to choose a good handler
principal based on the logs of the latency of the past queries. It may also be helpful to issues the same query to
multiple principals in parallel.

Third, there are some situations where we can reduce the number of principals involved in constructing a proof tree
by replicating rules, facts, and security policies aggressively while preserving each principal’s security policies. We
give a small example in Figure19 that shows how the distributed processing is simplified. In Figure19, principalp0

issues query?grant(bob) to p1, which issues subsequent queryrole(bob, doctor) to p2. The three principalsp0, p1,
andp2 are involved in the original query processing in Figure19a. Because principalp0 trusts the integrity ofp1’s
query result for?grant(bob), it can also trust the integrity of rulegrant(P) ← role(P, doctor), which is unified
with the query. In addition, when principalp0 considers trust relations in integrity policies transitive,p0 trusts the
integrity of factrole(bob, doctor) maintained by principalp2. Therefore,p0 replicatesp1’s rule and integrity policy
trust(role(P, doctor)) = {p2} into its repository, and, as a result, the query processing is simplified as in Figure19b
if principal p2 allowsp0 to read the query result of?role(P,Q).

26

 Knowledge base / Security policies Knowledge base / Security policies

(a) Original distributed processing (b) Simplified distributed processing

PSfrag replacements

p0

p0

p1

p2

p2

grant(P)← role(P, doctor)

grant(P)← role(P, doctor)

?grant(bob)

?role(bob, doctor)

?role(bob, doctor) role(bob, doctor)

role(bob, doctor)

trust(grant(P)) = {p1}

trust(role(P, doctor)) = {p2}

trust(role(P, doctor)) = {p2}

acl(grant(P)) = {p0}

acl(grant(P)← role(P,Q)) = {p0}

acl(role(P,Q)) = {p0, p1}

acl(role(P,Q)) = {p0, p1}

Figure 19. Simplified distributed processing of a proof tree. Principal p0 replicates rule
grant(P) ← role(P, doctor) from p1 and integrity policy trust(role(P, doctor)) = {p2} from prin-
cipal p1 into its repository, and can in the future make queries directly to p2.

8.5 Expressiveness of the authorization language

Our example in Section2.1 represents policies about the current context. Although we do not treat temporal
information specially in our language, our language can express some policies about historical context by defining
predicates that take a timestamp as an argument. The following is an example policy in a workflow system where an
authorization decision is based on whether a requester has performed a series of actions in a specified sequence.

grant(P, purchase, X)← approved(mgr, P, X, t1), approved(senior mgr, P, X, t2), prior(t1, t2)

The above policy requires that a requester needs to obtain an approval from the manager first, and then from the senior
manager. The predicateprior is used to check whether timestampt1 is prior tot2.

Our language does not expressseparation of duty[2] in role-based access control (RBAC) model [19], because to
express separation of duty with a logic language (as Jajodia [14] proposes) requires support for rules that contain the
negations of atoms. A querier possibly obtains a false negative in our system due to the constraints of the security
policies of each principal. Therefore, a query that is a negation of an atom causes false positive, which is not acceptable
to any authorization system.

8.6 User feedback

It would be useful, in the case of a FALSE proof, to provide some feedback for the user about why the proof
failed and what policies prevent them from obtaining the desired access. Although to return an incomplete proof is a
plausible solution, there are two issues to be addressed. First, the user might not have sufficient privileges to receive
the incomplete proof, and, as a result, the user is not able to know that the subproof failed. Second, because there
could be multiple incomplete proofs for a given query, we need some mechanism that chooses a useful proof for the
user from them. The KNOW system [16], which is a centralized rule-based authorization system, proposes to use a
cost function to rank proofs for a query based on the likeliness that the user is able to satisfy the conditions in the
proofs. It is, however, difficult to define a reasonable cost function in a decentralized system like ours because there is
no single administrator who knows all the rules and security policies that are involved in authorization decisions. We
leave this complex problem for future work.

27

9 Summary and future work

We describe a secure context-sensitive authorization system that supports the decentralized construction and evalu-
ation of authorization decisions, involving multiple principals from different administrative domains, and respects the
confidentiality and integrity policies of each principal involved.

We define our security model based on the notion ofrule patternsthat allow each principal to define confidentiality
and integrity policies on the rules and facts in its knowledge base. Because our system evaluates an authorization
query on multiple evaluation nodes in a distributed way, it is possible for each principal to choose to which principal it
is willing to disclose the information needed to evaluate the authorization query. We describe our key algorithms and
prove that our algorithms guarantee that the proof for an authorization query is constructed only if the security policies
of each participating principals are satisfied.

Our current prototype system is implemented in Java, by extending XProlog [20] with a feature to construct a proof
for a query instead of simply evaluating the query and returning a result. We plan to deploy our current implementation
in realistic large-scale applications and to evaluate the performance and scalability of our system. We also plan to
explore various optimization techniques such as caching and parallel search for a proof to improve the performance
and the scalability of the system. Another possible extension of our system is to add some mechanism for giving user
feedback as we discuss in Section8.6.

Acknowledgments

We thank the anonymous reviewers whose valuable comments and suggestions helped improve the quality of this
paper. We are also grateful to Guanling Chen, for providing helpful feedback on earlier drafts of this paper. This project
was supported under Award No. 2000-DT-CX-K001 from the Office for Domestic Preparedness, U.S. Department of
Homeland Security. Points of view in this document are those of the author(s) and do not necessarily represent the
official position of the U.S. Department of Homeland Security.

References

[1] Summary of HIPAA privacy rule, 2004.http://www.hhs.gov/ocr/privacysummary.pdf .
[2] G.-J. Ahn and R. Sandhu. The RSL99 language for role-based separation of duty constraints. InRBAC ’99: Proceedings of

the fourth ACM Workshop on Role-based Access Control, pages 43–54. ACM Press, 1999.
[3] J. Al-Muhtadi, A. Ranganathan, R. Campbell, and D. Mickunas. Cerberus: a context-aware security scheme for smart spaces.

In Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, pages 489–496.
IEEE Computer Society, March 2003.

[4] J. Bacon, K. Moody, and W. Yao. A model of OASIS role-based access control and its support for active security.Proceedings
of the sixth ACM Symposium on Access Control Models and Technologies, 5(4):492–540, 2002.

[5] A. R. Beresford and F. Stajano. Location Privacy in Pervasive Computing.IEEE Pervasive Computing, 2(1):46–55, January-
March 2003.

[6] K. Biba. Integrity considerations for secure computer systems. Technical Report 76-372, U.S. Air Force Electronic Systems
Division, 1977.

[7] G. Chen, M. Li, and D. Kotz. Design and implementation of a large-scale context fusion network. InFirst Annual In-
ternational Conference on Mobile and Ubiquitous Systems: Networking and Services (Mobiquitous), pages 246–255, Aug.
2004.

[8] M. J. Covington, M. Ahamad, and S. Srinivasan. A security architecture for context-aware applications. Technical Report
GIT-CC-01-12, Georgia Institute of Technology, May 2001.

[9] M. J. Covington, W. Long, S. Srinivasan, A. K. Dey, M. Ahamad, and G. D. Abowd. Securing context-aware applications
using environment roles. InProceedings of the Sixth ACM Symposium on Access Control Models and Technologies, pages
10–20. ACM Press, 2001.

[10] M. Gruteser and D. Grunwald. Anonymous usage of location-based services through spatial and temporal cloaking. InPro-
ceedings of Mobisys 2003: The First International Conference on Mobile Systems, Applications, and Services, San Francisco,
CA, May 2003. USENIX Associations.

[11] U. Hengartner and P. Steenkiste. Access control to information in pervasive computing environments. InProc. of 9th
Workshop on Hot Topics in Operating Systems (HotOS IX), pages 157–162, May 2003.

[12] J. A. Hine, W. Yao, J. Bacon, and K. Moody. An architecture for distributed OASIS services. InIFIP/ACM International
Conference on Distributed Systems Platforms, pages 104–120. Springer-Verlag New York, Inc., April 2000.

[13] National incident management system (coordination draft), 2004.http://www.dhs.gov/dhspublic/interweb/
assetlibrary/NIMS-90-web.pdf .

28

http://www.hhs.gov/ocr/privacysummary.pdf
http://www.dhs.gov/dhspublic/interweb/assetlibrary/NIMS-90-web.pdf
http://www.dhs.gov/dhspublic/interweb/assetlibrary/NIMS-90-web.pdf

[14] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A logical language for expressing authorizations. InIn Proceedings of the
1997 IEEE Symposium on Security and Privacy, pages 31–42. IEEE Press, 2001.

[15] T. Jim. SD3: A trust management system with certified evaluation. InProceedings of the IEEE Symposium on Security and
Privacy, pages 106–115. IEEE Computer Society, 2001.

[16] A. Kapadia, G. Sampemane, and R. H. Campbell. KNOW Why your access was denied: regulating feedback for usable
security. InCCS ’04: Proceedings of the 11th ACM conference on Computer and Communications Security, pages 52–61.
ACM Press, 2004.

[17] A. Malpani, R. Housley, and T. Freeman. Simple certificate validation protocol (SCVP). Internet Draft, draft-ietf-pkix-scvp-
14.txt, April 2004. http://www.oasis-open.org/committees/download.php/2406/oasis-xamcl-1.
0.pdf .

[18] G. Myles, A. Friday, and N. Davies. Preserving privacy in environments with location-based applications.IEEE Pervasive
Computing, 2(1):56–64, January-March 2003.

[19] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control models.IEEE Computer, 29(2):38–
47, Feb 1996.

[20] J. Vaucher. XProlog.java: the successor to Winikoff’s WProlog, Feb 2003.http://www.iro.umontreal.ca/
∼vaucher/XProlog/AA README.

29

http://www.oasis-open.org/committees/download.php/2406/oasis-xamcl-1.0.pdf
http://www.oasis-open.org/committees/download.php/2406/oasis-xamcl-1.0.pdf
http://www.iro.umontreal.ca/~vaucher/XProlog/AA_README
http://www.iro.umontreal.ca/~vaucher/XProlog/AA_README

	Introduction
	Background
	Authorization rule language
	Proof tree

	Security policies
	Rule patterns
	Integrity policies
	Confidentiality policies
	Assumptions

	Authorization for the basic case
	Architecture
	Proof object
	Decomposition of a proof tree
	Enforcement of confidentiality policies
	Algorithms
	Example application

	Authorization for the general case
	Integrity of a proof tree
	Representation of a proof
	Decomposition of proof trees.
	Enforcement of confidentiality policies
	Algorithms
	Example application

	Soundness of the algorithm
	Proof for confidentiality policies
	Proof for integrity policies

	Related work
	Discussion
	Completeness of our algorithm
	Security assurance
	Complexity of policy definition
	Scalability
	Expressiveness of the authorization language
	User feedback

	Summary and future work

