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Abstract
In this work, we attempt to determine whether the con-
textual information of a participant can be used to predict
whether the participant will respond to a particular Eco-
logical Momentary Assessment (EMA) trigger. We use a
publicly available dataset for our work, and find that by us-
ing basic contextual features about the participant’s activity,
conversation status, audio, and location, we can predict
if an EMA triggered at a particular time will be answered
with a precision of 0.647, which is significantly higher than
a baseline precision of 0.41. Using this knowledge, the re-
searchers conducting field studies can efficiently schedule
EMAs and achieve higher response rates.

Author Keywords
Ecological Momentary Assessment; Notification; Interrupt-
ibility; Mobile sensing; Context-aware computing

ACM Classification Keywords
H.5.2 [Information interfaces and presentation (e.g., HCI)]:
User Interfaces

Introduction
Ecological Momentary Assessment (EMA) [9], also known
as the Experience Sampling Method (ESM) [4], is a com-
monly used technique designed to collect information about
a participant’s current behavior and experiences while they
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are in their natural environment. EMA methods ask the
participant to answer questions, in the moment, to assist
researchers in collecting ecologically valid self-reported
data [8]. By collecting responses “in the moment”, EMA
reduces recall bias relative to methods that query the par-
ticipant at the end of the day or end of the study period. By
using technology to collect responses, EMA reduces partic-
ipant interaction with researchers relative to observational
studies in which the researcher shadows the participant [9].

The ubiquitous presence of smartphones and wearable
devices has enabled the common use of EMA in a broad
range of studies. Researchers have successfully used EMA
to collect ground truth for annotating the sensory measure-
ments and the construction of training data for machine-
learning models of human emotion, mood, stress, and per-
sonality [12, 2, 13].

The problem, however, is that the researchers are depen-
dent on participants to correctly and diligently answer the
EMA prompt. For the participants, responding to frequent
or lengthy questionnaires can be burdensome. This burden
may decrease participant responsiveness over the course
of a study, an effect noted by several researchers [12, 10].

We anticipate that EMA participants would be more respon-
sive if the prompts occur in a context where they are more
likely to respond. We propose to time EMA prompts to suit
the participant’s context – reducing participant burden and
increasing participant compliance. To do so, we must first
understand how context affects participant compliance (re-
sponsiveness) to EMA prompts.

In this work, we evaluate the context of the participant to
determine whether s/he is likely to answer an EMA. We
investigate some basic features about participant context
(which includes activity, audio, conversation, and location)

to determine whether contextual information enables us
to predict whether a given EMA prompt is likely to be an-
swered quickly. Our work is the first to use activity, audio,
conversation, and location data to predict whether an EMA
prompt will be answered. Such a predictive model can help
researchers develop effective strategies for delivery of EMA
prompts without over-burdening the participant.

We use the publicly available StudentLife Dataset [12]. The
dataset consists of longitudinal data from 48 participants
over a period of 10 weeks. While the dataset itself contains
a wide variety of data (including phone sensor and usage
data, EMAs, surveys, dining data, and more), our work fo-
cuses particularly on the activity, audio, conversation, and
location data along with the self-reported EMA data.

Background
Prior work has introduced an assortment of time-based
sampling schemes for the delivery of EMA prompts to par-
ticipants, selected by the researcher based on the goals of
the study [1, 3, 9]. Prompts may be ‘triggered’ (1) at pre-
determined times, (2) at random times according to some
parameters, or (3) at dynamic times according to some con-
textual policy (such as location, activity, physiological state,
or combination thereof).

None of the above methods account for the participant’s
availability to respond to the prompt. A participant might not
be available to answer a particular prompt, for many rea-
sons: the EMA device may not be present, the social con-
text may be require the participant’s attention, or the partic-
ipant’s activity prevents him or her from seeing the prompt
or from responding. In such cases, the participant may re-
spond late (if permitted by the EMA protocol) or never. In
some studies, even a delayed response may not meet the
research goals.
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To address these issues, the EMA policy should pick a
‘good’ time to trigger prompts – times when the user is
more likely to answer the prompt. Several studies have
sought to find such opportune moments, when the user is
likely to respond to a notification (any notification, not nec-
essarily EMA prompts) [7, 11, 5, 6].

The most prominent example is InterruptMe, an interruption
management library for Android smartphones, designed
to allow researchers to look at opportune moments to in-
terrupt the user. They consider contextual information like
activity and location [7]. Their analysis also uses features
computed from data reported by users, and the researchers
achieve a precision of 0.64 in estimating whether a partici-
pant will respond to a notification prompt.

Turner et al. investigated whether to push or delay a notifi-
cation based on contextual information about the phone, in-
cluding motion, charging state, volume state, ambient light,
and phone orientation [11]. They report preliminary results
with accuracy of up to 60%.

Other researchers have looked at delivering notifications
at activity ‘breakpoints’ [5] and discovered that delivering a
notification at a breakpoint resulted in lower participant cog-
nitive load as compared to those sent out “immediately” [6].

In contrast to the above research, we look at a broader set
of contextual features, and use passively collected sensing
data to predict whether a given prompt will be answered.

StudentLife Dataset

Context Values

Activity

0 : Stationary
1 : Walking
2 : Running
3 : Unknown

Audio

0 : Silence
1 : Voice
2 : Noise

3 : Unknown

Conversation
Start time,
End time

GPS Location
Latitude,

Longitude

WiFi Location
On-campus Location

from WiFi scan

Table 1: Contextual information
available in the StudentLife
dataset.

We use the publicly available StudentLife Dataset, which
consists of a wide range of data collected from 48 partici-
pants over 10 weeks [12]. Table 1 lists some of the interest-
ing sensor data. The study also used EMA to collect sev-
eral types of self-report data: stress, affect, behavior, mood,

sleep, and activity.

The StudentLife app triggered several EMA prompts each
day, based on a predetermined schedule determined by
the research team. The schedule was the same for all
participants but changed every week. For each EMA re-
sponse, the dataset recorded the time and content of the
response – but does not indicate which prompt corresponds
to which response, or when the prompt was triggered.

We seek to determine and then develop a model to predict,
how quickly participants will respond to a prompt after it is
triggered. Because StudentLife dataset does not include
the trigger time, we must first estimate the time each EMA
prompt was triggered, based on the responses available in
the dataset.

In the following sections, we discuss our method to recon-
struct the likely trigger times, followed by a discussion of our
prediction model and the results obtained.

Trigger Time Estimation
In StudentLife, the trigger schedule was identical for all par-
ticipants, but not recorded in the dataset. The trigger sched-
ule varied from week to week, but the number of prompts
per day was small (typically one or two). Our key insight is
that the total number of responses to a EMA in a short time
immediately following the EMA trigger time should be signif-
icantly higher than the number of responses at a later time.
In other words, we expect that most participants respond
quickly, leading to peaks in the number of responses over
time, allowing us to infer that a prompt was triggered shortly
before each such peak.

To pursue this approach, we had to verify that EMA prompts
were triggered sparingly during the day; if prompts were fre-
quent, responses may be frequent and distributed through-
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out the day, making it difficult to discern peaks. Although
the StudentLife study triggered multiple prompts each day
(about 8 per day) we focus on one category – the stress
EMA – which was triggered only 1-2 times a day.

We group the responses by response time into 15-minute
buckets, and count the number of responses in each bucket.
Figure 1 plots the resulting histogram of responses to the
stress EMA in one day of the StudentLife dataset. We can
see that the number of responses increases drastically in
the 9th and the 81st buckets. Based on our hypothesis, we
conclude that the EMAs were triggered twice in that day –
during the 9th and the 81st blocks.
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Figure 1: Histogram of responses
across all participants in one day,
in 15-minute buckets.

To find the trigger times, we use a custom peak-detection
algorithm to find the blocks in which the EMA was triggered.
For every such block detected by our algorithm, we assume
the corresponding prompt was triggered at the start time
of that block. Using this approach, we determined 54 trig-
ger times for the stress EMA over the length of the study.
Although the EMA may have been triggered more times –
we may have overlooked some peaks – we are confident of
these 54 occasions.

We observed that all 54 occasions discovered by our al-
gorithm were either at the 0th or the 30th minute of an
hour. We contacted the authors of StudentLife and they
confirmed our findings, saying that their EMA trigger times
were always at the 0th or 30th of the hour. This confirma-
tion gave us confidence that our estimated trigger times
were accurate.

Context Features
Activity before_activity and af-

ter_activity, where each
can take a value from 0-3,
depending on the labels in
Table 1

Audio before_audio and af-
ter_audio, where each
can take a value from 0-3,
depending on the labels in
Table 1

Conversation before_convo and af-
ter_convo, where each
can either be ‘true’ or
‘false’, depending on
whether there was a con-
versation detected in that
window

Location before_loc and after_loc,
where each can take be
one label depending on
the building type: study,
dorm, food, gym, etc.

Time time of the day, day of the
week

Table 2: The features computed for
the different contexts.

Next, for every participant, we check for a response within 4
hours of the estimated EMA trigger time. If a response ex-
ists, we assume the participant answered that the prompt,
whereas if there is no response within the 4 hours win-
dow, we assume the participant did not answer that EMA

prompt. The reason being that the StudentLife system does
not save a prompt ‘id’ with the responses, so if we look at
a longer time period, then the response might be to a later
prompt, instead of the current prompt. We report a total of
906 responses from 2,179 prompts across all participants.

With solid estimates for the trigger time of the EMA prompts,
we explain our prediction model in the next section.

Prediction Model
In this work, we use contextual information – activity, audio,
conversation and location – all of which are readily available
in the StudentLife dataset. As shown in Table 1, the dataset
consists of two different types of locations – (1) GPS based
location, the latitude and longitude of the participants’ cur-
rent location, and (2) Wi-Fi based location, which provides
the on-campus building name in or around which the stu-
dent is present. Since the building name can give us more
information about a participant’s location, we use the Wi-
Fi based location in our model. We then map each build-
ing name to a particular category (e.g., study, dorm, food,
street) and use these labels in our predictive model.

In our model, we look not only at the contextual informa-
tion leading up to the time when an EMA was triggered, but
also if there was any change in context during that time. We
consider a window of time before an EMA trigger time, and
compute the “before” and “after” contextual features on that
window, so that we can capture the context change in that
window. Table 2 lists the features we compute. For exam-
ple, if the time at which the EMA prompt was triggered was
t, and the size of the time window we use to compute fea-
tures is ∆t, then the “before” features will be computed in
the time range [t − ∆t, t − ∆t

2 ], and the “after” features
will be computed at [t− ∆t

2 , t]. For our experiments, we set
∆t = 10 minutes.
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Since we aim at modeling interruptability, we predict the
following outcomes: (1) whether a participant will respond
to an EMA prompt, ever, and (2) whether a participant will
respond to an EMA prompt within a given time interval, td.
Prior works like InterruptMe have also measured similar
outcomes for measuring interrupt ability [7]. For both the
outcomes, we report the precision, i.e., the proportion of
the instances our model predicted the prompt will be an-
swered which actually were answered, and the recall, i.e.,
the proportion of all the instances the prompt was actually
answered and was identified by our model.

To evaluate the first outcome: for each EMA prompt we cal-
culate the notification context for every participant and label
it true if that participant provided a response to that EMA
prompt,and false otherwise. We then perform 10-Fold cross
validation using three different classifiers – SVM, Random
Forest and Naive Bayes – and report the results in Table 3.
We also report the baseline classification results for com-
parison.This baseline is calculated by classifying the in-
stances with a probability based on the proportion of EMA
prompts that were actually answered in the training set.

Classifier Precision Recall
SVM 0.647 0.526
Random Forest 0.633 0.551
Naive Bayes 0.635 0.546
Baseline 0.41 0.42

Table 3: Predicting if an EMA will
be answered based on the context
at the time of prompt.

We observe that all the context-based models perform
significantly better than the baseline model, consistently
achieving a precision above 0.63, with a highest precision
precision of 0.647, which is similar to the precision achieved
by InterruptMe. Furthermore, for the highest precision, we
achieve recall greater than 0.52, which is significantly better
than the recall reported in InterruptMe for a similar preci-
sion. This suggests that in comparison to InterruptMe, our
model finds a greater proportion of opportune moments,
with comparable precision.
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Figure 2: Predicting whether an
EMA will be answered within a
given time threshold (td), based on
the context at the time of the
prompt.

To evaluate the second outcome: for each EMA prompt we
calculate the notification context for every participant and
label it true if that participant provided a response to that

EMA prompt, within a threshold time (td), and false other-
wise. Figure 2 shows the 10-fold cross-validation results
across different classifiers. Observe that as we increase the
time boundary (td), the precision also improves.

We further sought to understand how context affected re-
sponse to EMA prompts. For our purposes, we define re-
sponsiveness as the percentage of prompts a participant
answered. We look at how a change in context in the time
just before a prompt increased or decreased the respon-
siveness of a participant in that context, as compared to the
baseline measure, i.e., overall responsiveness across all
prompts. In Table 4 we observe that context changes had
only a slight impact on participant responsiveness, when we
consider the average across all the participants. We found,
however, a substantial change in responsiveness when we
look at individual participants (in this table we examine two
randomly selected participants): note, for example, how a
change in location decreased the responsiveness of Par-
ticipant 1 (P1) by 13.6%, whereas it increased the respon-
siveness of Participant 2 (P2) by 16%. It is interesting to
observe how a context can have opposite effects on the
responsiveness of different participants.

Conclusion and Future Work
In this paper we evaluate the use of contextual informa-
tion to predict whether a participant will respond to an EMA
prompt. Specifically, we explored activity, conversation, au-
dio and location context from the StudentLife dataset. While
we understand that interruptability is based on a wide range
of factors, our preliminary results give us the confidence to
explore deeper. In future work, we hope to explore factors
like telephone and SMS logs, phone-app usage, phone-
charging events, and calendar events. We also aim to de-
velop an application that triggers EMA prompts according
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to context so we can evaluate the effect on participant’s re-
sponse time, quality of response, and number of responses.
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