
A Combined Routing Method for Ad Hoc Wireless
Networks

Soumendra Nanda
Department of Computer Science

Dartmouth College

Zhenhui Jiang
SYSTRA USA

Corresponding author: snanda@cs.dartmouth.edu

David Kotz
Institute for Security Technology Studies

Department of Computer Science
Dartmouth College

Abstract— Several simulation and real world studies show that
certain ad hoc routing protocols perform better than others under
specific mobility and traffic patterns. In order to exploit this
phenomena, we propose a novel approach to adapt a network to
changing conditions; we introduce “a combined routing method”
that allows the network to seamlessly swap from one routing
protocol to another protocol dynamically, while routing continues
uninterrupted. By creating a thin new virtual layer, we enable
each node in the ad hoc wireless network notify each other
about the protocol swap and we do not make any changes to
existing routing protocols. To ensure that routing works efficiently
after the protocol swap, we reuse information from the previous
protocol’s routing table while initializing the data structures
for the new routing protocol. We study the feasibility of our
technique and the overheads incurred while swapping between
AODV, ODMRP and APRL under different network topologies
and traffic patterns through detailed simulations. Our results
show that the swap latency is related to the nature of the
destination protocol and the topology of the network. We also
find that the control packet ratio of a routing protocol during
and after a swap is close to that of the protocol running before a
swap, thus indicating that our approach does not add excessive
overhead.

I. INTRODUCTION

A mobile ad hoc network (MANET) is a collection of mov-
ing computers connected by wireless links. By routing packets
cooperatively among the nodes, these nodes can communicate
with each other without any infrastructure. Thus, ad hoc net-
works are often proposed for use in emergency situations, such
as disaster environments and military conflicts. It is important
that ad hoc networks should react to network topological
changes and traffic demands quickly and efficiently, and
respect the inherent bandwidth and energy constraints [26].
Several researchers compare the performance of different ad
hoc routing algorithms [21], [10], [5], [17]. Their results share
a common theme; they all found that each routing algorithm
can outperform the others in specific conditions, depending on
the workload, terrain, network characteristics, or node mobility
pattern.

Gray et al. compared four different routing algorithms [10]:
AODV [27], ODMRP [16], APRL [15] and STARA [11],
[12]. The authors used both simulations and real testbed
experiments and found that under different wireless network
conditions the relative performance was not the same. For
example, ODMRP’s message delivery ratio is better than
AODV’s ratio outdoors, while AODV has a higher message

delivery ratio indoors [10]. Broch et al. [5] compared DSDV,
TORA, DSR and AODV. They found that DSDVs routing
overhead was almost constant with respect to mobility rate
while TORA, DSR and AODVs routing overhead dropped as
the mobility rate dropped. Lee et al. [17] compared ODMRP,
AMRoute [4], CAMP [8], AMRIS [31], and flooding. They
found that “in a mobile scenario, mesh-based protocols
(ODMRP) outperformed tree-based protocols (AODV)”, but
they also pointed out that ODMRP showed “a trend of rapidly
increasing overhead as the number of senders increased” [17].
Nanda et al. compared LAR, MLAR, AODV and AOMDV
in extensive simulations in 2D and 3D mobility patterns [21].
They also found distinct advantages for one protocol over the
other in different relative traffic and mobility conditions.

Ad hoc wireless network routing protocols are usually
divided into two groups: Proactive (Table Driven) and Re-
active (On-Demand) routing [28]. Proactive routing protocols
compute the routes in advance while reactive routing protocols
compute the routes only when necessary. Both have advan-
tages and disadvantages. Thus several hybrid routing protocols
have been proposed to combine both proactive and reactive
routing modes [13], [23], [25]. The Zone Routing Protocol
(ZRP) [13] divides the network into overlapping, variable-
size zones. Routing within a zone uses proactive algorithms
and routing between zones uses reactive algorithms. There are
some other hybrid routing algorithms that combine proactive
and reactive routing algorithms, such as HARP [23] and
SHARP [25]. To reduce overhead, these hybrid methods group
nearby nodes and use proactive routing algorithms within
groups and use reactive routing algorithms between groups.
Chen et al. proposed adaptive routing using clusters, which
improves throughput by up to 80% [6]. Belding-Royer pro-
posed hierarchical protocols to reduce overhead and gain more
scalability [3]. However, since that technique uses higher-
level topological information, the route to a destination might
not be optimal, and the extra topological information itself
requires more memory. Hoebeke et al. proposed an adaptive
multi-mode routing algorithm [14]. Their method improved
efficiency by switching to different protocols. To achieve this
efficiency, however, they introduced many new components
for the routing algorithm, which increased the complexity of
each algorithm. Their proposed solution added a statistical
component at the network layer and they collected non-local

Dartmouth Computer Science Technical Report TR2009-641

1

David Kotz
© Copyright 2009 by the authors



statistics through periodic broadcasting of a hello message to
neighbors.

A common aspect of previous efforts is the attempt to
modify the routing algorithm itself by combining multiple
protocols into a new hybrid protocol that outperforms previous
methods. Rather than creating a new adaptive routing algo-
rithm, we aim to achieve better performance by dynamically
switching to the best existing protocol for the current wireless
network conditions. In this paper we focus on the mechanism
for switching protocols, rather than the policy for choosing
when to switch. Specifically, we develop and evaluate “the
combined routing method,” which is our mechanism to enable
a network of nodes to switch dynamically to a new routing
protocol. To the best of our knowledge, such a scheme that
does not require any modification to existing routing protocol
implementations, has never been studied or even proposed for
wired or wireless networks.

To simplify our combined method, we assume that we
already know these existing protocols’ characteristics in differ-
ent environments, and that some mechanism exists to choose
the best routing protocol based on the current network traffic
pattern. As discussed in Section VI, we could use a centralized
method to gather statistics about current network state, identify
the traffic pattern, and then select a correct new protocol
accordingly using techniques proposed by Qui et al [20].

In ad hoc networks, each node acts both as a host and
a router. We thus use the term “node” instead of “host”
or “router”. We also use the two terms “routing algorithm”
and “routing protocol” interchangeably. In Section II, we
introduce three different routing algorithms, AODV, ODMRP,
and APRL. We describe the differences among these three
protocols and compare their performance. We also introduce
SWAN, a simulator on which our experiments run. In Sec-
tion III, we propose a method to switch among the three
routing algorithms and discuss the implementation issues of
this approach. In Section IV, we explain our experimental
setup; in Section V we study the performance of this approach
and in Section VI we discuss our results. In Section VII, we
summarize and draw conclusions.

II. BACKGROUND

We ran our routing protocols on the Dartmouth Simulator
for Wireless Ad hoc Networks (SWAN) [30]. SWAN is built
on the parallel discrete event driven simulator DaSSF [7],
which is a C++ implementation of the Scalable Simulation
Framework (SSF) [29]. DaSSF is particularly optimized for
high performance when simulating large telecommunication
systems [18] since DaSSF is able to simulate a network
model that contains thousands of nodes. SWAN implements
two layers of the 802.11 protocol: a pseudo-protocol-session
for the physical layer and a protocol session for the MAC
layer. SWAN also includes IP and ARP layers ported from the
SSFNet [29] simulator code. A convenient feature of SWAN
is that we can dynamically configure the protocol stack using
the DML language. The protocol stack of the whole system,

illustrated in Figure 1, is composed of five layers. Our routing
protocols AODV, ODMRP, APRL are above the UDP layer.

Fig. 1. Modified SWAN system architecture

We used existing implementations of AODV, ODMRP and
APRL from the Dartmouth ActComm project [1]. All three
routing protocols are implemented in user space on Linux,
and they use an IP tunnel and UDP sockets to perform
their routing. An “IP tunnel” is a virtual network device
that connects a UNIX device file and a network interface.
Each node has a virtual IP address associated with the tunnel
network interface, and a physical IP address associated with
the real network interface in the node‘s IP forwarding table
(Figure 1). At first, the application sends packets using the
virtual IP address of the desired destination node. Then the
packets are forwarded to the UNIX device file through the
IP tunnel. After that, the routing engine converts the virtual
IP address to a physical IP destination address, and finds the
physical IP address of the next hop according to its routing
table and pushes the packets down to the IP layer. These
packets with a physical IP address are forwarded to the real
network interface instead of the virtual network interface. The
original virtual-addressed packet is thus wrapped in an IP
packet addressed to the physical IP address of the next hop
in the IP layer, in effect, tunneling the virtual network into
the physical network. When a packet arrives, the simulator
notifies the routing engine about this event and then the routing
engine unwraps the packet and checks the virtual address to
see whether the packet has reached the destination or needs
to be forwarded again. Finally, when a packet arrives at the
destination, the simulator notifies the routing engine and the
routing engine writes the packet to the UNIX device file for
delivery to the application. The system can be used for both
simulation as well as actual field experiments [10].

A. Ad hoc On-demand Distance Vector Routing (AODV)

The Actcomm AODV implementation is an extension from
the originally proposed AODV [27], adding the broadcast
HELLO message. This implementation is capable of both

Dartmouth Computer Science Technical Report TR2009-641

2



unicast and broadcast routing. There are four types of control
packets: RREQ, RERR, HELLO, and RREP. The first three
are sent by broadcast, while RREP is by unicast.

B. On-Demand Multicast Routing Protocol (ODMRP)

ODMRP is a multicast on-demand routing protocol. There
are two types of control packets: Join Query and Join Re-
ply [2]. Join Query is sent by broadcast and Join Reply is
sent by unicast. Both Join Query and Join Reply contain
the originator and multicast group ID addresses. ODMRP
uses multicast groups to keep member information. For each
known node M in the whole network, ODMRP maintains a
multicast group for that M, where the multicast group ID is
Ms IP address. Each ODMRP node has two data structures
in addition to the routing table: a multicast group table and
a message cache. The multicast group table contains all the
multicast groups for a node. The message cache is used
to detect routing loops. The multicast group table contains
expiration time and information about whether it knows a route
to M or if it should receive data originated from M. Although
ODMRP is a multicast protocol, similar to Bae et al. [9], we
use it only as a unicast protocol.

C. Any Path Routing without Loops (APRL)

APRL is a unicast, proactive routing protocol [15]. There
are two types of control packets: Beacon and PDVN. A node
periodically broadcasts beacons to its neighbors. Each beacon
contains the route information known by the sender. Ping
Destination Via Neighbor (PDVN) packets are used to confirm
the routes that the node receives in beacons. Upon startup,
each node broadcasts a beacon message to its neighbors so
that each nodes routing table only contains the destinations of
its neighbors. After initializing the routing table with only its
neighbor’s information, each node broadcasts its own routing
table to its neighbors periodically. If there is no route to a
packet’s required destination, the data packet is discarded;
unlike AODV there is no route-request mechanism.

III. IMPLEMENTATION

In this section, we discuss our method to combine the
three different protocols. Simply speaking, we insert a new
layer between the routing protocols and the UDP layer (or
equivalent layer on some other infrastructure). We call this new
layer the Protocol-Swap Layer. Thus, the change in protocol
is transparent to the lower layer (in our case, the UDP layer).

A. The combined method

Because we insert a new layer (the protocol-swap layer)
between the routing layer and UDP layer, any control packet
generated by the routing protocols is intercepted by the
protocol-swap layer where the packet is wrapped with addi-
tional information; namely, the protocol type and the epoch
number (Figure 2). These two extra fields specify the current
protocol type and the freshness of the protocol respectively.
For any received control packet, we first check the additional
information at the protocol-swap layer, and then forward the

control packet to the appropriate routing protocol (subject to
some details discussed below).

Fig. 2. Packet format (top = old; bottom = new)
MAC IP UDP Control Packet

MAC IP UDP Epoch Num. Control Packet

Because of the insertion of the protocol-swap layer shown in
Figure 1, the protocol type and epoch number are transparent
to the routing protocol layer. The advantage of this layer is that
we only have to change the interface with the new protocol-
swap layer and can reuse the routing part of the existing
routing protocol codes. We also encapsulate all the code for
swapping protocols in the protocol-swap layer. Our combined
method adds little overhead because:
1) The two fields are only 4 bytes each, which is small
yet enough to prevent wraparound ambiguity. Since a control
packet is composed of a MAC header, an IP header, a UDP
header, and a control packet body, the extra two fields do not
use much extra bandwidth.
2) Only control packets are wrapped with the protocol type and
epoch number while data packets remain the same as before.
3) During run time, only the routing table of the current
protocol is maintained, and the other combined protocols’
routing tables are empty. So the combined method does not
use extra memory for additional routing tables.
4) Our implementation of the protocol-swap layer does not set
up a virtual connection to other protocol-swap layers, which
means this method does not add any new control packets.
5) We could add a traffic-monitor component in this layer. For
example, if a node detects that the ratio of route requests is
higher than normal, it might decide whether to swap to another
routing protocol. This topic is beyond the scope of this paper,
but we will discuss this topic in the section on future work.

B. The problems we need to solve

To implement the combined method, which can allow
networks to swap from one protocol to another, there are three
problems to solve:

1) Who determines when to swap, and how?
2) How is the swap decision communicated to all nodes?
3) How should each node adjust its internal tables?
While it is beyond the scope of this paper to determine

when a swap should occur, we discuss a potential solution
in Section VI-D. We assume for the rest of this paper that a
single master node can initiate a protocol swap and notify all
the nodes about the swap and focus on designing a practical
and efficient technique to implement our combined method.

C. How is the swap decision communicated?

The master node communicates its decision to its neighbors
by sending a control packet with the new protocol type and
epoch number. The master node increments the epoch number
and changes the protocol type every time it decides to swap.
After the neighbors change to the new protocol, all their future

Dartmouth Computer Science Technical Report TR2009-641

3



control packets will use this protocol type field and epoch
number, thus diffusing the news. We do not add the protocol-
swap layer header to data packets, however, because data
packets do not need to know which routing protocol is used
to find a path to the destination. Even if two nodes are using
different routing protocols, they can still send data packets to
each other, and the network can continue forwarding packets
even while a swap is in progress. The mechanism for protocol
swap requires each node to record its own notion of the current
local protocol type and epoch number. It then compares the
protocol-swap layer header of incoming packets to determine
whether a new epoch has occurred and thus it is time to switch
to a new protocol. There are two cases to consider:
Case 1: The received protocol number is the same as the
local protocol number. Case 1a: The received epoch number
is lower than its local epoch number; the node will discard
the packet. Case 1b: The epoch number is equal; process the
packet. Case 1c: The received epoch number is larger than
the local epoch number; the node will update its local epoch
number to be the received epoch number, and process the
packet.
Case 2: The received protocol number is different from the
local protocol number. Case 2a: The received epoch number
is lower than or equal to its local epoch number; the node
will discard the packet. Case 2b: The received epoch number
is larger than the local epoch number; the node will update its
local epoch number to be the received epoch number, swap to
the received protocol, then process the packet.

D. How to actually swap protocols?

To swap, we need to initialize the new destination protocol’s
routing table and other data structures by using those of the
current protocol. The primary goal when changing protocols is
to build the routing table for the new protocols and to initialize,
using as much information as possible from the routing table
of the old protocol. We consider all six different cases for the
swap: a) AODV to ODMRP or APRL, b) ODMRP to AODV
or APRL, and c) APRL to AODV or ODMRP.

E. Reuse prior routing table entries

To take advantage of the prior protocols routing information,
we reuse the entries in the prior routing table. However,
the entries in the routing tables of AODV, ODMRP, and
APRL are different, which complicates our effort to copy
the entries between routing protocols. We copy any similar
fields of two entries and choose a reasonable value for the
fields that are different. It is important to note that AODV,
ODMRP and APRL all have two key fields for routing: the
destination IP address and the next-hop IP address. These two
fields determine the next hop for forwarding packets to the
destination. Since all these routing protocols use these two
fields to determine any route, it is correct to copy these two
IP addresses from the prior routing table entry to the new
routing table entry. The other fields are used to determine the
current status of the routes. AODV, ODMRP, and APRL keep
different status of the routes for routing, so it might not be

correct to reuse them in the new protocol, but we can carefully
select a valid default value. We omit the details here for lack
of space but present them in a thesis [32] and also comment
on the correctness and the drawbacks of these default values.
One key advantage of our reuse of prior routing table entries
is that we are able to immediately use the old route after the
swap, eliminating most of the potential costs of a swap.

F. Key data structures

To perform the swap, we must not only change the routing
table, but each protocol’s special associated data structures as
well. We discuss each such data structure in turn.

AODV Precursor List: This data structure contains all the
upstream nodes that use the node itself towards the same
destinations. If the node determines that any one of its links is
broken, as a hint it sends a RERR packet to those neighbors
who are in its precursor list. When we swap to AODV, it is safe
to leave the precursor list empty, because this data structure
will be rebuilt when nodes later send out RREQ.

AODV Packet Queue: The source node queues any data
packets that are yet to be sent in per-destination packet queues.
When we swap from AODV to another protocol, we discard
the packets in these queues and they are lost. We assume that
some other mechanism (such as TCP) will realize that these
packets did not reach their destinations and will resend those
data again. The packet queue is AODV’s unique data structure;
other protocols do not have a queue for data packets. If we
swap to AODV, we can simply create empty packet queues.

AODV RREQ Packet Cache: This data structure is used to
store recently received RREQ packets to avoid loops. It may
be created as empty when we swap to AODV, and may be
discarded when we swap from AODV.

ODMRP Message Cache: This data structure is used to store
recently received Join Query packets to avoid loops. It may
be created as empty when we swap to ODMRP, and may be
discarded when we swap from ODMRP.

ODMRP Multicast Group Table: This data structure is used
to maintain a list of multicast groups in which this node is
a member and is checked when receiving a Join Query. If
this node is in the multicast group, then it should accept the
Join Query packet and send back a Join Reply. ODMRP has
to rebuild the multicast group table via Join Queries when we
swap to ODMRP. This data structure may be created as empty
when we swap to ODMRP, and may be discarded when we
swap from ODMRP.

APRL has no additional data structures, so there is nothing
extra to do when swapping to or from APRL.

IV. EXPERIMENTS

Our goal is to measure the overhead (in terms of time and
traffic) due to a protocol swap. We chose a static network,
which means all the nodes were preset to a certain position
and would not move during the experiments. The effective
transmission distance of the simulated node’s radio was 73m.
We ran the protocol for 200 seconds and the swap occurred

Dartmouth Computer Science Technical Report TR2009-641

4



Fig. 3. Topology: Line (top) and Lattice (bottom)

at 100 seconds. We selected two types of network topology
(Figure 3): ‘line’ and ‘square lattice’.

We select two network sizes: 9 nodes and 49 nodes. We
select two traffic speeds: 1 data packet originated per node per
second, or 1 data packet originated per node every 5 seconds.
Each data packet‘s destination is chosen uniformly among the
rest of the nodes. We run each parameter combination 5 times,
each time with a different random seed for SWAN; we report
the average result.

A. Metrics

We compare the performance of our combined method with
plain AODV, APRL, and ODMRP. We used two metrics: the
time to complete a protocol swap and the ratio of control
packets per data packet sent from the UDP layer.

Metric 1: Time to complete a protocol swap. The swap
time starts when the master node decides to swap, and ends
when all the nodes in the network have updated their local
protocol number and local epoch number. The metric is thus
the difference between the swap end time and swap start time.
This metric measures the swap latency.

Fig. 4. Control packet ratio measurement interval

Metric 2: Ratio of unicast and multicast control packets per
data packet sent from UDP layer i.e, the control packet ratio.
This metric helps us evaluate the efficiency of the destination
protocol after swap.

AODV has four control packets: HELLO, RREQ, RREP,
RERR. RREP is unicast and the rest are multicast. APRL has
two control packets: BEACON, PDVN. PDVN is unicast and
BEACON is multicast. ODMRP has two control packets: Join
Query, Join Reply. Join Reply is unicast and Join Query is
multicast. In all cases, the control packet ratio is the number of
(unicast and multicast) control packets divided by the number
of data packets sent from UDP layer.

TABLE I
TEST CONFIGURATIONS

Config. Layout Nodes Dist. Master node’s
neighbors

1 Line 9 20m 3
2 Line 49 20m 3
3 Square 9 25m 8
4 Square 49 30m 8

TABLE II
ASSOCIATION WITH NETWORK CONNECTIVITY

Config. Layout Nodes Dist. Max Swap Latency
1 Line 9 20m 10.004 sec
2 Line 49 20m 35.048 sec
3 Square 9 25m 1.813 sec
4 Square 49 30m 6.014 sec

We measure the control-packets ratio in three intervals using
two simulations: 1) the interval after swap of the destination
protocol; 2) the first half interval of different simulation of
just the destination protocol; 3) the second half interval of
the same simulation destination protocol. For example, in
Figure 4, simulation 1 represents a swap from ODMRP to
AODV starting at t=100s. Thus AODV is our destination
protocol. Simulation 2 is a simulation of just the destination
protocol for 200 seconds. So we compare the control packet
ratio for the following three intervals of time: 1) the destination
protocol after the swap from simulation 1 (time when the
nodes finish the swap until end of simulation at t = 200s).
2) the destination protocol for first 100 seconds from sim 2,
and 3) the destination protocol for second 100 seconds from
sim 2.

B. Environment

We chose four configurations as shown in Table I. Referring
back to Figure 3 and recalling the effective communication
distance (73m), several nodes are in range of each node,
including the master node. Although all nodes were connected
directly or indirectly, we can see in Configuration 3 that all
nodes were connected within the transmission range of each
other, but in other configurations multi-hop communication
was required.

V. SIMULATION RESULTS

We used the metrics we defined above to measure the effi-
ciency of the swap for a given destination protocol. We identify
the maximum or average swap latency to the same destination
protocol from two sources. For example, in Table III, we use
the average swap latency from ODMRP to AODV and APRL
to AODV as the swap latency for AODV.

A. Swap latency

1) Association with network connectivity: Table II and
Table III both show that swap latency is associated with
the network connectivity for each type of swap. The highest
connectivity (Configuration 3) has the best swap latency and

Dartmouth Computer Science Technical Report TR2009-641

5



TABLE III
AVERAGE SWAP LATENCY (S) WITH DIFFERENT NETWORK TOPOLOGIES

Configuration To AODV To ODMRP To APRL
9 node Line 0.988 2.620 7.518
49 node Line 3.945 4.6146 31.045
9 node Square 0.050 1.233 0.012

49 node Square 2.493 2.006 11.021

TABLE IV
AVERAGE SWAP LATENCY (S) WITH DIFFERENT TRAFFIC PATTERNS

To AODV To ODMRP To APRL
Avg. Latency (Low Traffic) 1.788 1.435 12.029
Avg. Latency (High Traffic) 1.950 3.801 12.769

lowest connectivity (Configuration 2) has the worst swap
latency.

2) Association with the network traffic: Table IV shows
that for AODV and APRL, the swap latency were similar
with heavy and low traffic workloads. For ODMRP, the heavy
traffic swap latency is nearly twice as fast as the low traffic
latency. Since ODMRP is a purely reactive routing protocol,
it only sends Join Query when it needs to. So a busier traffic
pattern generates more control traffic and thus spreads the
news about the swap. But AODV and APRL both periodically
broadcast message to its neighbors, so the swap interval is
more dependent on the broadcast interval and not the traffic
load.

3) Association with the destination protocol: Table V
shows that AODV and ODMRP completed the swap quickly,
while APRL was relatively slow. After a swap, ODMRP needs
to broadcast Join Query packets to maintain its multicast group
membership information. Similarly, AODV needs to broadcast

TABLE V
AVERAGE SWAP LATENCY (S) OVER ALL TESTED CONFIGURATIONS

To AODV To ODMRP To APRL
Average Latency 1.8692 2.6186 12.3995

TABLE VI
MEASURED SWAP LATENCY (S) WITH THE DESTINATION PROTOCOL

OVER ALL TESTED CONFIGURATIONS

Config. Format= Number of nodes/Layout/Traffic-pattern
Sq = Square; Ln = Line; Lo= Low Traffic; Hi= High Traffic
No. Config. To AODV To ODMRP To APRL

a 9/Ln/Hi 0.928 1.645 5.032
b 9/Ln/Lo 1.048 3.595 10.004
c 9/Sq/Hi 0.098 0.652 0.009
d 9/Sq/Lo 0.001 1.813 0.014
e 49/Ln/Hi 1.235 2.593 27.043
f 49/Ln/Lo 6.655 6.635 35.048
g 49/Sq/Hi 4.890 0.849 16.032
h 49/Sq/Lo 0.095 3.162 6.010

RREQ if there is no route to the destination in the routing
table after swap. But APRL drops the packets if it can not
find route information in its routing table. Those route query
broadcasting packets make swaps to AODV and ODMRP fast.

Fig. 5. AODV control packet ratio

Fig. 6. ODMRP control packet ratio

Fig. 7. APRL control packet ratio

In Table II, we can see that in high connectivity square
configurations (rows 3 and 4), AODV and APRL swapped
quickly. This is because they both periodically broadcast a
message to neighbors. We can also see in Table VI that AODV
and ODMRP completed their swaps quickly even in the low
connectivity line networks. But APRL’s swap time was highly
related to the network topology. For example, AODV’s swap

Dartmouth Computer Science Technical Report TR2009-641

6



latency range was from 0.001 to 6.665 seconds and ODMRP’s
ranged from 0.652 to 6.635 seconds. APRL’s swap latency
range was from 0.009 to 35.048 seconds, however, because
APRL only broadcasts beacons to its neighbors periodically.
So the swap latency depends on the period of these broadcasts
rather than on the traffic patterns as in AODV or ODMRP.

B. The control packet ratio

In Figures 5, 6 and 7 we show the control packets ratio
of eight types of network configurations corresponding to the
same ones listed in columns 1 and 2 of Table VI. For each
configuration and each type of swap, we can see that the
control packets ratio after swap (the first bar in each group
of three) was not the largest one of each group in most cases.
Even if the control packets ratio after swap was the largest one
of each group, the variance between the three bars was low.
After the swap, in most cases, the destination routing protocol
performed almost transparently, much as it would without a
swap and data packets were routed successfully and with very
little control overhead. For APRL the third bars are always
small because APRL does not send many control packets in a
static network once routes have stabilized and all destinations
are reachable.

VI. DISCUSSION

A. Latency to complete a protocol swap

First, we found that the swap latency depends on the
network connectivity: highly connected networks had a better
swap latency, because news of the swap had fewer hops
to traverse. We also found that traffic workload influenced
the swap latency of reactive routing protocols like ODMRP.
Lastly, swap latency also depends on the characteristics of
the destination protocol. Protocols that are reactive depend on
the data traffic to generate control packets and thus propagate
news of the swap; proactive protocols depend on periodic
broadcasts to spread the news. If a protocol performs routing
without flooding, the swap latency was long (particularly in
less connected networks). In this case, a node might need to
send back an empty control message to inform a sender about
a new epoch and routing protocol if it receives any out-dated
control packets from the sender.

B. Control traffic overhead for protocol swap

As the results show, the control-packet ratio after swap was
lower than or close to the control-packet ratio of running a
protocol without a swap. First, the swap does not require extra
control packets to diffuse the swap information or rebuild
tables. Second, because we initialize the new routing table
using the old routes, we send few route-query packets. This
situation is true only in static networks or low mobility
networks. In high-mobility networks, there would be more
control traffic to rebuild a route to the destination, and more
lost data packets. However, the same would be true if the swap
had not occurred. Thus we believe that our method efficiently
transfers the network from one routing protocol to another,
using no new packet types, reusing routing table information

where possible, and not excessively increasing control traffic
after a swap.

C. An alternative approach

Hoebeke et al. proposed an adaptive multi-mode routing
protocol for ad hoc networks [14] but do not provide any
performance results. Their adaptive method is similar to our
combined method in principle: both want to dynamically swap
to another protocol based on current network conditions, but
there are three main differences.
1. Their adaptive method introduced a new type of control
packet to the existing protocols, which is periodically broad-
casted. Our method did not introduce any new message to the
existing protocols. Thus, it is relatively easy to combine more
protocols if necessary. On the other hand, we need to design
n× (n− 1) routing-table converters to combine n protocols.
2. In their method, different protocols share the same routing
table, requiring all protocols to be re-implemented to suit a
new, common routing table format. Each node also has a
neighbor table to keep track of connectivity and neighbors
modes (reactive or proactive). In our method, different proto-
cols each maintain their own routing table, and we translate
tables when we swap protocols. Thus, we do not need to alter
current protocols or limit their design capabilities.
3. We have actually implemented our ideas on SWAN and can
use our code for both simulations and real-world field tests. In
simulations, we have analyzed the performance of the routing
algorithm for swaps between three protocols.

D. Future work

To answer the critical question of when to swap, we are
exploring various network monitoring techniques in a comple-
mentary project [22]. By identifying the profile of the network
in a centralized manner, the master node can decide which
routing protocol the network should use (depending on the
desired performance criteria). After collecting all the required
information, the master node can decide when to swap and to
which protocol to swap in an automated manner by using a
simulator to simulate the impact of the new protocol on the
measured network state. Qui et al. proposed this simulator-
based technique [20] to automate management of a wireless
mesh network. Combining their approach with ours could
provide a first step towards a complete solution.

We note that our results are based on simulations and should
be considered tentative pending real-world experimentation.
For our initial evaluation, we chose to use static networks
to run our simulations and obtain an approximate lower
bound for the cost of our approach. We intend to evaluate
our technique in mobile scenarios in both simulations and
real-world experiments using the emulation capabilities of
SWAN [19] in the future.

One tradeoff we wish to explore is whether we should let
the protocol-swap layer broadcast an empty dummy packet
just to notify its neighbors about the swap. This broadcast
should decrease the swap completion time by increasing the
speed of disseminating news about the swap. In particular,

Dartmouth Computer Science Technical Report TR2009-641

7



this optimization would benefit protocols that do not broadcast
periodically (such as APRL). We could also add some fields in
the packet’s header to carry traffic statistics besides protocol
type and epoch number. There are many other avenues to
explore to create a practical solution such as developing
metrics to evaluate the before-and-after effects of each swap,
distributing the functionality of the master node, accounting
for errors in network measurement, buffering strategies, and
local vs. global performance optimizations, to name just a few.

VII. SUMMARY

We describe a method to combine AODV, ODMRP, and
APRL (and other protocols) in such a way that we can swap
from one protocol to another dynamically. For each pair of
protocols, we identify how to initialize each protocol’s data
structure from the previous entries of the other protocol. We
propose two metrics to measure the performance and simulate
various network topologies and conditions using SWAN. Our
results show that the time to complete a protocol swap
depended on the characteristics of the protocol we swap to,
the topology of the network, and the traffic on the network.
Our combined method swapped slowly for the less-connected
networks and for the protocols without flooding (like APRL)
but was efficient in all other cases. In our combined routing
method, from a software engineering point of view, we effi-
ciently reuse the source code of the existing routing protocol
by inserting a new layer to facilitate swaps, without changing
any existing protocol implementations.

ACKNOWLEDGMENT

We wish to thank Jason Liu, Yougu Yuan and Bob Gray for
their suggestions and help. This research program is a part of
the Institute for Security Technology Studies, supported under
Award number 2000-DT-CX-K001 from the U.S. Department
of Homeland Security, Science and Technology Directorate
and by Grant number 2005-DD-BX-1091 from the Bureau of
Justice Assistance. Points of view are those of the authors.

REFERENCES

[1] ActComm Project. http://actcomm.dartmouth.edu
[2] S. H. Bae, S. Lee, W. Su, M.Gerla. The Design, Implementation, and

Performance Evaluation of the On-Demand Multicast Routing Protocol
in Multihop Wireless Networks. IEEE Network Magazine, vol. 14, no.
1, Jan./Feb. 2000, pp. 70-77.

[3] E. Belding-Royer. Multi-Level Hierarchies for Scalable Ad Hoc Routing.
Wireless Networks, Vol. 9, Issue 5, 2003, pp. 461-478.

[4] E. Bommaiah, M. Liu, A. McAuley, R. Talpade. AMRoute: Adhoc
Multicast Routing Protocol. Internet-Draft, draft-talpade-manetamroute-
00.txt, Aug. 1998; Work in progress.

[5] J. Broch, D. Maltz, D. Johnson, Y. C. Hu, J. Jetcheva. A Performance
Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols.
In Proc. of MobiCom 1998, Oct. 1998, pp. 85-97.

[6] Y. P. Chen, A. Liestman. A Zonal Algorithm for Clustering Ad Hoc
Networks. International Journal of Foundations of Computer Science,
14(2), 2003, pp. 305-322.

[7] Dartmouth SSF. http://www.cis.fiu.edu/ liux/research/projects/dassf/
[8] J. J. Garcia-Luna-Aceves, E. L. Madruga. The Core-Assisted Mesh

Protocol. IEEE Journal on Selected Areas in Communications, vol. 17,
no. 8, Aug. 1999, pp. 1380-1394.

[9] S. Bae, S. Lee, M. Gerla. Unicast Performance Analysis of the ODMRP
in a Mobile Ad Hoc Network Testbed. In Proc. of IEEE International
Conference on Computer Communications and Networks (ICCCN), Oct.
2000, pp. 148-153.

[10] R. Gray, D. Kotz, C. Newport, N. Dubrovsky, A. Fiske, J. Liu, C.
Masone, S. McGrath. Outdoor Experimental Comparison of Four Ad
Hoc Routing Algorithms. In Proc. of the Seventh ACM/IEEE Interna-
tional Symposium on Modeling, Analysis and Simulation of Wireless and
Mobile Systems (MSWIM 2004), Venice, Italy, Oct. 2004.

[11] P. Gupta and P. Kumar. A System and Traffic Dependent Adaptive
Routing Algorithm For Ad Hoc Networks. In Proc. IEEE 36th Conf.
on Decision and Control, San Diego, CA, Dec. 1997, pp. 270-283.

[12] P. Gupta. Design and Performance Analysis of Wireless Network. Ph.D.
Thesis, Department of Electrical and Computer Engineering, University
of Illinois, Urbana-Champaign, Aug. 2000.

[13] Z. Haas and M. Pearlman. The Performance of Query Control Schemes
for the Zone Routing Protocol, IEEE/ACM Trans. Networking, vol. 9,
no. 4, Aug. 2001, pp. 427-438.

[14] J. Hoebeke, I. Moerman, B. Dhoedt, P. Demeester. Adaptive Multi-
mode Routing in Mobile Ad Hoc Networks. In Proc. of the 9th
International Conference on Personal Wireless Communications, Delft,
The Netherlands, Sep. 2004, pp. 107-117.

[15] B. Karp and H. T. Kung. Dynamic Neighbor Discovery and Loop- Free,
Multi-Hop Routing for Wireless Mobile Networks. Harvard University,
May 1998. Draft.

[16] S. Lee, W. Su, M. Gerla. On-Demand Multicast Routing Protocol in
Multihop Wireless Mobile Networks. ACM/Baltzer Mobile Networks and
Applications, special issue on Multipoint Communication in Wireless
Mobile Networks, 2000.

[17] S. Lee, W. Su, J. Hsu, M. Gerla, R. Bagrodia. A Performance
Comparison Study of Ad Hoc Wireless Multicast Protocols. In Proc.
of the IEEE International Conference on Computer Communications
(INFOCOM), Tel Aviv, Israel, Mar. 2000, pp. 565-574.

[18] J. Liu and D. Nicol. DaSSF 3.1 User’s Manual. Apr. 2001.
[19] J. Liu, Y. Yuan, D. Nicol, R. Gray, C. Newport, D. Kotz, L. Felipe

Perrone. Simulation Validation Using Direct Execution of Wireless Ad-
Hoc Routing Protocols. In 18th Workshop on Parallel and Distributed
Simulation (PADS04), Kufstein, Austria, May 2004, pp. 7-16.

[20] Lili Qiu, Paramvir Bahl, Ananth Rao, Lidong Zhou. Troubleshooting
Wireless Mesh Networks. SIGCOMM Computer Communications Re-
view, 36(5), 2006, pp. 17–28.

[21] S. Nanda and R. Gray. MLAR in 2D and 3D. In Proc. of 6th IEEE
Wireless Communications and Networking Conference (WCNC), Las
Vegas, April 2006

[22] S. Nanda and D. Kotz. Mesh-Mon: a multi-radio mesh monitor-
ing and management system. Computer Communications (2008),
doi:10.1016/j.comcom.2008.01.046

[23] N. Navid, S. Wu, C. Bonnet. HARP: Hybrid Ad hoc Routing Protocol,
International Symposium on Telecommunications (IST 2001), Teheran,
Iran, Sep. 2001.

[24] C. Perkins, E. Royer, S. Das. Ad Hoc On Demand Distance Vector
Routing. In Proc. of the 2nd IEEE Workshop on Mobile Computing
Systems and Applications, New Orleans, LA, Feb. 1999, pp. 90-100.

[25] V. Ramasubramanian, Z. Haas, E. G. Sirer. SHARP: A Hybrid Adaptive
Routing Protocol for Mobile Ad Hoc Networks. In Proc. of the ACM
Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC),
Annapolis, Maryland, June 2003. pp. 303-314.

[26] S. Corson, J. Macker. Mobile Ad hoc Networking: Routing Protocol
Performance Issues and Evaluation Considerations. RFC 2501, Jan.
1999.

[27] C. Perkins, E. Belding-Royer, S. Das. Ad hoc On-Demand Distance
Vector (AODV) Routing. RFC 3561, July 2003.

[28] E. Royer and C-K. Toh. A Review of Current Routing Protocols for
Ad-Hoc Mobile Wireless Networks. IEEE Personal Communications,
Vol. 6, April 1999, pp. 46-55.

[29] Scalable Simulation Framework. http://www.ssfnet.org/homePage.html
[30] Simulator of Wireless Ad hoc Networks.

http://www.eg.bucknell.edu/swan/
[31] C.W. Wu, Y.C. Tay, C-K. Toh. Ad hoc Multicast Routing protocol utiliz-

ing Increasing id-numberS (AMRIS) Functional Specification. Internet-
Draft, draft-ietf-manet-amris-spec-00.txt, Nov. 1998, Work in progress.

[32] Zhenhui Jiang. A Combined Routing Method for Ad hoc Wireless
Networks. MS Thesis, Dartmouth College Computer Science Technical
Report TR2005-566.

Dartmouth Computer Science Technical Report TR2009-641

8




