
The Galley Parallel
File System

Nils Nieuwejaar

Dartmouth College

Joint work with David Kotz

David Kotz
© Copyright 1996 by the authors잀

Nils Nieuwejaar 2

Overview

◆ Background

◆ File Structure

◆ System Structure

◆ Interface

◆ Case Study

◆ Conclusion

Nils Nieuwejaar 3

Background

◆ Most parallel file systems provide:
– Linear file model

– Unix-like interface

◆ Optimized for:
– Large files

– Large requests

– Sequential access

Nils Nieuwejaar 4

Linear File Model

◆ Typically stripe data across all the disks in the
system.

◆ Good performance for large requests

◆ Not good for small requests

Partition of a linear file into blocks

Nils Nieuwejaar 5

Workload Characterization

◆ Traced two production systems
– iPSC/860 at NASA Ames

» 128 Compute nodes

» Primarily CFD applications

» Dozens of users

» Control-parallel

– CM-5 at NCSA
» 512 Compute nodes

» Variety of applications

» Hundreds of users

» Data-parallel

Nils Nieuwejaar 6

Workload Characterization

◆ Most requests were small
– Most fewer than 300 bytes

◆ Requests were frequently non-contiguous

◆ Request sizes and intervals were regular

◆ Strided patterns were common

2D Matrix

Mapped to linear file

Nils Nieuwejaar 7

Design Goals

◆ Efficiently handle many access sizes and patterns

◆ Allow applications to explicitly control
parallelism

◆ Allow easy and efficient implementation of
libraries

◆ Scalable

◆ Minimize memory and performance overhead

Nils Nieuwejaar 8

Subfiles

◆ Each file contains one
subfile per disk

◆ Applications can
explicitly access
subfiles

◆ Allows control over:
– declustering

– parallelism

File

Subfile 0 Subfile 1 Subfile 2 Subfile 3

Nils Nieuwejaar 9

Forks

◆ Each subfile contains one or more forks

◆ Each fork is a named, linear stream of bytes

◆ Uses:
– Library-defined metadata

» e.g., indexing information

– Structuring data
» e.g., temperature in one fork, pressure in another

– Store code for accessing data
» e.g., Python, Java, Tcl, traditional object code

Nils Nieuwejaar 10

File Structure

File

Subfile 1 Subfile 2Subfile 0

Fork A

Fork B

Fork C

Fork D

Nils Nieuwejaar 11

System Structure

◆ I/O Processors
– Control disks

– Run Galley’s system code

◆ Compute Processors
– User applications

– Galley run-time library
Network

Nils Nieuwejaar 12

Compute Processors

◆ Galley run-time library
– Package application requests and send to IOPs

– Handle transfer of data between IOPs and application’s
memory

◆ Client applications can use
– C or C++

– Any message passing library

– Future:
» Fortran

» ViC*

Nils Nieuwejaar 13

I/O Processors

◆ Functional units
– CP Threads

– CacheManager

– DiskManager

◆ Implemented as
multiple threads DiskManager

C
P

T
hr

ea
d

CacheManager

C
P

T
hr

ea
d

C
P

T
hr

ea
d

C
P

T
hr

ea
d

Network

Nils Nieuwejaar 14

CP Threads

◆ Each CP has a dedicated thread

◆ Given a request, generates list of all blocks
needed to satisfy request

◆ Passes whole block list on to the CM

◆ Waits on a buffer ‘ready queue’

◆ CP Thread moves data between buffer and CP

Nils Nieuwejaar 15

CacheManager

◆ Maintains buffer cache

◆ Uses LRU replacement policy
– Future: allow CP-specified policies

◆ Service requests from CP threads
– One block at a time

– In round-robin order

◆ If block isn’t in cache, issue request to
DiskManager

Nils Nieuwejaar 16

DiskManager

◆ Controls layout of data on disk
– Logically partitions disk into 32KB blocks

– Future: multiple disks

◆ Uses Unix files, raw devices, or simulated disks

◆ Uses Cyclic-Scan disk scheduling

◆ When idle, writes back dirty blocks from buffer
cache

Nils Nieuwejaar 17

File Operations

◆ gfs_create_file
– Hash name to find metadata

– Reserve name, create subfiles, commit name

◆ gfs_open_file
– Cache subfile headers in CP memory

◆ gfs_close_file

◆ gfs_delete_file

Nils Nieuwejaar 18

Fork Operations

◆ gfs_create_fork
– Creates fork in one subfile

◆ gfs_all_create
– Creates fork in each subfile

◆ gfs_open_fork / gfs_all_open

◆ gfs_close_fork

◆ gfs_delete_fork

Nils Nieuwejaar 19

Data Transfer Operations

◆ Traditional Unix-like read/write interface

◆ Galley allows applications to make several kinds
of batched requests
– Strided

– Nested-strided

– Nested-batched

– List I/O

Nils Nieuwejaar 20

Case Study: FITS

◆ Flexible Image Transport System
– Standard format for astronomical data

– ASCII header

– Binary data: Series of records

– Each record
» Has a key with one or more fields

» Has one or more data elements

» Is the same size, and has the same structure

Nils Nieuwejaar 21

FITS at NRAO

◆ Each key contains six fields
– Total: 24 bytes

◆ Each data element contains
– FP triples for each of 31 frequencies

– Total: 744 bytes

◆ Data sets are sparse and multidimensional

◆ Queries typically involve subranges or slices in
one or more dimensions

Nils Nieuwejaar 22

FITS on Galley

◆ Sorted records by time

◆ Distributed records
– Cyclically across subfiles

– In 1024-record blocks

◆ Three forks: header, keys, and data
– Allows us to scan keys cheaply, identifying relevant

records

◆ Used gfs_listio() to efficiently extract
relevent records from the data fork

Nils Nieuwejaar 23

Summary

◆ Based on analyses of production workloads we
have designed a new parallel file system
– Designed to meet needs of parallel scientific

applications

– Designed to ease library implementation

– Exposes the full parallelism of the system to the
application

◆ Showed how Galley’s features were useful in
practice

Nils Nieuwejaar 24

Future Work

◆ Porting benchmarks, applications, libraries, and
compilers to Galley.

◆ Examine how to support multi-application
workloads fairly and efficiently.

◆ Long-term project: examine possibility of moving
application code to I/O nodes.

Nils Nieuwejaar 25

More information

◆ IOPADS
– Discuss data transfer interface and its impact on

performance

◆ WWW:
– http://www.cs.dartmouth.edu/~nils/galley

