
Dartmouth College Technical Report PCS-TR95-263. Copyright by the authors.

Appears, with small revisions, in IEEE Transactions on Parallel and Distributed Systems.
That version is Copyright 1996 IEEE.

File�Access Characteristics of

Parallel Scienti�c Workloads

Nils Nieuwejaar and David Kotz �

Apratim Purakayastha and Carla Schlatter Ellis y

Michael Bestz

Dartmouth Technical Report� PCS�TR������

March ��� ����

Abstract

Phenomenal improvements in the computational performance of multiprocessors
have not been matched by comparable gains in I�O system performance� This imbal�
ance has resulted in I�O becoming a signi�cant bottleneck for many scienti�c applica�
tions� One key to overcoming this bottleneck is improving the performance of parallel
�le systems�

The design of a high�performance parallel �le system requires a comprehensive un�
derstanding of the expected workload� Unfortunately� until recently� no general work�
load studies of parallel �le systems have been conducted� The goal of the CHARISMA
project was to remedy this problem by characterizing the behavior of several produc�
tion workloads� on di�erent machines� at the level of individual reads and writes� The
�rst set of results from the CHARISMA project describe the workloads observed on
an Intel iPSC���� and a Thinking Machines CM�	� This paper is intended to compare
and contrast these two workloads for an understanding of their essential similarities
and di�erences� isolating common trends and platform�dependent variances� Using this
comparison� we are able to gain more insight into the general principles that should
guide parallel �le�system design�

Keywords� parallel I�O� �le systems� workload characterization� �le access pat�
terns� multiprocessor �le systems�

�Dartmouth College� email� fnils�dfkg�cs�dartmouth�edu�
yDuke University� email� fap�carlag�cs�duke�edu�
zM�I�T�� email� mikeb�media�mit�edu� also a�liated with Thinking Machines Corporation�

This work was supported in part by the National Science Foundation under grant number CCR����	�
��

the National Center for Supercomputing Applications� NASA Ames Research Center under agreement num�

ber NCC ��
��� and Thinking Machines Corporation�



� Introduction

There is a growing imbalance between the computational performance and the I�O subsystem

performance in multiprocessors� This imbalance has resulted in I�O becoming a signi�cant

bottleneck for many scienti�c applications� Thus� there is a clear need for improvements in

the design of high�performance parallel �le systems to enable them to meet the I�O needs

of these applications�

To be successful� a system designer must possess a thorough understanding of how the

system is likely to be used� Only with such an understanding can a system�s policies and

mechanisms be optimized for the cases expected to be most common in that system�s work�

load� Designers have so far been forced to rely on speculation about how parallel �le systems

would be used� extrapolating from �le�system characterizations of general�purpose workloads

on uniprocessor and distributed systems or of scienti�c workloads on vector supercomputers�

To address this limitation� we initiated the CHARISMA project in June ���� to CHAR�

acterize I�O in Scienti�c Multiprocessor Applications from a variety of production parallel

computing platforms and sites�� While some work has been done in studying the I�O needs

of parallel scienti�c applications 	typically by examining a small number of selected appli�

cations
� the CHARISMA project is unique in recording individual read and write requests

in live� multiprogramming� parallel workloads� We have so far completed characterization

studies on an Intel iPSC���
 at NASA�s Ames Research Center ��� and on a Thinking Ma�

chines CM�� at the National Center for Supercomputing Applications ���� On both systems

we addressed a similar set of questions�

� What did the job mix look like� How many jobs were run concurrently� How many

processors did each job use�

� How many �les were read and written� What were their sizes�

�More about CHARISMA may be found at http���www�cs�dartmouth�edu�research�charisma�html�

�



� What were typical read and write request sizes� and how were they spaced in the �le�

Were the accesses sequential and� if so� in what way�

� What are the overall implications for parallel �le�system design�

In this paper we address the �nal question by integrating results and observations across

multiple platforms� To that end� we use the results from the two machine�speci�c studies

to try to identify observations that hold across various multiprocessor platforms� and to

pinpoint characteristics that appear to be speci�c to a single platform or environment�

In the next section we describe previous studies of multiprocessor �le systems and �le�

system workloads� and we describe the two platforms examined in this study� In Section �

we outline our research methods� and in Section � present our results� Section � draws some

overall conclusions�

� Background

In this section� we review many of the previous studies of �le�system workloads and outline

the basic design of some current multiprocessor �le systems� Finally� we describe the design

of the two platforms we traced� the Intel iPSC���
 and the Thinking Machines CM���

��� Workload Characterizations

We classify previous �le�system workload studies as characterizing general�purpose worksta�

tions or workstation networks� scienti�c vector applications� or scienti�c parallel applications�

General�purpose workstations� Uniprocessor �le access patterns have been measured

many times� Floyd and Ellis ��� �� and Ousterhout et al� ��� measured isolated Unix work�

stations� and Baker et al� measured a distributed Unix system 	Sprite
 ���� Ramakrishnan

et al� ��� studied access patterns in a commercial computing environment on a VAX�VMS

platform� These studies all cover general�purpose 	engineering and o�ce
 workloads with

�



uniprocessor applications� These studies identify several characteristics that are common

among uniprocessor �le�system workloads� �les tend to be small 	only a few kilobytes
� they

tend to be accessed with small requests� and they tend to be accessed both completely and

sequentially 	i�e�� each byte in the �le is accessed in order � from beginning to end
�

Scienti�c vector applications� Some studies speci�cally examined scienti�c workloads

on vector machines� Del Rosario and Choudhary provide an informal characterization of

grand�challenge applications ���� Powell measured a set of static characteristics 	�le sizes


of a Cray�� �le system ���� Miller and Katz traced speci�c I�O�intensive Cray applications

to determine the per��le access patterns ��
�� focusing primarily on access rates� Miller

and Katz also measured secondary�tertiary �le migration patterns on a Cray ����� giving

a good picture of long�term� whole��le access patterns� Pasquale and Polyzos studied I�O�

intensive Cray applications� focusing on patterns in the I�O rate ���� ���� All of these studies

are limited to single�process applications on vector supercomputers� These studies identify

several characteristics that are common among supercomputer �le�system workloads� Unlike

workstation �le�system workloads� �les tend to be large 	many megabytes or gigabytes
 and

they tend to be accessed with large requests� Like workstation workloads� �les are typically

accessed both completely and sequentially�

Scienti�c parallel applications� Experimental studies of I�O from parallel scienti�c

programs running on multiprocessors are rare� Crockett ���� and Kotz ���� hypothesize

about the character of a parallel scienti�c �le�system workload� Reddy and Banerjee chose

�ve sequential scienti�c applications from the PERFECT benchmarks and parallelized them

for an eight�processor Alliant� �nding only sequential �le�access patterns ����� This study is

interesting� but far from what we need� the sample size is small� the programs are parallelized

sequential programs� not parallel programs per se� and the I�O itself was not parallelized�

Cypher et al� ���� studied individual parallel scienti�c applications� measuring temporal

�



patterns in I�O rates� Galbreath et al� ���� present a useful high�level characterization based

on anecdotal evidence� Bagrodia et al� ���� have proposed using Pablo to analyze and

characterize speci�c applications� and Crandall et al� performed such an analysis on three

scienti�c applications ��
�� As part of the CHARISMA project� we have traced parallel I�O

requests by a live� production mix of user programs on an Intel iPSC ��� and on a CM�� ����

No other study has included more than one machine or programming platform�

��� Existing Parallel File Systems

A single� coherent model of parallel �le�access has not yet emerged� Parallel�I�O models are

often closely tied to a particular machine architecture as well as to a programming model�

Nonetheless� there are some common characteristics� To increase parallelism� most parallel

�le systems decluster blocks of a �le across many disks� which are accessed in parallel�

Most extend a traditional �le abstraction 	a growable� addressable� linear sequence of bytes


with some parallel �le�access methods� The most common provide I�O modes that specify

whether and how parallel processes share a common �le pointer ���� ��� ��� ��� ��� ����

Some systems are based on a memory�mapped interface ���� ���� and two provide a way

for the user to specify per�process logical views of the �le ���� ���� Some provide SIMD�

style transfers ��
� ��� ��� ���� Finally� in addition to shared �le pointers� MPI�IO allows

applications to describe a mapping from a linear �le to the compute nodes running the

application in terms of higher�level data structures �����

Clearly� the industrial and research communities have not yet settled on a single new

model for �le access� Thus� some aspects of a parallel �le�system workload are dependent

on the particular model provided to the user� The implications of this fact for our study are

discussed throughout this paper� whenever such a dependency is apparent�

�



��� Systems Under Study

To be useful to a system designer� a workload characterization must be based on a realistic

workload similar to that which is expected to be used in the future� For our purposes� this

meant that we had to trace multiprocessor �le systems that were in use for production scien�

ti�c computing� The Intel iPSC���
 at NASA Ames� Numerical Aerodynamics Simulation

	NAS
 facility met this criterion� as did the Thinking Machines CM�� at the National Center

for Supercomputing Applications 	NCSA
�

����� Intel iPSC���	 and the Concurrent File System

The iPSC���
 is a distributed�memory� message�passing� MIMD machine� The compute

nodes are based on the Intel i��
 processor and are connected by a hypercube network�

I�O is handled by dedicated I�O nodes� which are each connected to a single compute

node rather than directly to the hypercube interconnect� The I�O nodes are based on the

Intel i��� processor and each controls a single SCSI disk drive� There may also be one or

more service nodes that handle such things as Ethernet connections or interactive shells �����

At the time of our study� the iPSC���
 at NAS had ��� compute nodes and �
 I�O nodes�

Each compute node had � MB of memory� and each I�O node had � MB of memory and a

single ��
 MB disk drive ����� There was also a single service node that handled a �
�Mbit

Ethernet connection to the host computer� The total I�O capacity was ��� GB and the total

bandwidth was less than �
 MB�s�

Intel�s Concurrent File System 	CFS
 stripes each �le across all disks in � KB blocks�

Requests are sent directly from the compute node that issues a request to the appropriate

I�O node for service� Since the iPSC is a MIMD machine� the compute nodes operate

independently of one another� To assist the programmer in coordinating accesses from these

independent compute nodes to a single� shared �le� CFS provides four I�O modes� Mode 
�

the default mode� gives each process its own �le pointer while mode � shares a single �le

pointer among all processes� Mode � is like mode �� but enforces a round�robin ordering

�



of accesses across all nodes� and mode � is like mode � but restricts the access sizes to be

identical� More details about CFS� and its performance� can be found in ���� ��� ����

����� Thinking Machines CM�
 and the Scalable File System

The CM�� is a distributed�memory machine with many 	tens to thousands
 SPARC�based

Processing Nodes� and a small number of Control Processors 	CPs
� Processing nodes are

logically grouped into partitions� each of which is managed by a CP� Each job executes on

a single partition� Generally� each processing node in a partition executes the same pro�

gram� although they may execute di�erent instructions 	SPMD�style
� Within individual

partitions� jobs are timeshared� The processing nodes communicate via two scalable inter�

processor communication networks ����� Although it is possible for users� jobs running in

di�erent partitions to communicate with one another� it is rarely done in practice�

The CM�� supports a variety of I�O devices ���� ���� This study focuses on the Scalable

Disk Array 	SDA
� as it was the primary high�volume� high�bandwidth storage device on

the CM�� at NCSA� The SDA is an expandable RAID�� disk system that typically provides

I�O bandwidths of ������ MB�sec� The Scalable File System 	SFS
 is an enhancement of

the Unix �le system with extensions to support parallel I�O and large �les� Although it is

a fully general �le system� the SFS is optimized for parallel high�volume transfer�

During the tracing project� the CM�� at NCSA had ��� nodes� and was generally divided

into � static partitions of size ��� ��� ��� ��� and ��� nodes� The partitions on a CM�� are

recon�gurable� and at times the machine was recon�gured as a single ����node partition�

Each node had a single CPU� a network interface� and � vector units with a collectivememory

size of �� MB�node� The SDA had a single �le system distributed across ��� data disks and

� parity disk� for a total capacity of about ��� GB� The logical block size of this �le system

was ���� KB and the physical disk block size is �� KB�

The CM�� supports two primary programming models� data�parallel and control�parallel�

each with its own I�O model� In this paper we characterize I�O from programs written in

�



CMF� a data�parallel Fortran dialect� and CMMD� a control�parallel messaging library� The

CMF programming model presents a single thread of control to the user� all nodes appear to

be executing identical code though they may be operating on di�erent data� CMF I�O is a

library of support routines that are layered on top of SFS and allow users to read and write

arrays 	or portions thereof
 to the SDA via either special library calls or normal Fortran

READ and WRITE statements� Since there is only a single thread of control� every I�O

request is collective� That is� whenever the application issues an I�O request� every node

in the application must participate in that request� Issues of data distribution and I�O

parallelization are hidden from the user�

The CMMD library may be used from a variety of familiar programming languages 	e�g��

C� C��� and f��
 and� like the iPSC� provides the user with an independent thread of control

for each processing node� CMMD I�O is also layered on top of SFS and� like CFS� provides

a variety of I�O modes ���� ���� CMMD�s local�independent mode� like mode 
 in CFS� gives

each process its own view of the �le� and allows each process to make arbitrary requests to

the �le� In global�independent mode each process has a private �le pointer� but all other

state is shared� For example� if one process performs an ioctl�� to change the blocking

mode� the blocking mode will be changed for every process� CMMD�s synchronous�sequential

mode is like CFS�s mode �� Every node must participate in an I�O request� but each may

request a di�erent amount of data� The data will be read from or written to a contiguous

region of the �le� and the nodes� requests will be satis�ed in round�robin order� In the �nal

mode� synchronous�broadcast� every node accesses the exact same region of the �le� While it

is possible to write data in this mode� it is most likely to be used to read header information

or a shared con�guration �le�

At NCSA� CMF users outnumber CMMD users by a factor of about � to � ��
��

�



� Methods

Given the diversity of multiprocessor �le systems� it is not possible to construct an architecture�

independent workload study� Thus� it is important to study a variety of platforms� By com�

paring and contrasting results from production workloads on multiple platforms� we may

derive several bene�ts� First� if there are strong common trends one can con�dently make

some generalizations that can be used in parallel �le�system design� Second� studying various

platforms pinpoints platform� or environment�dependent characteristics that may be useful

when designing a new �le system for a similar platform or environment� In this section we

describe our methods for collecting and analyzing data on two di�erent platforms�

��� iPSC���� Trace Collection

A CHARISMA trace �le begins with a header record containing enough information to make

the �le self�descriptive� and continues with a series of event records� one per event� On the

iPSC���
� one trace �le was collected for the entire �le system� We traced only the I�O that

involved the Concurrent File System� This means that any I�O which was done through

standard input and output or to the host �le system 	all limited to sequential� Ethernet

speeds
 was not recorded� We collected data for about ��� hours over a period of � weeks

in February of ����� While we did not trace continuously for the whole � weeks� we tried to

get a realistic picture of the whole workload by tracing at all di�erent times of the day and

of the week� including nights and weekends� The period covered by a single trace �le ranges

from �
 minutes to �� hours� The longest continuously traced period was about ���� hours�

Tracing was usually initiated when the machine was idle� For those few cases in which a job

was running when we began tracing� the job was not traced� Tracing was stopped in one of

two ways� manually or by a full system crash� The machine was usually idle when a trace

was manually stopped�

On the iPSC���
� high�level CFS calls are implemented in a run�time library that is

�



linked with the user�s program� We instrumented the library calls to generate an event

record each time they were called� Since our instrumentation was almost entirely within a

user�level library� there were some jobs whose �le accesses were not traced� These included

system programs 	e�g�� cp� and ftp
 as well as user programs that were not relinked during

the period we were tracing� While our instrumented library was the default� users that did

not wish to have their applications traced had the option of linking with the uninstrumented

library� Regardless of whether an application was traced or not� we were able to record all

job starts and ends through a separate mechanism� While we were tracing� �
�� jobs were

run� of which ���� were only run on a single node� We actually traced at least ��� of the

��� multi�node jobs and at least �� of the single�node jobs� As a tremendous number of the

single�node jobs were system programs it is not surprising nor necessarily undesirable that so

many were untraced� In particular� there was one single�node job that was run periodically�

and which accounted for over �

 of the single�node jobs� simply to check the status of the

machine� There was no way to distinguish between an untraced job and a traced job that

did no CFS I�O� so the numbers of traced jobs are a lower bound�

One of our primary concerns was to minimize the degree that our measurement perturbed

the workload� To reduce network contention and local per�call overhead� we bu�ered event

records on each node and sent them to a central trace collector only when the bu�er was

full� Since large messages on the iPSC are broken into � KB blocks� we chose that as our

bu�er size� This bu�ering allowed us to reduce the number of messages sent to the collector

by well over �
� without stealing much memory from user jobs� As our trace records were

written to the same �le system we were tracing� we were careful to minimize our e�ects

on its performance as well� by creating a large bu�er for the data collector and writing

the data to CFS in large� sequential blocks� Since our data collector was linked with the

non�instrumented library� our use of the �le system was not recorded�

Simple benchmarking of the instrumented library revealed that the overhead added by our

�



instrumentation was virtually undetectable in most cases� The worst case we found was a ��

increase in execution time on one run of the NAS NHT�� Application�I�O Benchmark �����

After the instrumented library was put into production use� anecdotal evidence suggests that

there was no noticeable performance loss� Although we collected about �

 MB of data� our

trace �les accounted for less than �� of the total CFS tra�c�

Since each node bu�ered � KB of data before sending it to the central data collector� the

raw trace �le contained only a partially ordered list of event records� Ordering the records

was complicated by the lack of synchronized clocks on the iPSC���
� Each node maintains

its own clock� the clocks are synchronized at system startup but each drifts signi�cantly

after that ����� We partially compensated for the asynchrony by timestamping each block of

records when it left the compute node and again when it was received at the data collector�

From the di�erence between the two� we attempt to adjust the event order to compensate

for each node�s clock drift relative to the collector�s clock� While this technique results in

a better estimation of the actual event order� it is still an approximation� so much of our

analysis is based on spatial� rather than temporal� information�

��� CM�	 Trace Collection

On the CM�� we traced programs from two di�erent programming models� data�parallel CM

Fortran 	CMF
 programs and control�parallel CMMD programs� In both CM�� programming

models� as in CFS� applications perform their I�O via runtime libraries� In this paper� we

examine and discuss only the I�O done to and from the Scalable Disk Array�

CMF� As with CFS� we instrumented the run�time CMF I�O libraries to collect traces�

While we gathered all our data in a single �le on the iPSC� on the CM�� each application�s

trace data was written to a separate �le� We traced nearly all CMF applications that ran

during the ���day period from June ��� ���� to July �
� ����� The instrumentation had a

mechanism for users to disable tracing of a particular job by setting an environment variable�

�




Some users 	for example� industrial partners of NCSA
 requested this feature and made use

of it� thereby not having their applications traced� We had a separate mechanism that

allowed us to count the total number of CMF jobs that were run during the tracing period

even if they suppressed trace generation� Out of ���� such jobs in that period� ���
 were

traced� Neither �gure includes programs that were compiled before the tracing library was

installed� The ���
 jobs traced represent ��� distinct applications run by ��� distinct users�

As on the iPSC� we attempted to reduce the e�ects of our tracing on the user population�

We wrote the per�job trace �les onto the serial Unix �le system to avoid contention with

SDA I�O� We bu�ered the trace records in memory and wrote them to disk in large blocks to

minimize tracing overhead� Performance measurements taken during beta�testing indicate

that our instrumentation increased total application execution time by less than ���

CMMD� While we can classify the CMF workload as a �general� workload� the CMMD

workload was self�selecting� We developed the CMMD tracing library at Thinking Machines

Corporation on an in�house version of CMMD� Since it was developed o��site� the NCSA

systems sta� was reluctant to make it the default library� so we relied on users who voluntarily

linked their programs to the CMMD tracing library for us to gather traces� We traced for a

period of two weeks in the summer of ����� and obtained traces from ��� jobs representing

�� distinct applications run by �� distinct users� The volunteers tended to be heavy users

of the SDA� and relatively sophisticated programmers� who were interested in parallel�I�O

behavior� We can perhaps classify this workload as an I�O�intensive workload compared

to the general CMF workload� This di�erence should be considered when interpreting the

CMMD data�

CMMD I�O is implemented as a client�server architecture in which a privileged CM�

� host process is responsible for running a server loop� We monitored CMMD I�O by

piggybacking trace records on the client�server protocols� The actual trace records were

produced on the CM�� compute nodes� communicated to the host server� then written to

��



the local Unix �le system� Since communication of trace records was embedded into the

normal client�server I�O protocols we believe that perturbation was minimal�

� Results

In this section we compare and contrast the iPSC and CM�� workloads� We try to identify

common trends� and to isolate reasons for di�erences in behavior� We characterize the

workload from the top down� We begin by examining the number of jobs in the machine�

then the number and use of �les by all jobs� and then examine individual I�O requests� In

addition to studying the sizes of I�O requests� we look for sequentiality and regularity among

them� We then examine the requests at a higher level and try to identify speci�c kinds of

regular access patterns� Finally we examine �le sharing at various granularities�

Summary statistics for the three sets of traces may be seen in Table �� We classify �les

by whether they were actually read� written� or read and written within a single open period�

rather than by the mode used to open the �le� Some �les were opened but neither read nor

written before being closed�

Traced Megabytes Number of �les
System Jobs Read Written Opened Read Written Both Neither
CFS ��
 �������
 �������� ����� ����
 ���

 ���� ���

CMF ���
 �������� �������� ���
 ���� ���� ��� �
CMMD ��� �
�
���� �������� �
� ��� ��� �� �

Table �� Summary of data collected on both the iPSC and the CM���


�� Jobs

Fig� � shows the amount of time each machine spent running a given number of jobs�� Since

the CM�� had a much larger user base� it is not surprising that it spent less time idle than

�The data on the overall number of jobs for the CM�� was collected over � weeks in May ����� not during

the tracing period� Since we do not attempt to correlate this information with any other results in the paper�

this lack of contemporaneousness should not be viewed as signi�cant�

��



CM5

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7 8 9 10+

Pe
rc

en
t o

f t
ot

al
 ti

m
e

Number of jobs

iPSC

Figure �� Amount of time the machine spent with the given

number of jobs running� This data includes all jobs� even if

their �le access could not be traced�

did the iPSC� Unlike the iPSC� the CM�� had timeshared partitions that allowed more jobs

to run at the same time� Although the iPSC was idle for nearly ��� of the time we were

tracing� the CM�� was idle for less than �� of the time� When the machines were actively

executing jobs� the iPSC spent ��� of the time running a single job� and the CM�� spent ��

of the time running a single job� This means the the iPSC was being used to run multiple

applications simultaneously ��� of the time� and the CM�� was executing multiple jobs ���

of the time� Although not all jobs use the �le system� a �le system clearly must provide high�

performance access by many concurrent� presumably unrelated� jobs� While uniprocessor �le

systems are tuned for this situation� most multiprocessor �le�systems research has ignored

this issue� focusing on optimizing single�job performance�

Fig� � shows the distribution of the number of compute nodes used by each job on each

machine� Although single�node jobs appear to dominate the job population on the iPSC�

most of those jobs were caused by a daemon that was run periodically to check the status

of the machine� The multiple�node jobs were fairly evenly distributed among the remaining

sizes� up to �� nodes� Although the iPSC allowed jobs as small as a single node� the CM��

had a minimum partition size of �� nodes� About �
� of the CMF jobs on the CM�� used

��



0

20

40

60

80

100

1 2 4 8 16 32 64 128

P
er

ce
nt

 o
f 

jo
bs

Number of compute nodes

a) iPSC b) CM-5

CMF

1286432 512256
0

20

40

60

80

100

P
er

ce
nt

 o
f 

jo
bs

Number of compute nodes

CMMD

Figure �� Distribution of the number of compute nodes used by jobs in our workload� Both

machines limit the choice to powers of 
 and the CM�	 has a minimum partition size of �
 nodes�

this smallest partition size� On the other hand� since the CMMD workload was self�selecting

and included fairly large and I�O�intensive applications� we observe a bias toward a large

number of nodes� Over �
� of traced CMMD jobs used ��� nodes or more� Clearly� for a

�le system to be successful� it must allow e�cient access from both small� sequential jobs

and large� highly parallel jobs under a variety of conditions and system loads�


�� Files

In the two systems studied� there are two di�erent manners in which a �le may be opened�

locally or globally� A �le is said to be locally opened if each node that accesses the �le issues

an independent request to open the �le� When a �le is locally opened� each node that opens

the �le has a private view of that �le� and operations on that �le are not directly a�ected

by other nodes using that �le� In contrast� a �le is said to be opened globally when all the

nodes in an application collectively issue a request to open that �le� When a �le is globally

opened� the nodes have a shared view of the �le�

The CFS I�O model does not support the notion of a global open� so each �le in CFS

must be opened locally� As is discussed in Section ����� CFS provides several access modes

that allow �les to be treated globally once they have been opened� When discussing per�job

��



�le statistics� we coalesce the local opens issued by CFS into a single global open� That is� if

multiple nodes in a CFS application each issue a local open for the same �le� we count those

local opens as a single global open� Since CMF is a data�parallel language� and provides

only a single thread of control� every �le operation in CMF is collective� and all �le opens in

CMF are global� CMMD allows programmers to open �les either locally or globally� Since

CMMD applications that wish to open a �le globally may do so explicitly� and since few

CMMD �les were opened locally� we do not attempt to coalesce these local opens into global

opens as we do with CFS�

In Table � above� note that many more �les were written than were read 	indeed� � to �

times as many
� We speculate that the programmers of traced CFS applications often found

it easier to open a separate output �le for each compute node� rather than coordinating writes

to a common output �le� This hypothesis is supported by the substantially smaller average

number of bytes written per �le 	��� MB
 than average bytes read per �le 	��� MB
 on the

iPSC� This di�erence in the average number of bytes accessed does not appear in the CM��

workload� CMF jobs read an average of ���� MB��le and wrote an average of ���� MB��le�

while CMMD applications read ����� MB��le and wrote ��
�� MB��le� The domination of

write�only �les on the CM�� appears to come partly from checkpointing activity and partly

from output �les that were written to the SDA for later visualization� While the number

of bytes read or written per �le with CMF was substantially smaller than with CMMD� the

amount of data transferred per �le is still an order of magnitude larger than we observed

with CFS� The users seem to have made use of the higher disk capacity and bandwidth that

the CM�� o�ers� Another common trend across all three platforms was that there were very

few �les that were both read and written 	���� in CFS� ���� in CMMD� ���� in CMF
�

This behavior is also common in Unix �le systems ��� and may be accentuated here by the

di�culty in coordinating concurrent reads and writes to the same �le�

Table � shows that most jobs opened only a few �les over the course of their execution�

��



Number of Number of Jobs
Files CFS CMF CMMD
� �� ��� �
� �� �
� �
� �� �� �

� ��
 �� ��
� � �� ��
� �
 �� ��
� � �� ��
�� �� ��� ��

Table �� Among traced jobs� the number of �les opened by jobs was often small 	���
�

although a few opened many �les 	one CFS job opened ���� �les
� Although CMF required

that �les be opened on all nodes� under CFS some of the jobs that opened a large number

of �les were opening one �le per node� Although it is not shown in the table above� nearly

��� of the jobs that used CMF did not use any �les on the SDA� These applications were

probably compute intensive and did their I�O via NFS� The number of �les opened per job

was higher in CMMD than CMF� again perhaps due to the self�selected nature of the users�

Despite the di�erences in the absolute numbers of �les opened� it appears clear that

the use of multiple �les per job is common� Therefore� although not all �les were open

concurrently� �le�system designers must optimize access to several �les within the same job�

We found that only 
���� of all opens in the CFS workload were to �temporary� �les

	de�ned as a �le deleted by the same job that created it
� The rarity of temporary �les and

of �les that were both read and written indicates that few applications chose to use �les

as an extension of memory for �out of core� solutions� Many of the CFS applications were

computational �uid dynamics codes� for which they have found that out�of�core methods

are in general too slow� The workload on the CM�� exhibited a larger number of temporary

�les 	���� of CMF jobs and ���� of CMMD jobs
� This di�erence may indicate that out�

of�core methods were more common on the CM��� or it may have been caused by deletion

of checkpoint �les by jobs that ran to completion�

��



CMMD

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

Fr
ac

tio
n 

of
 fi

le
s

File size (bytes)

iPSC

CMF

Figure �� Cumulative distribution function �CDF
 of the

number of �les of each size at close� For a �le size x� CDF�x


represents the fraction of all �les that had x or fewer bytes�

Fig� � shows a wide range in the size of �les from system to system�� Most of the �les

accessed with CFS were between �
 KB and � MB� Although these �les were larger than

those in a general�purpose �le system ���� they were smaller than we would expect to see

in a scienti�c supercomputing environment ��
�� Files on the CM�� were signi�cantly larger

than on the iPSC� and the sizes were much more evenly distributed� One likely reason that

�les on the CM�� were larger is the availability of �
 times more disk space�


�� I�O Request Sizes

Figures � and � show that on both the iPSC and the CM��� the vast majority of accesses

were small� but that most bytes were transferred through large accesses�

Indeed� ��� of all reads under CFS requested fewer than �

 bytes� but those reads

transferred only �� of all data read� Similarly� �
� of all writes under CFS were for fewer

than �

 bytes� but those writes transferred only �� of all data written� The number of

small requests is surprising due to their poor performance in CFS ����� CMMD�s interface is

�As there were many small �les as well as several distinct peaks across the whole range of sizes� there

was no constant granularity that captured the detail we felt was important in a histogram� We chose to plot

the �le sizes on a logarithmic scale with pseudo�logarithmic bucket sizes� the bucket size between �� and ���

bytes is �� bytes� the bucket size between ��� and ���� is ��� bytes� and so on�

��



of Reads

Fraction

of Data

Fraction

CFS

CMMD
CMF

CMF

CMMD

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

Read size (bytes)

CFS

Figure �� CDF of the number of reads by request size and

of the amount of data read by request size�

Fraction

Fraction

of Data

of Writes
CMF

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

CMMD

CMF

Write size (bytes)

CFS CFS

CMMD

Figure 
� CDF of the number of writes by request size

and of the amount of data written by request size�

similar to that of CFS� in that each compute node issues requests for data independently of

all other compute nodes� Requests in CMMD were somewhat larger than CFS� with ��� of

the reads and ��� of the writes under �


 bytes� CMF provides a collective model for I�O�

in which requests are issued for all compute nodes at once� Accordingly� we would expect to

see much larger requests under CMF than either CMMD or CFS� We found� however� that

even under CMF� ��� of the reads and ��� of the writes were under �


 bytes� As with

the iPSC� small requests on the CM�� are known to perform poorly�

Although accesses on the CM�� were larger than those observed on the iPSC� they were

��



still signi�cantly smaller than the tens or hundreds of kilobytes used in typical performance

analyses of these systems ���� ���� Studies have shown that large I�O requests are common in

scienti�c applications running on supercomputers� but we have now seen that small requests

are common in scienti�c applications running on parallel computers� Indeed� this trend

holds across two di�erent parallel machines� using three parallel �le�system interfaces and

two parallel programming models� Therefore� we believe that this preponderance of small

request sizes in the observed scienti�c workloads is a natural result of parallelization and is

fundamental to a large class of parallel applications� We conclude that future parallel �le

systems must focus on providing low latency for small requests as well as high bandwidth

for large requests�


�
 Sequentiality

One common characteristic of previous �le system workload studies� particularly of scienti�c

workloads� is that �les are typically accessed sequentially ��� �� �
�� We de�ne a sequential

request to be one that begins at a higher �le o�set than the point where the previous request

from that compute node ended� This is a looser de�nition of sequential than is used in the

studies referred to above� What previous studies have called sequential� we call consecutive�

A consecutive request is a sequential request that begins precisely where the previous request

ended� Figures � and � show the amount of sequential and consecutive access to �les in the

observed workloads� In these �gures� we look at per�node access patterns for CFS and

CMMD� and at per�job access patterns for CMF�

With all three interfaces� nearly all of the accesses to write�only �les were �

� sequential�

While access to read�only �les was also predominantly sequential� both CMF and CMMD had

several �les that were read non�sequentially� There were several applications on the CM��

that wrote data to �les in forward order and then read it back in reverse order� This behavior

accounts for at least some of the non�sequential accesses on that machine� Unsurprisingly�

most read�write �les were accessed non�sequentially�

��



CMMD
CMF

CFS

CMMD
CMF

CFS

CMMD
CMF

CFS

% Accesses Sequential

a) Read-Only

c) Read-Write

b) Write-Only

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Fr
ac

tio
n 

of
 f

ile
s

% Accesses Sequential

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Fr
ac

tio
n 

of
 f

ile
s

% Accesses Sequential

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Fr
ac

tio
n 

of
 f

ile
s

Figure �� CDF of sequential access to �les� Each point on a line indicates the fraction of �les in

the workload that contain no more than the indicated percentage of sequential accesses�

Looking at the graphs of consecutive access in Fig� �� we �nd that the behavior varies

between systems and interfaces� With both CFS and CMF� nearly �
� of the write�only �les

were accessed �

� consecutively� With CMMD� on the other hand� only �
� of the write�

only �les were accessed completely consecutively� With all three interfaces� read�only �les

were much less likely to be accessed consecutively than write�only �les� The least consecutive

access was found in CFS� in which over ��� of the read�only �les had no consecutive accesses

at all� In all cases� access to read�write �les was primarily non�consecutive�

One signi�cant reason for the relatively high percentage of consecutive access in write�

only �les on the iPSC was a tendency for applications to assign a di�erent �le to each

node that was writing data� When only a single node accesses a �le� there is frequently

�




CFS

a) Read-Only

c) Read-Write

b) Write-Only

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Fr
ac

tio
n 

of
 f

ile
s

% Accesses Consecutive

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Fr
ac

tio
n 

of
 f

ile
s

% Accesses Consecutive

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Fr
ac

tio
n 

of
 f

ile
s

% Accesses Consecutive

CMMD
CMF

CMMD
CMF

CMMD
CMF

CFS

CFS

Figure 
� CDF of consecutive access to �les� Each point on a line indicates the fraction of �les

in the workload that contain no more than the indicated percentage of consecutive accesses�

no reason for that node to access the �le non�consecutively� When multiple nodes access

a �le� as happened frequently with read�only �les in CFS and with �les in CMMD� the

large number of sequential� but non�consecutive� accesses was often the result of interleaved

access� Interleaved access arises when successive records of a �le are accessed by di�erent

nodes� so from the perspective of an individual node� some bytes must be skipped between

one request and the next� The high percentage of consecutive access to �les from CMF

programs is expected because we are looking at collective� job�level patterns� rather than

individual� node�level patterns� Since the I�O requests in CMF applications are not issued

by the individual nodes� this sort of interleaving is unlikely to appear�

��



0

10

20

30

40

50

60

0 1 2 3 4+

P
er

ce
n
t 

o
f 

fi
le

s

Number of Different Request Sizes

iPSC
CMF

CMMD

Number of Different Interval Sizes

0

10

20

30

40

50

60

0 1 2 3 4+

P
er

ce
n
t 

o
f 

fi
le

s

iPSC
CMF

CMMD

Figure �� The number of di�erent interval and request sizes used in each �le across all partic�

ipating nodes� Files with zero interval sizes had at most one access by each node� Files with zero

request sizes were opened and closed without being accessed�


�	 Regularity

These workloads� with many small� non�consecutive requests� are di�erent from previously

observed workloads on traditional uniprocessors and supercomputers� In an attempt to gain

a better understanding of the observed workloads� we tried to identify points of regularity�

Intervals� We �rst looked at the interval between requests� or the number of bytes between

the end of one request and the beginning of the next� Consecutive accesses have an interval

of size 
� The number of interval sizes used in each �le� across all nodes that access that �le�

is shown in Fig� �� A surprising number of �les 	around ��� in all cases
 were read or written

in one request per node 	i�e�� there were no intervals
� Most of the �les 	��� in CFS� ���

in CMF� and ��� in CMMD
 that were accessed with a single interval size were accessed

consecutively 	i�e�� the one interval size was 

� The remainder of ��interval�size �les� along

with the ��interval�size �les� represent most of the remaining �les� which suggests that there

exists another form of highly regular access pattern� Only a few �les had � or more di�erent

interval sizes� and their regularity 	if any
 was more complex�

��



Requests� To get a better feel for this regularity� Fig� � also shows the number of di�erent

request sizes used in each �le� CFS exhibited the highest degree of regularity� with over �
�

of the �les being accessed with only one or two request sizes� CMMD was next with about

��� of the �les being accessed with only one or two di�erent request sizes� CMF was the

least regular with just over half of the �les being accessed with two or fewer request sizes�

This may indicate that CMF users used the same �le to store di�erent data structures 	e�g��

di�erent matrices
� Even in CMF� over �
� of the �les were accessed with three or fewer

request sizes� Combining the regularity of request sizes with the regularity of interval sizes�

many applications clearly used regular� structured access patterns� possibly because much

of the data was in matrix form�


�� Strided Access

To better understand the structure and causes of the regular but non�consecutive access

patterns� we examined the trace �les for evidence of strided access patterns �����

����� Simple�Strided

We refer to a series of I�O requests as a simple�strided access pattern if each request is for

the same number of bytes� and if the �le pointer is incremented by the same amount between

each request� This pattern would occur� for example� if each process in a parallel application

read a column of data from a matrix stored in row�major order� It could also correspond to

the pattern generated by an application that distributed the columns of a matrix across its

processors in a cyclic pattern� if the columns could be distributed evenly and if the matrix

was stored in row�major order� Since a strided pattern was less likely to occur in single�node

�les� and since it could not occur in �les that had only one or two accesses� we looked only

at those �les that had three or more requests by multiple nodes�

Fig� � shows that many of the accesses to the selected subset of CFS and CMMD �les

appeared to be part of a simple�strided access pattern� Since consecutive access could be

��



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60

% Accesses Strided

80 100

F
ra

ct
io

n 
of

 f
il

es

% Accesses Strided

CMMD-Without

CMF-With

CMMD-With
CFS-Without

CFS-With

CMF-Without

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

F
ra

ct
io

n 
of

 f
il

es

Figure �� Cumulative distribution of �les according to the fraction of accesses that were involved

in a simple�strided pattern� These plots show the frequency of strided access both with consecutive

accesses counted as strided� and without�

considered a trivial form of strided access 	with an interval of 

� Fig� � shows the frequency

of strided accesses with and without consecutive accesses included� In either case� over �
�

of all the �les we examined in CFS were apparently accessed entirely with a strided pattern�

Strided access was also common in CMMD� with over �
� of the �les being accessed entirely

in a strided� non�consecutive pattern� If we exclude consecutive access� there appeared to be

almost no strided access in CMF� with no more than �
� of the requests to any �le taking

part in a strided pattern� This lack of strided access in CMF is not surprising� since strided

access is typically caused by the explicit expression of data distribution in a control�parallel

program� Accordingly� the remainder of our discussion will focus on CFS and CMMD�

We de�ne a strided segment to be a group of requests that appear to be part of a single

simple�strided pattern� While Fig� � shows the percentage of requests that were involved

in some strided segment� it does not tell us whether each �le was accessed with a single�

�le�long strided segment� or with many shorter segments� Fig� �
 shows that while most �les

had only a few strided segments� there were some �les that were accessed with many strided

segments� Since we were only interested in those cases where a �le was clearly being accessed

in a strided pattern� this �gure does not include consecutive accesses or segments with fewer

than �
 requests� The number of requests in a segment varied between the machines� Fig� ��

��



b) CMMD

0

20

40

60

80

100

120

0 20 40 60 80 100

N
um

be
r 

of
 f

ile
s

Number of strided segments

a) CFS

Number of strided segments

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200

N
um

be
r 

of
 f

ile
s

Figure �	� The number of di�erent strided segments in each �le� We ignore segments with

fewer than �� requests� Note that the two plots use di�erent scales�

50000

100000

150000

200000

250000

0
0 20 40 60 80 100

Number of accesses

N
um

be
r o

f s
eg

m
en

ts

Number of accesses

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100

a) CFS b) CMMD

N
um

be
r o

f s
eg

m
en

ts

Figure ��� Head of the segment�length distribution� These plots show number of segments of a

given length �including �short� segments of �� or fewer accesses
�

shows that while most segments in CFS fell into the range of �
 to �
 requests� most of the

segments in CMMD had �� to �� requests� Fig� �� shows that there were some �les that

were accessed with much longer segments on both machines�

While the existence of these simple�strided patterns is interesting and potentially useful�

the fact that many �les were accessed in multiple short segments suggests that there was a

level of structure beyond that described by a simple�strided pattern�

����� Nested Patterns

A nested�strided access pattern is similar to a simple�strided access pattern but rather than

being composed of simple requests separated by regular strides in the �le� it is composed of

��



b) CMMDa) CFS

Number of accesses

0

50

100

150

200

250

200 400 600 800 1000 1200

N
um

be
r o

f s
eg

m
en

ts

Number of accesses

0

500

1000

1500

2000

2500

3000

500 1000 1500 2000 2500

N
um

be
r o

f s
eg

m
en

ts

Figure ��� Tail of the segment�length distribution�

strided segments separated by regular strides in the �le� The simple�strided patterns exam�

ined in the last section could be called singly�nested patterns� A doubly�nested pattern could

correspond to the pattern generated by an application that distributed the columns of a ma�

trix stored in row�major order across its processors in a cyclic pattern� if the columns could

not be distributed evenly across the processors� The simple�strided sub�pattern corresponds

to the requests generated within each row of the matrix� while the top�level pattern corre�

sponds to the distance between one row and the next� This access pattern could also be gen�

erated by an application that was reading a single column of data from a three�dimensional

matrix� Higher levels of nesting could occur if an application mapped a multidimensional

matrix onto a set of processors�

Maximum Level Number of Number of
of Nesting CFS �les CMMD �les


 ��� ��
� �
��� ���
� ��� �
�
� ���� ���
�� 
 �

Table �� The number of �les that use a given maximum level of nesting�

Table � shows how frequently nested patterns occurred in CFS and CMMD� A �le that

had no apparent strided accesses had zero levels of nesting� Files that were accessed with

��



only simple�strided patterns had a single level of nesting� Interestingly� on both machines

it was far more common for �les to exhibit three levels of nesting than two� This tendency

suggests that the use of multidimensional matrices was common on both systems�


�� Synchronized Access Modes

Although the notion of synchronized access to �les is built into the semantics of the data�

parallel CMF� such is not the case with CFS and CMMD� To provide synchronized access

to �les� both CFS and CMMD provide the user with the option of using a �le pointer that

is shared among all the nodes� They also provide several modes� each of which provides the

user with di�erent semantics governing how the �le pointer is shared�

Given the regularity of request and interval sizes on the iPSC� CFS�s modes 	see Sec�

tion �����
 would seem to be helpful� Our traces show� however� that over ��� of the �les

used mode 
� which provides each node with an independent �le pointer� Fig� � gives one

hint as to why� although there were few di�erent request sizes and interval sizes� there were

often more than one� something not easily supported by the shared�pointer modes� Mode 


was also known to be the fastest of the four modes o�ered by CFS�

In contrast to CFS� CMMD�s local�independent mode was known to be slow and was

only used for 
���� of total I�O� Instead� CMMD applications used synchronous�sequential

mode for most 	���
 of their I�O� Synchronous�broadcast mode was used for only ���� of

total I�O� Global�independent mode was used for ����� of total I�O� and we speculate that

it was used when just one node or a subset of nodes were using a �le among themselves�

From the above data� one may be inclined to conclude that CM�� applications only needed

fast synchronous I�O� Anecdotal evidence suggests� however� that users frequently wanted

independent I�O but were not willing to pay the performance penalty� That CMMD and CFS

users adopt very di�erent I�O strategies to achieve the same end result 	high performance
�

illustrates how the capabilities of an existing machine may in�uence user behavior�

��



Write/Blocks

Read/Bytes

Read/Blocks

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Fr
ac

tio
n 

of
 f

ile
s

Percent shared

Write/Bytes

b) CMF

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Fr
ac

tio
n 

of
 f

ile
s

Percent shared

Write/Bytes
Write/Blocks

Read/Bytes

Read/Blocks

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
Fr

ac
tio

n 
of

 f
ile

s
Percent shared

Read/Blocks

Read/Bytes

Write/Blocks

Write/Bytes

a) CFS

c) CMMD

Figure ��� CDF of �le sharing between nodes in Read�Only and Write�Only �les at byte and

block granularity� The block size on the iPSC was � KBytes and the block size on the CM�	 was


��	 KBytes�


�� File Sharing Between and Within Jobs

A �le is concurrently shared if two or more processes have it open at the same time� In

uniprocessor and distributed�system workloads� concurrent sharing is known to be uncom�

mon� and writing to concurrently shared �les is almost unheard of ���� In a parallel �le

system� of course� concurrent �le sharing among processes within a job is presumably the

norm� while concurrent �le sharing between jobs is likely to be rare� Indeed� in our traces we

saw a great deal of �le sharing within jobs� and no concurrent �le sharing between jobs� The

interesting question is how the individual bytes and blocks of the �les were shared� Fig� ��

shows the frequency of both byte� and block�sharing in each system�

In all three cases� there was more sharing of read�only �les than of write�only �les� which

��



is not surprising given the complexity of coordinating write sharing� Indeed� in CFS �
� of

read�only �les had all of their bytes shared by multiple compute nodes� while �
� of write�

only �les had no bytes shared at all� We found similar results with CMMD� in which ��� of

the read�only �les had all their bytes shared� and ��� of the write�only �les had none of their

bytes shared� CMF had the least sharing of the three systems� with ��� of the write�only

�les having no bytes shared and �
� of the read�only �les having �� or fewer bytes shared

by multiple compute nodes� This lack of sharing is likely an artifact of CMF�s data�parallel

programming model� where processors are statically assigned non�overlapping portions of a

matrix� Even when there was not a lot of byte�sharing� there was usually a large amount

of block�sharing� Overall� the amount of block sharing implies strong interprocess spatial

locality� and suggests that caching at the I�O nodes may improve system performance ����

� Conclusions and Recommendations

Across the two machines and two programming models covered in this paper� we found

important similarities and di�erences� Compared to uniprocessor workloads� all three parallel

workloads used much larger �les� and were dominated by writes� Although there were

variations in magnitude� we found small request sizes to be common in all three parallel

workloads� just as they are in uniprocessor workloads� Compared to vector�supercomputer

workloads� we observed much smaller requests and a tendency toward non�consecutive� but

sequential �le access� Finally� parallelism leads to new� interleaved access patterns with high

interprocess spatial locality at the I�O node� While some of the details of our results may be

speci�c to the two systems we studied� or to the workloads at the two sites� we believe that

the general conclusions above are widely applicable to scienti�c workloads running on loosely�

coupled MIMD multiprocessors� This category includes many current multiprocessors�

Ultimately� we believe that the �le�system interface must change� The current interface

forces the programmer to break down large parallel I�O activities into small� non�consecutive

��



requests� We believe that a control�parallel model should support strided I�O requests

from the programmer�s interface to the compute node� and from the compute node to the

I�O node ���� ���� A strided request can e�ectively increase the request size� which lowers

overhead and introduces opportunities for low�level optimization �����

Future Work

While we believe that low�level workload analyses such as we have conducted are an impor�

tant �rst step towards developing parallel �le systems that can meet the needs of parallel

scienti�c applications� there is still a great deal of work to be done�

� Trace more platforms to reduce the likelihood that results are speci�c to an architecture

or environment�

� Study speci�c applications in greater detail� Our workload studies describe how parallel

�le systems are used� but studying individual applications will allow us to understand

why they are being used in that fashion� and to better understand the application

programmer�s fundamental needs�

� Design and implement new interfaces and �le systems based on these workload analyses�

Acknowledgments

Many thanks to the NAS division at NASA Ames� especially Je� Becker� Russell Carter�

Sam Fineberg� Art Lazano�� Bill Nitzberg� and Leigh Ann Tanner� Many thanks also to

Orran Krieger� Bernard Traversat� and the rest of the CHARISMA group�

We thank Michael Welge and Curtis Canada of NCSA� Many thanks to the NCSA users

including Greg Bryan� Diane Cook� Tom Cortese� Kathryn Johnston� Chris Kuszmaul� Fady

Najjar� and Robert Sugar� We also thank Kapil Mathur and David Phillimore at Thinking

Machines Corporation and Doreen Revis at Duke�

Finally� we thank the many users who agreed to have their applications traced�

�




References

��� David Kotz and Nils Nieuwejaar� �File�system workload on a scienti�c multiprocessor��

IEEE Parallel and Distributed Technology� pp� ����
� Spring �����

��� Apratim Purakayastha� Carla Schlatter Ellis� David Kotz� Nils Nieuwejaar� and Michael

Best� �Characterizing parallel �le�access patterns on a large�scale multiprocessor�� in

Proceedings of the Ninth International Parallel Processing Symposium� Apr� ����� pp�

��������

��� Rick Floyd� �Short�term �le reference patterns in a UNIX environment�� Tech� Rep�

���� Dept� of Computer Science� Univ� of Rochester� Mar� �����

��� Richard Allen Floyd and Carla Schlatter Ellis� �Directory reference patterns in hier�

archical �le systems�� IEEE Transactions on Knowledge and Data Engineering� vol� ��

no� �� pp� �������� June �����

��� John Ousterhout� Herv e Da Costa� David Harrison� John Kunze� Mike Kupfer� and

James Thompson� �A trace driven analysis of the UNIX ��� BSD �le system�� in

Proceedings of the Tenth ACM Symposium on Operating Systems Principles� Dec� �����

pp� ������

��� Mary G� Baker� John H� Hartman� Michael D� Kupfer� Ken W� Shirri�� and John K�

Ousterhout� �Measurements of a distributed �le system�� in Proceedings of the Thir�

teenth ACM Symposium on Operating Systems Principles� ����� pp� ��������

��� K� K� Ramakrishnan� P� Biswas� and Ramakrishna Karedla� �Analysis of �le I�O traces

in commercial computing environments�� in Proceedings of ACM SIGMETRICS and

PERFORMANCE ���� ����� pp� ����
�

��� Juan Miguel del Rosario and Alok Choudhary� �High performance I�O for parallel

computers� Problems and prospects�� IEEE Computer� vol� ��� no� �� pp� ������ Mar�

�����

��� Michael L� Powell� �The DEMOS File System�� in Proceedings of the Sixth ACM

Symposium on Operating Systems Principles� Nov� ����� pp� ������

��
� Ethan L� Miller and Randy H� Katz� �Input�output behavior of supercomputer appli�

cations�� in Proceedings of Supercomputing ���� Nov� ����� pp� ��������

���� Ethan L� Miller and Randy H� Katz� �An analysis of �le migration in a UNIX super�

computing environment�� in Proceedings of the ���� Winter USENIX Conference� Jan�

����� pp� ��������

��



���� Barbara K� Pasquale and George C� Polyzos� �A static analysis of I�O characteristics

of scienti�c applications in a production workload�� in Proceedings of Supercomputing

���� ����� pp� ��������

���� Barbara K� Pasquale and George C� Polyzos� �A case study of a scienti�c application

I�O behavior�� in Proceedings of the International Workshop on Modeling� Analysis�

and Simulation of Computer and Telecommunication Systems� ����� pp� �
���
��

���� Thomas W� Crockett� �File concepts for parallel I�O�� in Proceedings of Supercomputing

�	�� ����� pp� ��������

���� David Kotz and Carla Schlatter Ellis� �Prefetching in �le systems for MIMD multi�

processors�� IEEE Transactions on Parallel and Distributed Systems� vol� �� no� �� pp�

������
� Apr� ���
�

���� A� L� Narasimha Reddy and Prithviraj Banerjee� �A study of I�O behavior of Perfect

benchmarks on a multiprocessor�� in Proceedings of the �
th Annual International

Symposium on Computer Architecture� ���
� pp� ��������

���� R� Cypher� A� Ho� S� Konstantinidou� and P� Messina� �Architectural requirements of

parallel scienti�c applications with explicit communication�� in Proceedings of the ��th

Annual International Symposium on Computer Architecture� ����� pp� �����

���� N� Galbreath� W� Gropp� and D� Levine� �Applications�driven parallel I�O�� in Pro�

ceedings of Supercomputing ���� ����� pp� ��������

���� Rajive Bagrodia� Andrew Chien� Yarson Hsu� and Daniel Reed� �Input�output� Instru�

mentation� characterization� modeling and management policy�� Tech� Rep� CCSF����

Scalable I�O Initiative� Caltech Concurrent Supercomputing Facilities� Caltech� �����

��
� Phyllis E� Crandall� Ruth A� Aydt� Andrew A� Chien� and Daniel A� Reed� �In�

put�output characteristics of scalable parallel applications�� in Proceedings of Super�

computing ���� Dec� ����� To appear�

���� Paul Pierce� �A concurrent �le system for a highly parallel mass storage system�� in

Fourth Conference on Hypercube Concurrent Computers and Applications� ����� pp�

������
�

���� Paul J� Roy� �Unix �le access and caching in a multicomputer environment�� in Pro�

ceedings of the Usenix Mach III Symposium� ����� pp� ������

���� Michael L� Best� Adam Greenberg� Craig Stan�ll� and Lewis W� Tucker� �CMMD I�O�

A parallel Unix I�O�� in Proceedings of the Seventh International Parallel Processing

Symposium� ����� pp� ��������

��



���� David Kotz� �Multiprocessor �le system interfaces�� in Proceedings of the Second

International Conference on Parallel and Distributed Information Systems� ����� pp�

�����
��

���� S� R� Chapple and S� M� Trewin� PUL�GF Prototype User Guide� Feb� ����� EPCC�

KTP�PUL�GF�UG 
���

���� �KSR� technology background�� Kendall Square Research� Jan� �����

���� Orran Krieger and Michael Stumm� �HFS� a �exible �le system for large�scale mul�

tiprocessors�� in Proceedings of the ���� DAGS�PC Symposium� Hanover� NH� June

����� Dartmouth Institute for Advanced Graduate Studies� pp� �����

���� Peter F� Corbett� Dror G� Feitelson� Jean�Pierre Prost� and Sandra Johnson Baylor�

�Parallel access to �les in the Vesta �le system�� in Proceedings of Supercomputing ����

����� pp� ��������

���� Erik DeBenedictis and Juan Miguel del Rosario� �nCUBE parallel I�O software�� in

Eleventh Annual IEEE International Phoenix Conference on Computers and Commu�

nications 
IPCCC�� Apr� ����� pp� 
����
����

��
� �Connection Machine model CM�� technical summary�� Tech� Rep� HA����� Thinking

Machines� Apr� �����

���� �Parallel �le I�O routines�� MasPar Computer Corporation� �����

���� Peter Corbett� Dror Feitelson� Yarson Hsu� Jean�Pierre Prost� Marc Snir� Sam Fineberg�

Bill Nitzberg� Bernard Traversat� and Parkson Wong� �MPI�IO� a parallel �le I�O

interface for MPI�� Tech� Rep� NAS����

�� NASA Ames Research Center� Jan� �����

Version 
���

���� Intel Corporation� iPSC�� and iPSC�	�� User�s Guide� Apr� �����

���� NASA Ames Research Center� Mo�et Field� CA� NAS User Guide� ��� edition� Mar�

�����

���� James C� French� Terrence W� Pratt� and Mriganka Das� �Performance measurement

of the Concurrent File System of the Intel iPSC�� hypercube�� Journal of Parallel and

Distributed Computing� vol� ��� no� ���� pp� �������� January and February �����

���� Bill Nitzberg� �Performance of the iPSC���
 Concurrent File System�� Tech� Rep�

RND����
�
� NAS Systems Division� NASA Ames� Dec� �����

���� Thinking Machines Corporation� CM� Technical Summary� November �����

��



���� Thinking Machines Corporation� CM�� I�O System Programming Guide Version 
���

September �����

���� Thinking Machines Corporation� CMMD Reference Manual Version ���� May �����

��
� NCSA Consulting Sta� and NCSA CM�� Systems Sta�� �Personal communication��

June �����

���� Russell Carter� Bob Ciotti� Sam Fineberg� and Bill Nitzberg� �NHT�� I�O benchmarks��

Tech� Rep� RND����
��� NAS Systems Division� NASA Ames� Nov� �����

���� James C� French� �A global time reference for hypercube multiprocessors�� in Fourth

Conference on Hypercube Concurrent Computers and Applications� ����� pp� ������
�

���� Thomas T� Kwan and Daniel A� Reed� �Performance of the CM�� scalable �le system��

in Proceedings of the 	th ACM International Conference on Supercomputing� July �����

pp� ��������

���� Nils Nieuwejaar and David Kotz� �Low�level interfaces for high�level parallel I�O�� in

IPPS ��� Workshop on I�O in Parallel and Distributed Systems� Apr� ����� pp� ������

���� David Kotz� �Disk�directed I�O for MIMD multiprocessors�� in Proceedings of the ����

Symposium on Operating Systems Design and Implementation� Nov� ����� pp� ������

��


