
Copyright 1996 by the authors

An RPC Mechanism for Transportable Agents

Saurab Nog Sumit Chawla David Kotz

Department of Computer Science

Dartmouth College

Hanover� NH �����

fsaurab� chawla� dfkg�cs�dartmouth�edu

Dartmouth Technical Report PCS�TR�	�
��

March �� ���	

Abstract
Transportable agents are autonomous programs that migrate from machine to machine� per�
forming complex processing at each step to satisfy client requests� As part of their duties
agents often need to communicate with other agents� We propose to use remote procedure
call �RPC� along with a �exible interface de�nition language �IDL�� to add structure to
inter�agent communication� The real power of our Agent RPC comes from a client�server
binding mechanism based on �exible IDL matching and from support for multiple simul�
taneous bindings� Our agents are programmed in Agent Tcl� we describe how the Tcl
implementation made RPC particularly easy to implement� Finally� although our RPC is
designed for Agent Tcl programs� the concepts would also work for standard Tcl programs�

Keywords � Transportable Agents� Remote Procedure Call �RPC�� Interprocess Com�
munication�

This work was funded in part by O�ce of Naval Research �ONR� contract number N������������	��

Their support is gratefully acknowledged

� INTRODUCTION �

� Introduction

A transportable agent is a named program that can migrate from machine to machine in a
heterogeneous network� Such programs are a powerful tool for implementing information
agents because the electronic resources in a user	s information space are often distributed
across a network and can contain tremendous quantities of data� An agent can move the
search engine to the data� reducing network tra
c� Agents choose when and where to
migrate� They can suspend their execution at an arbitrary point� transport to another
machine and resume execution on the new machine� By migrating to the network location
of the resource� the program does not need to bring intermediate data across the network
and can access the resource e
ciently even if the resource developer provides only simple
primitives� Thus transportable agents are more e
cient than the traditional client�server
paradigm and allow rapid development of distributed applications�

Agents often need to communicate� as would be the case between a client and server agent�
This communication needs structure� as do all interfaces� but needs �exibility to allow
agents to speak on di�erent levels� We developed a remote procedure call �RPC� �BN
��
mechanism that� together with our Agent Interface De�nition Language �AIDL�� provides
this structure and �exibility for agents�

Our system is built on top of Agent Tcl� a transportable�agent system under development
at Dartmouth College �Gra��a� Gra��b�� Transportable agents in this system are written
in an extended version of the Tool Command Language �Tcl� �Ous���� As a result� most of
our RPC ideas apply to plain Tcl programs as well�

Figure � illustrates the architecture of the system� The topographical position of each
component corresponds to its position in the system hierarchy� To write client and server
agents� we start by writing an interface in the AIDL� which we then present to the stub
compilers� the stub compilers generate the procedure de�nitions that are used by the client
and server to communicate� Servers register the services they provide with the nameserver�
which the clients consult� This structure is no di�erent from traditional RPC systems� Our
system is di�erent in other ways�

� A new� �exible interface de�nition language� AIDL� allows default parameters and
position�independent parameters�

� Client�server bindings are based on interface matching rather than on names� and
there is support for multiple simultaneous bindings�

� Capabilities �Fab��� are supported at bind time� A server can accept or reject a bind
request based on the validity of the capability provided by the client�

In the ensuing sections we describe the components illustrated in Figure � in detail� ending
with a performance analysis of our system and a discussion of extensions to the system� We
start by describing some related work�

� RELATED WORK �

R

V

S

R

E N

T

C

L

I

E

�

� �

�

�
�

�
�����������������

XXXXXXXXXXXXXXXz

�
�

�

E

�

stub procedures

�

�

�

SERVER STUB COMPILER CLIENT STUB COMPILER

NAME SERVER

agent export agent list

� �

�

�

�

agent bind

Function Calls and Responses

If server accepts the binding request

list of matching servers

�

accept�reject binding

INTERFACE � in AIDL �

switch procedure

Figure �� The system architecture

� Related Work

Our work blends ideas from two areas� agents and RPC� into a single system� In this section
we describe related work in these areas�

The advantages of transportable agents have led to a �urry of implementation work� Three
notable systems are Tacoma �JvRS���� Telescript �Whi���� and Agent Tcl �Gra��a� Gra��b��
Tacoma agents are written in Tcl�Horus� which is a version of Tcl that uses Horus �vRHB���
to provide group communication and fault tolerance�

Tacoma agents communicate using the meet operation� data to be exchanged is carried in
a briefcase� which is a collection of folders containing units of data accessible by agents�
Tacoma claims to support �RPC style� communication� but this appears to mean that the
communication is synchronous� Data� like in the meet operation� is exchanged through a

� AGENT INTERFACE DEFINITION LANGUAGE �AIDL� �

briefcase� there is no procedure call�

Telescript is an object�oriented language in which migration is viewed as a basic operation�
Telescript agents communicate by obtaining references to each other	s objects if they are
on the same machine and sending objects to each other if they are on a di�erent machine�

Agent Tcl agents are written in a version of Tcl� Agent Tcl agents communicate using the
meet operation� This operation establishes a socket connection between the communicating
agents� Agent Tcl is free� and has been ported to several platforms�

There are many RPC�related systems� Several kinds of nameservers and stub compilers
have been written� each with an intended application� Most research� however� is aimed at
optimizing RPC speed� through kernel hacks �BALL��� or through the use of speci�cation
�les to provide information that can be used for optimization �FHL��� AR���� Our focus
is in providing �exibility in the interface speci�cation� The closest work we know is the
�Tcl�DP Name Server� �LSR���� which augments the RPC mechanism of Tcl�DP �SRY����
a distributed programming extension to Tcl� with an easy and reliable lookup service�
Services are organized in a hierarchical manner as if they were �les in a directory� Aliases
can be created for services shared by di�erent applications� To get a list of services� say
with name �sysdaemon�� one can ask the name server to list service names of the form
�sysdaemon���� The name server then returns a list of all matches� Although the list of
commands serviced by the name server is similar to ours� they use no IDL for specifying
and matching interfaces� Also� clients and servers are processes� not agents�

The Agent RPC system also shares common goals with distributed component technologies
like Network OLE �Bro��� and CORBA �COR���� Both systems try to help clients locate
appropriate servers by using interface matching� While the main goals of component�ware
are access and location transparency� however� the Agent RPC system is aimed at con�
stantly moving clients �agents� and focuses more on �exibility in interface speci�cation and
matching�

� Agent Interface De�nition Language �AIDL�

An interface de�nition serves many important purposes in a client�server environment� A
server uses its interface de�nition to describe its functionality to the world� A server	s
services may improve over time� however� and it may want to upgrade its interface while
still maintaining compatibility with older clients� Since in our system a client uses its
interface de�nition to search for an appropriate server� i�e�� one with a matching interface�
the aim here is to allow for substantial �exibility in this matching process� The overall goal
of the system is to let the client and server evolve independently and still maintain their
compatibility�

Agents specify the functional interface they support or want using our Agent Interface

�http���www
cs
dartmouth
edu�
agent�

� AGENT INTERFACE DEFINITION LANGUAGE �AIDL� �

De�nition Language �AIDL�� AIDL has a �exible format� adding many new features like
position�independent parameters and default values that are unavailable in traditional IDLs�
The aim is to support extensibility and �exible matching�

An interface is a Tcl list� The elements of this Tcl list are AIDL constant and procedure
de�nitions� which are lists in themselves� Valid interfaces in AIDL can be expressed by the
following set of translations�

� interface � constant list procedure list

� constant list � constant f constant de�nitions g j �

� constant de�nitions � f constant name constant value g constant de�nitions j �

� procedure list � f procedure de�nition g procedure list j �

� procedure de�nition � procedure name f parameter list g return list

� parameter list � f parameter name parameter type g parameter list j
f parameter name parameter type default value g parameter list j �

� return list � f returnvalue name returnvalue type g j �

A constant de�nition consists of pairs of names and values� The constants thus declared
are used mainly for classi�cation and identi�cation purposes� For example� constants al�
low multiple servers exporting the same functionality to distinguish themselves� It also
facilitates simultaneous existence of multiple versions of an interface�

A procedure de�nition consists of�

� Procedure name�

� List of the parameters �name� type and default value� if any� for the procedure� This
list may be empty�

� Return�value information �name� type�� This part may also be empty� in which case
both the name and type are assumed to be empty�

An example

A possible travel�agent interface in AIDL might look something like the following example�
This example gives a �avor of AIDL and also depicts usage of default values �credit card

for the parameter payment form��

�constant �version �� �service travel�agent� �category airlines��

�get�flight�information ��Origin CityCode� �Destination CityCode��

� AGENT INTERFACE DEFINITION LANGUAGE �AIDL� �

�flights flight�list��

�buy�ticket ��payment�form sale�type credit�card� �flight flight�number��

�success boolean��

�get�address�of�travelagent �� �address string��

The constants convey the version number for this server� its service type and its specializa�
tion �airlines�� The names of these constants are not signi�cant to the stub compilers or
the nameserver� but are meaningful by convention between clients and servers� The rest of
the declarations announce procedures supported by this server�

AIDL procedure declarations have two major features that support its goal of �exibility
and extensibility� They are�

� Position�independent parameters�

� Parameters with default values�

These features tremendously ease the restriction of using the same interface for the client
and server� These features belong to the interface and not to the individual calls�

In AIDL� parameter declaration order is immaterial for interface�matching purposes� Hence�
two procedures that are identical �function name� return value information� and parameter
information� except for the order of parameter declaration will be treated as the same during
matching� Thus buy ticket could also be declared as

�buy�ticket � �flight flight�number� �payment�form sale�type credit�card��

�success boolean��

This feature goes a long way towards realizing the goal of being able to �nd similar services
without forcing too much structure on them�

Position�independent default values is another interesting capability of AIDL� Tcl and
C�� allow default values for procedure parameters in a restricted manner� Such procedure
parameters have to be last in the procedure declaration and cannot be skipped over in case
there are multiple default parameters� So if we have the following procedure in Tcl with
two formal parameters� each with an associated default value�

proc sample � �formal� default� � �formal� default�� �

and we call it with one actual parameter� Tcl assumes that the value applies to the �rst
formal parameter �formal���

� AGENT INTERFACE DEFINITION LANGUAGE �AIDL� �

The separation of interface de�nition �in AIDL� from implementation �in Tcl� allows the
Agent RPC system to present a much more �exible interface to the same procedure� In
AIDL� parameters with default values may be intermixed freely with those without �i�e��
without any restrictions on the order in which these parameters appear in the AIDL def�
inition�� While this de�nitely helps clients and servers with slightly di�erent interfaces to
bind� it also augments the way clients can call this function� If a server de�nes a proce�
dure sample as above� clients may choose an interface for sample with no parameters� just
formal�� just formal�� or both formal� and formal� speci�ed�

AIDL features like position�independent parameters and default values are actually handled
by the client and server stubs� as explained in the next section� Figure � gives a high�level
overview of the underlying process�

2

3

5

6

......

CLIENT

CLIENT INTERFACE SERVER INTERFACE

SERVER

{ buy_ticket { { flight flight_number 007 } } { buy_ticket { { payment_form sale_type credit_card

{ flight flight_number } }

4

CLIENT STUB SERVER STUB

proc buy_ticket { flight } {

{ buy_ticket { flight flight_number 108 } }

 set payment_form credit_card

_extract_parameters

set flight 108

return [

}

{ success true }

}

return true

proc buy_ticket { payment_form flight } {

{ success boolean } }

}

]buy_ticket $payment_form $flight

 set success [buy_ticket 108]

 { success boolean } }

buy_ticket {

switch $ procname {

}

.

CLIENT SERVER

} " 108"

"true"

1

"credit_card"
"true"

"108"

Figure �� The calling mechanism

The client and server have slightly di�erent versions of the buy ticket procedure� However
the two match because

� STUB GENERATION AND INTERFACE MATCHING �

� The server has a default value �credit card� associated with the parameter �payment form�
missing from the client	s declaration�

� The default value of ��� for the parameter �ight is ignored by the client stub compiler�

The client stub compiler thus generates a stub procedure with the one parameter �flight�
while the server stub compiler generates a switch procedure with a call to the server	s
buy ticket procedure having both the parameters � payment form and flight� mentioned
in its interface� The switch procedure �lls in the default values into appropriate variables
before calling the actual procedure� Thus the server	s implementation of buy ticket doesn	t
know if the client speci�ed a parameter or it was inserted by the server stub�

The result of the actual call is forwarded to the client stub which returns it as the result of
the function call�

� Stub Generation and Interface Matching

An AIDL compiler is needed to convert interface de�nitions into appropriate Tcl code� The
compiler performs error checking like detecting duplicate constant� function� or parameter
names� incorrect AIDL syntax� and so forth� The Tcl code generated depends on the role
of the agent in the system �client or server�� Our AIDL compiler is written in Tcl� since
AIDL uses Tcl	s list syntax� parsing and manipulating AIDL descriptors was substantially
easier than most compilers�

Another important function of the AIDL compiler is to generate a compact representation
of the compiled interface that can be used e
ciently for matching purposes� When the
travel AIDL is compiled on the client side� the following compact representation results�

fclient stub compilerv��� fconstant fcategory airlinesg fservice travel agentg

fversion �gg ff buy ticket fsuccess booleang fflight flight numberg fpayment form

sale typeg g f close connection fvoid voidg g f get address of travelagent faddress

stringg g f get flight information fflights flight listg fDestination CityCodeg
fOrigin CityCodeg gg

The �rst part of this long string �client stub compilerv���� is the client compiler	s sig�
nature� This part is followed by constant and procedure declarations that have been slightly
modi�ed�

� The constants have been sorted by their names�

� The procedures have been sorted by their names�

� Parameters for each procedure have been sorted by their names�

� STUB GENERATION AND INTERFACE MATCHING

� All default�value declarations have been removed from parameter lists�

A server compilation of the same AIDL description would produce the same compact repre�
sentation except that the signature would be server stub compilerv��� and the default
value would be present�

The Agent RPC system matches clients with servers based on their interfaces and not the
name of the service they seek �as in traditional RPC systems�� Sorting helps the interface�
matching task performed by the nameserver� The order in which procedure parameters
were declared thus no longer e�ects interface matching� This independence from order of
declaration provides Agent RPC with one of its most powerful features� matching based on
name and type�

One way to transparently extend a server	s interface is to use default values for new param�
eters� For clients the bene�t of having default values lies in the interface�matching process�
done by the nameserver� The nameserver will successfully match a client interface against
a server interface� if the server interface supports all of the client	s procedures� The rule
for procedure matching is that� for all procedures mentioned in the client interface� the pa�
rameters on both the client and the server must be exactly similar �the order of declaration
does not matter� except for those for which the server speci�es defaults� So the default
parameters act as �don	t cares� for the matching process� A client AIDL may or may not
have those parameters and that does not a�ect matching�

Another way to extend a server	s interface is to add new procedures� Only clients who
request those procedures in their interface will have access to them� In any case� clients
using an interface subset can still match�

Our system associates a programmer�supplied identi�er with each interface available to an
agent �client or server� to help di�erentiate multiple interfaces and switch between them
for purposes of querying and binding� In our implementation� the identi�er is actually
promoted to an array variable with three �elds� One of the �elds is the name and it stores
the compact representation of the interface generated by the AIDL compiler�

��� Client Compilation

To preserve the abstraction of local function call for RPC� the AIDL client compiler gener�
ates stub procedures for the client to use� The stub procedures hide details about inter�agent
communication and parameter passing from the agent programmer� Client stubs provide
the following functionality�

� Control transfer�

� Packing of input parameters and unpacking return value� respectively� Since all pa�
rameters� being Tcl values� are strings� packing and unpacking are much easier than
in most RPC systems�

� STUB GENERATION AND INTERFACE MATCHING �

� Sending packed input parameters to the server and receiving results from it� The
result is returned to the calling procedure after unpacking�

� Timeout on how long it takes for the server to respond� The timeout limit can be
changed when the interface is being compiled�

� Sequenced number generation to detect and remove stale responses�

��� Server Compilation

Server compilation of interfaces is similar to client compilation except for a few di�erences�

� Default values for parameters are not ignored� They become a part of the declaration
and are used for generating code and the compact interface representation�

� The result of the compilation process is not a list of stub procedures but a switch

statement� The switch statement calls the appropriate routine de�ned in the server
that implements the functionality the client is seeking� The actual server routine does
not know anything about defaults either� Default values are applied inside the switch
statement� before calling the routine�

The switch statement is enclosed in a switch procedure� For the travel agent interface� the
switch procedure looks like

proc �switch�proc �procname �param�list ���� �

switch �procname �

buy�ticket �

� Set the default parameter

set payment�form credit�card

� Get the value of parameters from the list specified

� by the client� This may lead to the overwriting of

� a default parameter	 but that
s fine�

�extract�parameters �param�list

� call the actual procedure and

� return the result

set returnval �buy�ticket ��payment�form� ��flight��

return �returnval

�

� NAMESERVER ��

��� other procedures ���

�

�

Thus when a client calls the buy ticket remote procedure� a variable payment form is
created and assigned the default associated value of credit card� extract parameters

is a procedure that assigns variables the values the client speci�ed� So if the client supplied
a value for payment form� it will overwrite the default value� The actual server function
buy ticket is then called with all the parameters�

� NameServer

The nameserver is an agent with functionality similar to that of the Grapevine system
�BLNS
��� It is a database that the servers use to register services and the clients use to
locate services� It is responsible for�

� Registering services� Servers wishing to export services call agent export� which
transmits their agent id �a unique identi�er assigned to an agent by the system� and
the compiled AIDL name to the nameserver� The latter appends the AIDL to its list
of existing services� Currently� a server can export only one interface�

� Matching clients with servers� Clients wishing to locate servers matching their own
compiled interface also use the nameserver� The nameserver serves as a deterministic
�nite automaton �DFA�� matching the speci�ed interface against the list of exported
interfaces� and returning the list of matched interfaces� The lexicographic ordering
of the components of the interface results in a simple and fast matching process�
Strings are matched from left to right� with default parameters being skipped when
corresponding parameter name and type pairs do not match� No backtracking is
required� The string and list handling features of Tcl make this process quite simple�
The agent list command is used by a client to obtain this information�

� Deleting services� The nameserver removes the interface from the list upon a recall
request from the server� The agent recall command is used by a server to revoke
access to the services it provides�

The commands used to initiate conversation with the nameserver are described in Table ��

� RPC Mechanism

Remote Procedure Call �RPC� is an involved protocol� It requires at least the following
steps�

� RPC MECHANISM ��

Category Command Description

Client agent list returns a list of names and addresses of servers providing
the desired service

agent bind creates bindings and switches between current bindings
agent unbind destroys a current binding

Server agent export inserts the server interface into the nameserver	s database
agent recall deletes the server	s interface entry from the nameserver	s

database

Table �� Support functions for clients and servers

� Keeping track of services available at various servers�

� Matching a client	s needs to an appropriate server�

� Setting up a connection between the client and server�s� �which may include authen�
tication��

� Sending a request from client to server and waiting for the response as well as packing
and unpacking the parameters and results�

� Disconnecting the established connection�s� cleanly�

The �rst two functions are provided by the nameserver� which exists in every agent system
along with the agent server� The remaining three are client�server functions and both the
client and the server have additional support functions that help them with these stages�

��� Client Side

The client side of RPC is a bit more involved than the server� because it is the client who
initiates conversation� Our agent system allows an agent to have multiple interfaces and each
interface to have multiple concurrent bindings� The multiple interfaces are distinguished
using programmer�de�ned array names while the multiple bindings for an interface are
cached in the bind variable of its respective array� A global descriptor is used to identify
the context �interface and binding� in which an RPC call is made�

To prevent the client from getting stuck in an in�nite wait� a timeout mechanism is built
into the client stubs� If the server does not respond to a client RPC request within a spe�
ci�c period� the client stub throws an exception and returns� The timeout parameter is
con�gurable at AIDL compile time� Timeouts introduce the problem of servers responding
after the client has timed out� Such stale responses are weeded out by attaching a sequence
number to each RPC request� The sequence number is incremented at each request �suc�
cessful or not� and is not reused� When a client stub sees a server response with a sequence
number not equal to its present one� it discards it as stale�

� RPC MECHANISM ��

Support functions for the RPC client are listed in Table � and described below

agent list A client	s �rst step is to ask the nameserver for the names and addresses of
servers providing the desired service� The client calls agent list� which in turn uses low�
level primitives to

� request a meeting with the nameserver �which has a well known name��

� send a message consisting of the list command� its own id� and the compiled version
of its AIDL interface �obtained from the name �eld of the interface array produced by
the stub compiler�� and

� wait for the nameserver to do the matching and return a list of server IDs that
successfully match the clients interface� this list is stored in the list �eld of the
interface array�

agent bind The client	s next step is to bind to one or more servers� Since multiple
interfaces and multiple bindings are permitted� we also need a mechanism to switch between
them� agent bind creates bindings and switches between current bindings� as follows�

� The user calls agent bind with the ID of the server� agent bind veri�es that the
server is in the list returned by agent list� This check prevents the user from trying
to bind with arbitrary servers and causing system crashes� Thus agent bind forces
the client to call agent list �rst� to ensure smooth operation�

� If the server ID is valid� the list of currently active bindings is searched� If an ac�
tive binding already exists� its identi�er is made the global context identi�er and
agent bind returns�

� If no active binding exists� agent bind asks to meet �agent meet� the target server�
When the meeting request is granted� a TCP�IP connection is established between
the client and the server�

� Once a connection is established� the client sends a capability to the server� This step
allows servers to use a capability for authenticating the client	s general access rights�
In the server stub the capability is passed to a user�de�ned function hook that returns
access permissions �granted or denied��

� After the client	s capability has been screened� the server stub responds to the client
with an �Access Granted� or �Access Denied� response� If access is denied� both the
client and the server close their TCP�IP sockets and agent bind returns an error�
Otherwise� the client adds the � server� descriptor � pair to its list of currently
active bindings� sets the global context identi�er to the new descriptor� and returns
successfully�

� PERFORMANCE ��

Data RPC Time Client Server Comm� Time Local
Size Same Di�erent Stub Stub Same Di�erent Call

�bytes� Machine Machine Time Time Machine Machine Time
� ����� ����� ��	

 ���
� ��
�� ����

����
��	�
 ��
�

����� ���
� ����� ����� ��	�� �	��

��
�
��	�
 ��

�

�
����� ����	 ����� ���
� ����� �	���

����
����
 ��
��

��
����� ����� ���	� 	���
 ��
� �	���

����
��	�
 �����

���
	�
��
���	� ����� ����
 �����
����
 ��	��
����
 �����

Table �� Agent RPC performance� All times are in milliseconds� and are averages of over
������ trials� The data bytes were passed as a single parameter�

agent unbind agent unbind destroys a current binding� It does so by sending an unbind
request through the open port to the server and then disconnecting�

��� Server Side

The server registers its services with the nameserver� and then waits to service incoming
requests� Requests could be for�

� Binding� a new client wishes to bind to the server� The capability parameter is
extracted and passed to a server authentication function� The result of this function
determines whether to accept or reject the binding� The client is noti�ed accordingly�

� Service� a client with a successful bind wishes to seek a service� The incoming stream is
unpacked into the sequence number� the procedure name� and the parameter list� and
the switch procedure is invoked� The result obtained from this call is then packed with
the sequence number and transmitted back to the client� Note that the sequencing is
done on the client side� the server merely sends back the number it received�

The server uses two support functions�

agent export A server registers the services it provides by invoking agent export with
parameters agent id and the compiled interface� The result is the insertion of the interface
in the nameserver	s database�

agent recall A server revokes access to its services by invoking agent recall� with pa�
rameter agent id� The nameserver deletes the corresponding entry from its database�

� PERFORMANCE ��

	 Performance

We measured the performance of the Agent RPC system using ��� MHz Pentium PCs
connected by a �� Mbit�sec Ethernet� The PCs ran FreeBSD version ��� and Agent Tcl
version ��� �which extends Tcl version ����� We measured the end�to�end wall clock time for
a complete RPC call� transferring data from client to server� with an empty server procedure
and no return data� This experiment was repeated for various parameter sizes� and for both
local and remote server agents� The average timing results are presented in Table ��

The last column of the table shows the time it took to make a local procedure call �same
program� with the same amount of data� Since Tcl is inherently slow� this measure is a
good benchmark for evaluating the RPC results� In all cases we can see that an RPC took
somewhere between �� to ��� times the time it took for a local call� This ratio is fairly
common in most RPC systems�

Note also that communication was a small fraction ��� to �
�� of the total time in all cases
�columns � and ��� Agent communication was not particularly fast because it uses TCP�IP
sockets� but it is not the bottleneck because Tcl interpretation is very slow�

It is interesting that the time for a same�machine RPC was higher than a cross�machine
RPC� We believe that this unintuitive result is due to the context switch between the client
and server processes on the same machine� which was more costly than the network transfer
time�

 Future Work

Having built this system� we now intend to use it for several applications� such as information�
retrieval systems� electronic commerce� and work�ow�

In addition to this� we are looking at extending the system in the following ways�

� Type checking� currently the type �elds of the parameters are ignored� Type checking
will become important if we are communicating with agents in other languages� a
feature that will be present in a future version of Agent Tcl�

� Security� provide the option to encrypt messages between clients and servers�

� Nameserver� provide the nameserver the ability to update its list of active servers�

� Portals �McK��� �SP���� we would like to make the nameserver a portal process and
use it to build an agent �le system�

	 CONCLUSIONS ��

� Conclusions

We have presented an RPC mechanism for Tcl agents that provides a �exible and easy
method of communicating with other agents� We have designed a new IDL for this purpose
that allows clients to bind to services that match their speci�cation� The IDL is both
simple and �exible� allowing position�independent and default parameters� Tcl	s �exibility
was instrumental in easing the rapid construction of Agent Tcl and our RPC facility� Our
performance results indicate that our system performs reasonably well�

Acknowledgements

Many thanks to Bob Gray for providing help with the Agent Tcl system and for reviewing
this paper� We also appreciate his help in writing parts of the introduction and related
work sections�

References

�AR��� J� S� Auerbach and J� R� Russell� The Concert signature representation� IDL as
an intermediate language� In Proceedings of the Workshop on Interface De�nition
Languages� pages ����� �����

�BALL��� Brian N� Bershad� Thomas E� Anderson� Edward D� Lazowska� and Henry M�
Levy� Lightweight remote procedure call� ACM Transactions on Computer Sys�
tems�
���������� February �����

�BLNS
�� A� D� Birrell� R� Levin� R� M� Needham� and M� D� Schroeder� Remote Execution�
Communications ACM� �������������� April ��
��

�BN
�� Andrew D� Birrell and Bruce Jay Nelson� Implementing remote procedure calls�
ACM Transactions on Computer Systems� ����������� February ��
��

�Bro��� Kraig Brockschmidt� Inside OLE� �nd Edition� ISBN ��������
����� Microsoft
Press� �����

�COR��� The common object request broker� Architecture and speci�cation� OMG TC
Document Number �������� Revision ���� December �����

�Fab��� R� S� Fabry� Capability�based addressing� Communications of the ACM�
�������������� July �����

�FHL��� B� Ford� M� Hibler� and J� Lepreau� Using annotated interface de�nitions to
optimize RPC� Technical Report UUCS�������� Utah� March �����

REFERENCES ��

�Gra��a� Robert S� Gray� Agent Tcl� A transportable agent system� In Proceedings
of the CIKM Workshop on Intelligent Information Agents� Fourth International
Conference on Information and Knowledge Management �CIKM ���� Baltimore�
Maryland� December �����

�Gra��b� Robert S� Gray� Transportable agents� Technical Report PCS�TR������� Dept�
of Computer Science� Dartmouth College� ����� Thesis proposal�

�JvRS��� D� Johansen� R� van Renesse� and F�B� Schneider� An introduction to the
TACOMA distributed system version ���� Technical Report ������ University
of Troms�� June �����

�LSR��� P� T� Liu� B� Smith� and L� Rowe� Tcl�DP Name Server� In Proceedings of the
Tcl�Tk Workshop� pages ����� July �����

�McK��� Marshall Kirk McKusick� The virtual �lesystem interface in ���BSD� Computing
Systems�
��������� Winter �����

�Ous��� John K� Ousterhout� Tcl and the Tk Toolkit� Addison�Wesley� Reading� Mas�
sachusetts� �����

�SP��� W� Richard Stevens and Jan�Simon Pendry� Portals in ���BSD� In Proceedings
of the 	��� Usenix Technical Conference� pages ����� January �����

�SRY��� B� C� Smith� L� A� Rowe� and S� Yen� Tcl Distributed Programming� In Pro�
ceedings of the Tcl�Tk Workshop� June �����

�vRHB��� R� van Renesse� T� M� Hickey� and K� P� Birman� Design and Performance of
Horus� A Lightweight Group Communications System� Technical Report TR
�������� Cornell� August �����

�Whi��� James E� White� Telescript technology� The foundation for the electronic mar�
ketplace� General Magic White Paper� �����

