
Using the Emulab network testbed to evaluate the
Armada I/O framework for computational grids

Ron Oldfield and David Kotz

Dartmouth Technical Report TR2002-433

Department of Computer Science

Dartmouth College

{raoldfi, dfk}@cs.dartmouth.edu

27th September 2002

Abstract

This short report describes our experiences using the Emulab network testbed
at the University of Utah to test performance of the Armada framework for parallel
I/O on computational grids.

Introduction

Armada [OK02a, OK02b] is a framework for building data-intensive applications for
large-scale computational grids. In Armada, a graph of processing modules describe
data distribution, application interfaces, and processing required of a data set before
computation. The modules that make up the graph can execute on nodes near the client,
nodes near the data, or intermediate network processors. Two important features of Ar-
mada include the ability to restructure the application graph to distribute computational
or network load, and the effective placement of application objects to reduce network
traffic–for example placing a data-reduction filter close to the data source.

There are three different environments available for testing the Armada framework:
a computational grid testbed (such as the one being set up by the Global Grid Forum),
network simulation, and network emulation . A grid testbed provides the most realis-
tic environment, but does not allow direct control over network parameters; a feature
that allows analysis over a wide range of conditions. Simulation provides the most
flexibility with respect to control over network parameters, but producing an accurate
network and computational model is often difficult; requiring a significant amount of
extra work. Emulation provides a nice mix between a real network testbed and a sim-
ulated environment. Code executes on real computational resources that communicate
through an emulated network topology.

This work was supported by Sandia National Laboratories under DOE contract DOE-AV6184.

1

David Kotz
© Copyright 2002 by the authors�

filt

API

repAPI

API

dist
seg

seg

seg

seg
dist

Client LAN

Server LAN 1

Server LAN 2

(a) orig1.

filt

API

repAPI

API

dist
seg

seg

seg

seg
dist

Client LAN

Server LAN 1

Server LAN 2

(b) orig2.

API rep

API

API

dist
seg

seg
rep

rep

filt

filt

dist
seg

seg

filt

filt

Server LAN 1Client LAN

Server LAN 2

same host

(c) restruct1.

API rep

API

API

dist
seg

seg
rep

rep

filt

filt

dist
seg

seg

filt

filt

Server LAN 1Client LAN

Server LAN 2

separate hosts

(d) restruct2.

Figure 1: Four configurations of the filtering application.

The ability to easily configure network topologies and control network parameters
(such as bandwidth and latency) make the Emulab network testbed1 ideal for examin-
ing the effectiveness and the flexibility of our approach. For example, we recently used
Emulab to evaluate the performance benefit of Armada’s graph restructuring algorithm
on a synthetic application that filters data from two distributed data sets. For details,
see [OK02b]. Figure1 shows four configurations of the application we studied. The
top two subfigures show two configurations of the original graph (labeled “orig1” and
“orig2”). The lower subfigures show two configurations of the restructured graph (“re-
struct1” and “restruct2”). For each configuration, we ran experiments for each of seven
different bandwidths, five different latencies, and three different application parameters
for the filter; amounting to 420 experiments in all.

Experiment setup

We designed our network topology to have three local-area networks (LANs) con-
nected by a single wide-area network (WAN). Each LAN is connected to the WAN
through a single router, which has a link to each of the other two LANs. Figure2 illus-
trates the links. Since each configuration has a similar topology, we performed all of

1http://www.emulab.net

2

LAN 1

LAN 3

LAN 2
WAN

Figure 2: Topology of the network illustrating links between LANs.

our experiments on the same set of processors and used the Emulab event scheduling
commands to dynamically configure the WAN network parameters between experi-
ments.

We completed the experiments in less than five days: three days to set up the exper-
iments, and two days to generate results. Setting up the experiments involved creating
the “ns” script file to describe the topology, creating the startup scripts for each allo-
cated processor, creating a script file to run all the experiments, and interactive testing
of the application to make sure it worked correctly. There was a slight learning curve
associated with the event scheduling commands, but the on-line documentation seemed
to be sufficient. Most of time was spent debugging script files and the Armada code.
On the fourth day, we started the full job. With the exception of a few stoppages due to
bugs in the Armada code, the experiments ran without incident.

Results

Figure 3 shows timings and throughput measurements demonstrating the effect of
bandwidth on the different configurations of the filtering application. In this subset
of experiments, the filter removes fifty percent of the data. In (b), we also show the
optimal throughputs fororig1 (lower solid line) and the others (upper solid line).

When the WAN was slow, all configurations were limited by the WAN bandwidth.
Placement of the filtering code on the server side of the WAN allowed a near-doubling
in performance overorig1, due to the filter’s halving of the WAN traffic. (orig2 only
matched the restructured graphs because it had double the WAN link bandwidth.)
When the client/server WAN bandwidth was above 30 Mbps, computation associated
with Java serialization and the filter code became the bottleneck. The restructured
graph’s distribution of the filter across four processors provided a significant perfor-
mance gain over the original graph.

With the original graph, theorig2 placement was faster thanorig1 only because its
WAN links were twice as fast. When computation was the bottleneck,orig2 andorig1
had equivalent performance. With the restructured graph,restruct2was equivalent to
restruct1at low WAN bandwidths, but was faster at high WAN bandwidths because the
filter in restruct1shares a processor with its adjacent segment ship.

3

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

Total client/server WAN bandwidth (Mbit/sec)

E
xe

cu
tio

n
T

im
e

(s
ec

)

orig1
orig2
restruct1
restruct2

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Total client/server WAN bandwidth (Mbit/sec)

E
ffe

ct
iv

e
T

hr
ou

gh
pu

t (
M

bi
t/s

ec
)

WAN bandwidth
2*WAN bandwidth
orig1
orig2
restruct1
restruct2

Figure 3: Time and throughput measurements of the filtering application. Each point
is the mean of five independent trials.

4

References

[OK02a] Ron Oldfield and David Kotz. Armada: a parallel I/O framework for com-
putational grids.Future Generation Computing Systems (FGCS), 2002. Ac-
cepted for publication.

[OK02b] Ron Oldfield and David Kotz. Graph restructuring in the Armada parallel
I/O framework. In preparation, April 2002.

5

