
Efficient I/O for Computational Grid
Applications

Ron Oldfield

PhD. Thesis Defense

Department of Computer Science, Dartmouth College

May 15, 2003

Committee: David Kotz (chair), Thomas Cormen, Robert Gray, and David Womble

Armada – p.1

Computational Grids

Networks of geographically distributed heterogeneous
systems and devices

Data-intensive scientific applications

• Access large remote datasets (terabyte–petabyte)

• Datasets often need pre/post-processing

• Often computationally intensive

• Examples

− Climate modeling
− Astronomy
− Computational biology
− High-energy physics

Armada – p.2

The Armada Framework

• Application deploys a graph of distributed objects (ships)

• Requests cause pipelined data flow through graph

• Graph has two distinct portions:

− from the data provider (describes layout of data set)
− from the application-programmer

(pre/post-processing)

PSfrag replacements

API

API

API

M filt rep

dist

dist
seg

seg

seg

seg

client processors
storage servers

from application from data provider
Armada – p.3

The Armada Framework

• Application deploys a graph of distributed objects (ships)

• Requests cause pipelined data flow through graph

• Graph has two distinct portions:

− from the data provider (describes layout of data set)
− from the application-programmer

(pre/post-processing)

PSfrag replacements

API

API

API

M filt rep

dist

dist
seg

seg

seg

seg

client processors
storage servers

from application from data provider

Requests→

Armada – p.3

The Armada Framework

• Application deploys a graph of distributed objects (ships)

• Requests cause pipelined data flow through graph

• Graph has two distinct portions:

− from the data provider (describes layout of data set)
− from the application-programmer

(pre/post-processing)

PSfrag replacements

API

API

API

M filt rep

dist

dist
seg

seg

seg

seg

client processors
storage servers

from application from data provider

← Data (read)

Armada – p.3

The Armada Framework

• Application deploys a graph of distributed objects (ships)

• Requests cause pipelined data flow through graph

• Graph has two distinct portions:

− from the data provider (describes layout of data set)
− from the application-programmer

(pre/post-processing)

PSfrag replacements

API

API

API

M filt rep

dist

dist
seg

seg

seg

seg

client processors
storage servers

from application from data provider

Data (write)→

Armada – p.3

Armada

Armada is not a data storage system.
Armada is not a parallel file system.

The data segments that make up a data set are stored in
conventional data servers as files, databases, or the like.

The Armada graph encodes most functionality provided by
the I/O system:

• programmers interface,

• data layout,

• caching and prefetching policies,

• interfaces to heterogeneous data servers.

Armada – p.4

Armada can...

With Armada, one can...

• build a graph for parallel access to a group of legacy files,

• present many similar data sets through a standard
interface, and

• provide transparent access to derived “virtual” data–
either cached or calculated as needed.

Armada – p.5

Restructuring

Problems with the example application:

• Potential bottlenecks in composed graph

• original graph restricts placement alternatives for filter

Original graph Restructured graph

PSfrag replacements

API

API

API

M filt rep

dist

dist
seg

seg

seg

seg

seg

client processors
storage servers

from application from data provider

bottleneckPSfrag replacements

API

API

API

M

M
filt

filt

filt

filt
rep

rep

rep

dist

dist

seg seg

seg

seg

seg

client processors
storage servers

from application from data providerbottleneck

Armada restructures original graph to improve data flow.

Armada – p.6

Placement

After restructuring:

1. Armada deploys ships to appropriate administrative
domains to optimize data flow, then

2. domain-level resource manager decides placement of
individual ships.

EG

PSfrag replacements

API

API

API

rep

rep

rep

M

M

dist

dist

filt

filt

filt

filt

seg

seg

seg

seg

client domain
server domain 1

server domain 2

Armada – p.7

Placement

After restructuring:

1. Armada deploys ships to appropriate administrative
domains to optimize data flow, then

2. domain-level resource manager decides placement of
individual ships.

EG

PSfrag replacements

API

API

API

rep

rep

rep

M

M

dist

dist

filt

filt

filt

filt

seg

seg

seg

seg

client domain
server domain 1

server domain 2

Armada – p.7

Talk Outline

• Introduction

• Framework details

− Ships
− Graph Representation

• Restructuring graphs to improve data flow

• Partitioning graphs and placing ships

• Experiments

• Conclusion

Armada – p.8

Ships

Armada includes a rich set of extensible ship classes.

PSfrag replacements

Armada
Ships

Structural

Structural

Non-

Distribute (partition, select, copy)

Merge

Data
Processing

Optimization

Interface

Filter (>, <, =)
Transform (FFT, unit conversion)
Reduce (min, max, sum)
Permute (sort, transpose)

Cache
Prefetch

Client (Matrix, Line, String, stdio)
Storage (File, Query)

Armada – p.9

Ships

Armada includes a rich set of extensible ship classes.

PSfrag replacements

Armada
Ships

Structural

Structural

Non-

Distribute (partition, select, copy)

Merge

Data
Processing

Optimization

Interface

Filter (>, <, =)
Transform (FFT, unit conversion)
Reduce (min, max, sum)
Permute (sort, transpose)

Cache
Prefetch

Client (Matrix, Line, String, stdio)
Storage (File, Query)

Distribute ships partition requests or data to
multiple output streams.

PSfrag replacements

R

S1

S2

S3

Armada – p.9

Ships

Armada includes a rich set of extensible ship classes.

PSfrag replacements

Merge

Armada
Ships

Structural

Structural

Non-

Distribute (partition, select, copy)

Merge

Data
Processing

Optimization

Interface

Filter (>, <, =)
Transform (FFT, unit conversion)
Reduce (min, max, sum)
Permute (sort, transpose)

Cache
Prefetch

Client (Matrix, Line, String, stdio)
Storage (File, Query)

Merge ships interleave requests or data from
multiple input streams.

PSfrag replacements

Merge

S

R

R1

R2

R3

S1

S2

S3

Armada – p.9

Ships

Armada includes a rich set of extensible ship classes.

PSfrag replacements

Data
Processing

Armada
Ships

Structural

Structural

Non-

Distribute (partition, select, copy)

Merge

Data
Processing

Optimization

Interface

Filter (>, <, =)
Transform (FFT, unit conversion)
Reduce (min, max, sum)
Permute (sort, transpose)

Cache
Prefetch

Client (Matrix, Line, String, stdio)
Storage (File, Query)

Data-processing ships manipulate data, either in-
dividually, or in groups as it passes through the
ship.

PSfrag replacements

Data
Processing

SR

R1

R2

R3

S1

S2

S3

Armada – p.9

Ships

Armada includes a rich set of extensible ship classes.

PSfrag replacements

Optimization

Armada
Ships

Structural

Structural

Non-

Distribute (partition, select, copy)

Merge

Data
Processing

Optimization

Interface

Filter (>, <, =)
Transform (FFT, unit conversion)
Reduce (min, max, sum)
Permute (sort, transpose)

Cache
Prefetch

Client (Matrix, Line, String, stdio)
Storage (File, Query)

Optimization ships improve I/O performance
through latency-reduction techniques like caching
and prefetching.

PSfrag replacements

Optimization

SR

R1

R2

R3

S1

S2

S3

Armada – p.9

Ships

Armada includes a rich set of extensible ship classes.

PSfrag replacements

Interface

Armada
Ships

Structural

Structural

Non-

Distribute (partition, select, copy)

Merge

Data
Processing

Optimization

Interface

Filter (>, <, =)
Transform (FFT, unit conversion)
Reduce (min, max, sum)
Permute (sort, transpose)

Cache
Prefetch

Client (Matrix, Line, String, stdio)
Storage (File, Query)

Client-interface ships
convert method calls to a set of requests for data.

Storage-interface ships
access storage devices to process requests.

PSfrag replacements

Interface

S

R

R1

R2

R3

S1

S2

S3

PSfrag replacements

Interface

S

R

R1

R2

R3

S1

S2

S3

S

R

R1

R2

R3

S1

S2

S3

Armada – p.9

Properties of Ships

Properties of ships are

• used by restructuring and placement algorithms

• assigned by the programmer

• encoded in the ship’s definition

Properties identify whether a ship

• is data- or request-equivalent

• increases or decreases data flow,

• is parallelizable

Armada – p.10

Request and Data Equivalent Ships

A sequence A is equivalent to sequence B (denoted A ≡ B)
if B is a permutation of A, or
if B is a set of subsequences that partition A.

Examples:

{1, 2, 3, 4, 5} ≡ {2, 3, 5, 1, 4}

{1, 2, 3, 4, 5} ≡ {{2, 3}, {1, 4, 5}}

{1, 2, 3, 4, 5} ≡ {{2, 3}, {1, 5, 4}}

In other words, order does not matter.

Armada – p.11

Request and Data Equivalent Ships

A sequence A is equivalent to sequence B (denoted A ≡ B)
if B is a permutation of A, or
if B is a set of subsequences that partition A.

A request-equivalent ship
produces request sequence equivalent to its input.

A data-equivalent ship
produces data sequence equivalent to its input.

Most structural ships are both request and data-equivalent.

Armada – p.11

Request and Data Equivalent Ships

A sequence A is equivalent to sequence B (denoted A ≡ B)
if B is a permutation of A, or
if B is a set of subsequences that partition A.

Distribution ships partition requests or data

• S1, S2, and S3 are
subsequences of R.
• R ≡ {S1, S2, S3}

PSfrag replacements

R
S1

S2

S3

Armada – p.11

Request and Data Equivalent Ships

A sequence A is equivalent to sequence B (denoted A ≡ B)
if B is a permutation of A, or
if B is a set of subsequences that partition A.

Merge ships interleave requests or data

• R1, R2, and R3 are
subsequences of S.
• {R1, R2, R3} ≡ S

PSfrag replacements

R1

R2

R3

S

Armada – p.11

Ships that Change Data Flow

Data-reducer: a ship that decreases the data flow

• filter

• compress

• reduce (min, max, sum)

Data-increaser: a ship that increases the data flow

• cache

• decompress

Armada – p.12

Parallelizable Ships

Parallelizable: a ship that can transform into multiple ships

• process requests and data in parallel

• parallelized by “swapping” with structural ships

• parallel version produces equivalent output

Types of parallelizable ships: replicatable, recursive

Armada – p.13

Parallelizable Ships

Parallelizable: a ship that can transform into multiple ships

• process requests and data in parallel

• parallelized by “swapping” with structural ships

• parallel version produces equivalent output

Types of parallelizable ships: replicatable, recursive

Right-parallelizable

PSfrag replacements

R

S1

S2

S3

A B

Original

PSfrag replacements

R

S1

S2

S3A

A

A

B

Replicated

PSfrag replacements

R

S1

S2

S3A

A

A

BM

Recursed

Armada – p.13

Parallelizable Ships

Parallelizable: a ship that can transform into multiple ships

• process requests and data in parallel

• parallelized by “swapping” with structural ships

• parallel version produces equivalent output

Types of parallelizable ships: replicatable, recursive

Left-parallelizable

PSfrag replacements

T

R1

R2

R3

AB

Original

PSfrag replacements

T

R1

R2

R3 A

A

A

B

Replicated

PSfrag replacements

T

R1

R2

R3 A

A

A

B M

Recursed

Armada – p.13

Graph Representation

We use a series-parallel tree (SP-tree) to describe the composition of an
Armada graph.

• Syntactically easy to describe (we use XML)

• Easy to manipulate internally

0

PSfrag replacements

API

API

API

M filt rep

dist

dist
seg

seg

seg

seg
client processors

storage servers
from application

from data provider
Data (write)→

S
P

0

PSfrag replacements

API

M

filt

rep

dist

seg

client processors
storage servers
from application

from data provider
Data (write)→

S
P

Armada – p.14

Graph Representation

We use a series-parallel tree (SP-tree) to describe the composition of an
Armada graph.

• Syntactically easy to describe (we use XML)

• Easy to manipulate internally

0

PSfrag replacements

API

API

API

M filt rep

dist

dist
seg

seg

seg

seg
client processors

storage servers
from application

from data provider
Data (write)→

S

P

P

0

PSfrag replacements

API

M

filt

rep

dist

segseg segseg

client processors
storage servers
from application

from data provider
Data (write)→

S
P P

Armada – p.14

Graph Representation

We use a series-parallel tree (SP-tree) to describe the composition of an
Armada graph.

• Syntactically easy to describe (we use XML)

• Easy to manipulate internally

0

PSfrag replacements

API

API

API

M filt rep

dist

dist
seg

seg

seg

seg
client processors

storage servers
from application

from data provider
Data (write)→

S

S

P

P

0

PSfrag replacements

API

M

filt

rep

distdist

segseg segseg

client processors
storage servers
from application

from data provider
Data (write)→

SS

P P

Armada – p.14

Graph Representation

We use a series-parallel tree (SP-tree) to describe the composition of an
Armada graph.

• Syntactically easy to describe (we use XML)

• Easy to manipulate internally

0

PSfrag replacements

API

API

API

M filt rep

dist

dist
seg

seg

seg

seg
client processors

storage servers
from application

from data provider
Data (write)→

S

S

P P

P

0

PSfrag replacements

API

M

filt

rep

distdist

segseg segseg

client processors
storage servers
from application

from data provider
Data (write)→

SS

P

P P

Armada – p.14

Graph Representation

We use a series-parallel tree (SP-tree) to describe the composition of an
Armada graph.

• Syntactically easy to describe (we use XML)

• Easy to manipulate internally

PSfrag replacements

API

API

API

M filt rep

dist

dist
seg

seg

seg

seg
client processors

storage servers
from application

from data provider
Data (write)→

S

S

S

P P

P

PSfrag replacements

API

M

filt

rep

distdist

segseg segseg

client processors
storage servers
from application

from data provider
Data (write)→

S

SS

P

P P

Armada – p.14

Graph Representation

We use a series-parallel tree (SP-tree) to describe the composition of an
Armada graph.

• Syntactically easy to describe (we use XML)

• Easy to manipulate internally

PSfrag replacements

API

API

API

M filt rep

dist

dist
seg

seg

seg

seg
client processors

storage servers
from application

from data provider
Data (write)→

SS

S

S

P

P

P

P

PSfrag replacements

APIAPI API

M filt rep

distdist

segseg segseg

client processors
storage servers
from application

from data provider
Data (write)→

S

SS

S

P P

P P

Armada – p.14

Graph Representation

We use a series-parallel tree (SP-tree) to describe the composition of an
Armada graph.

• Syntactically easy to describe (we use XML)

• Easy to manipulate internally

PSfrag replacements

API

API

API

M filt rep

dist

dist
seg

seg

seg

seg
client processors

storage servers
from application

from data provider
Data (write)→

S

S

S

P

P

P

P

PSfrag replacements

APIAPI API

M filt rep

distdist

segseg segseg

client processors
storage servers
from application

from data provider
Data (write)→

SS

S

P P

P P

Armada – p.14

Graph Restructuring

Goals:

• remove bottlenecks (increase parallelism)

• allow effective placement of ships

We restructure by swapping adjacent ships in the SP-tree

• increase parallelism by swapping parallelizable ships with
structural ships

• reduce network traffic on slow links by

− moving data-reducing ships toward data source,
− moving data-increasing ships toward data dest

Armada – p.15

The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children
i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean
Armada – p.16

The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children
i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean

Append B to S

PSfrag replacements
S N

AB C D

Armada – p.16

The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children
i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean

Append B to S

PSfrag replacements
S N

AB C D

Armada – p.16

The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children
i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean

Append C to S

PSfrag replacements
S N

AB C D

Armada – p.16

The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children
i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean

Append C to S

PSfrag replacements
S N

AB C D

Armada – p.16

The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children
i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean

Slide C left

PSfrag replacements S N

AB C D

swap?

Armada – p.16

The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children
i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean

Append A to S

PSfrag replacements
S N

AB C D

Armada – p.16

The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children
i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean

Append A to S

PSfrag replacements
S N

AB C D

Armada – p.16

The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children
i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean

Slide A left

PSfrag replacements S N

AB C D

swap?

Armada – p.16

The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children
i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean

Slide A left

PSfrag replacements S N

AB C D

swap?

Armada – p.16

The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children
i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean

Append D to S

PSfrag replacements
S N

A B C D

Armada – p.16

The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children
i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean

Append D to S

PSfrag replacements
S N

A B C D

Armada – p.16

The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children
i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean

Slide D left

PSfrag replacements S N

A B C D

swap?

Armada – p.16

The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children
i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean

Assign S to N

PSfrag replacements
←

N ← S

N
A B C D

Armada – p.16

Swapping Ships

Conditions for swapping two series-connected ships (labeled A and B)

• A and B are commutative (A or B is request-equivalent and A or B is
data-equivalent)

• swapping A and B is beneficial to the application (see next slide), and

• the graph resulting from a swap is an SP-DAG (we allow four
configurations).

Armada – p.17

Swapping Ships

Conditions for swapping two series-connected ships (labeled A and B)

• A and B are commutative (A or B is request-equivalent and A or B is
data-equivalent)

• swapping A and B is beneficial to the application (see next slide), and

• the graph resulting from a swap is an SP-DAG (we allow four
configurations).

(A) Non-structural, (B) Non-structural
PSfrag replacements

S
S

P

P A
A

B
B

PSfrag replacements

S
S

P

P A
A

B
B

Armada – p.17

Swapping Ships

Conditions for swapping two series-connected ships (labeled A and B)

• A and B are commutative (A or B is request-equivalent and A or B is
data-equivalent)

• swapping A and B is beneficial to the application (see next slide), and

• the graph resulting from a swap is an SP-DAG (we allow four
configurations).

(A) Non-structural, (B) Distribution, Parallel node
PSfrag replacements

S

S

P
P

A
A

B
B

PSfrag replacements

SSS

S

S

P

P

AAA
A

A

A
B

B

PARALLELIZE right
Armada – p.17

Swapping Ships

Conditions for swapping two series-connected ships (labeled A and B)

• A and B are commutative (A or B is request-equivalent and A or B is
data-equivalent)

• swapping A and B is beneficial to the application (see next slide), and

• the graph resulting from a swap is an SP-DAG (we allow four
configurations).

Parallel node, (A) Merge, (B) Non-structural
PSfrag replacements

S

S

P
P

AA BB

PSfrag replacements

SSS

S

S

S

S

S

P

P
A

A

B

B

B

BBB

PARALLELIZE left
Armada – p.17

Swapping Ships

Conditions for swapping two series-connected ships (labeled A and B)

• A and B are commutative (A or B is request-equivalent and A or B is
data-equivalent)

• swapping A and B is beneficial to the application (see next slide), and

• the graph resulting from a swap is an SP-DAG (we allow four
configurations).

Parallel node, (A) Merge, (B) Distrib, Parallel node
PSfrag replacements

S

S

PP
P P

AA BB

PSfrag replacements

S S SSSS

S

S S

S S

S S

S

PP
P PA

A

A

AAA
B

B

B

B B B

PARALLELIZE right and left
Armada – p.17

Beneficial Swap

A swap is deemed beneficial if it increases parallelism, moves a
data-reducing ship closer to the data source, or moves a data-increasing
ship closer to data destination.

Algorithm to decide a beneficial swap of adjacent ships A and B

1. Assign a preferred direction to each ship (1 for right, −1 for left, or 0)

• Merge ships prefer to go right (increase parallelism)
• Distribution ships prefer to go left (increase parallelism)
• Data-reducing ships prefer to swap toward the data source
• Data-increasing ships prefer to swap toward the data destination

2. return true if preferred direction of A is greater than preferred
direction of B

3. else return false

Armada – p.18

Restructuring the Example Graph

PSfrag replacements

rep

←

dist

←

dist

←

M

→

filt

→

APIAPI API

segseg segseg

SS

S

P P

P P

PSfrag replacements

rep

←

dist

←

dist

←

M

→

filt

→

API

API

API

seg

seg

seg

seg

S

P

Armada – p.19

Restructuring the Example Graph

PSfrag replacements

rep

←

dist

←

dist

←

M

→

filt

→

APIAPI API

segseg segseg

SS

S

P P

P P

swap

PSfrag replacements

rep

←

dist

←

dist

←

M

→

filt

→

API

API

API

seg

seg

seg

seg

S

P swap

Armada – p.19

Restructuring the Example Graph

PSfrag replacements

rep

←

dist

←

dist

←

M

→

filt

→

filt

→

APIAPI API

segseg segseg

SS

S

P P

P P

PSfrag replacements

rep

←

dist

←

dist

←

M

→

filt

→

filt

→

API

API

API

seg

seg

seg

seg

S

P

Armada – p.19

Restructuring the Example Graph

PSfrag replacements

rep

←

dist

←

dist

←

M

→

filt

→

filt

→

APIAPI API

segseg segseg

SS

S

P P

P P

swapswap

PSfrag replacements

rep

←

dist

←

dist

←

M

→

filt

→

filt

→

API

API

API

seg

seg

seg

seg

S

P

swap

swap

Armada – p.19

Restructuring the Example Graph

PSfrag replacements

rep

←

dist

←

dist

←

M

→

filt

→

filt

→

filt

→

filt

→

APIAPI API

segseg segseg

SSSS

SS

S

P P

P P

PSfrag replacements

rep

←

dist

←

dist

←

M

→

filt

→

filt

→

filt

→

filt

→
API

API

API

seg

seg

seg

seg

S

P

Armada – p.19

Restructuring the Example Graph

PSfrag replacements

rep

←

dist

←

dist

←

M

→

filt

→

filt

→

filt

→

filt

→

APIAPI API

segseg segseg

SSSS

SS

S

P P

P P

swap

PSfrag replacements

rep

←

dist

←

dist

←

M

→

filt

→

filt

→

filt

→

filt

→
API

API

API

seg

seg

seg

seg

S

P swap

Armada – p.19

Restructuring the Example Graph

PSfrag replacements

rep

←

rep

←

rep

←

dist

←

dist

←

M

→

M

→

filt

→

filt

→

filt

→

filt

→

APIAPI API

segseg segseg

SSS

SSSS

SS

S

P P

P P

PSfrag replacements

rep

←

rep

←

rep

←

dist

←

dist

←

M

→

M

→

filt

→

filt

→

filt

→

filt

→
API

API

API

seg

seg

seg

seg

S

P

Armada – p.19

Placement

Hierarchical graph partitioning

1. Partition the ships into k sets (each set represents an
administrative domain).

2. Partition the ships within each domain to processors
provided by domain-level schedulers.

The Graph Partitioning Problem
Given graph G(V,E) with weighted vertices and weighted
edges, partition the vertices into k sets in such a way to
balance the sum of the vertices and to minimize the weights
of the edge crossings between sets
(NP-hard [Garey et al., 1976]).

Armada – p.20

Partitioning an Armada Graph

Chaco Graph Partitioning Software [Hendrickson and Leland, SNL]

Algorithm for placement of Armada ships

1. Construct model from SP-tree

(a) Assign edge weights
(b) Assign vertex weights

2. partition graph (using CHACO)

3. for each domain

(a) request procs from domain
(b) partition sub-graph EG

PSfrag replacements

Armada – p.21

Partitioning an Armada Graph

Chaco Graph Partitioning Software [Hendrickson and Leland, SNL]

Algorithm for placement of Armada ships

1. Construct model from SP-tree

(a) Assign edge weights
(b) Assign vertex weights

2. partition graph (using CHACO)

3. for each domain

(a) request procs from domain
(b) partition sub-graph EG

PSfrag replacements

8

8
8

8
8

8

16

16

16

25

25

13

13

13

13

25

25

25

25

25
25

25

25

Armada – p.21

Partitioning an Armada Graph

Chaco Graph Partitioning Software [Hendrickson and Leland, SNL]

Algorithm for placement of Armada ships

1. Construct model from SP-tree

(a) Assign edge weights
(b) Assign vertex weights

2. partition graph (using CHACO)

3. for each domain

(a) request procs from domain
(b) partition sub-graph EG

PSfrag replacements

∞

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

18

8
8

8
8

8

16

16

16

25

25

13

13

13

13

25

25

25

25

Armada – p.21

Partitioning an Armada Graph

Chaco Graph Partitioning Software [Hendrickson and Leland, SNL]

Algorithm for placement of Armada ships

1. Construct model from SP-tree

(a) Assign edge weights
(b) Assign vertex weights

2. partition graph (using CHACO)

3. for each domain

(a) request procs from domain
(b) partition sub-graph EG

PSfrag replacements

∞

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

client domain server domain 1

server domain 2

8

8
8

8
8

8

16

16

16

25

25

13

13

13

13

25

25

25

25

Armada – p.21

Partitioning an Armada Graph

Chaco Graph Partitioning Software [Hendrickson and Leland, SNL]

Algorithm for placement of Armada ships

1. Construct model from SP-tree

(a) Assign edge weights
(b) Assign vertex weights

2. partition graph (using CHACO)

3. for each domain

(a) request procs from domain
(b) partition sub-graph EG

PSfrag replacements

∞

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

client domain server domain 1

server domain 2

8

8
8

8
8

8

16

16

16

25

25

13

13

13

13

25

25

25

25

Armada – p.21

Experiments

Evaluate performance benefit of restructuring and placement

• Representative application

− Placement considerations

• File copy and permutation

− Third-party transfers
− Data permutations
− Number of processors required by Armada

• Seismic processing

− C++ interface
− Recursive filter
− Latency effects

Armada – p.22

Representative Application

Examined four configurations of the example application with a filter that
removed exactly 50% of the data.

PSfrag replacements

API

API

API

M filt rep

dist

dist

seg

seg

seg

seg

from application
from data provider

same host
different hosts

lan1

lan2

lan3

(a) orig1

PSfrag replacements

API

API

API

M filt rep

dist

dist

seg

seg

seg

seg

from application
from data provider

same host
different hosts

lan1

lan2

lan3

(b) orig2
PSfrag replacements

API

API

API

M

M

filt

filt

filt

filt

rep

rep

rep

dist

dist

seg

seg

seg

seg

from application
from data provider

same host

different hosts

lan1
lan2

lan3

(c) restruct1

PSfrag replacements

API

API

API

M

M

filt

filt

filt

filt

rep

rep

rep

dist

dist

seg

seg

seg

seg

from application
from data provider

same host

different hosts
lan1 lan2

lan3

(d) restruct2 Armada – p.23

Experiment Setup

The area between the blobs represents the WAN

• each LAN connected to the
WAN by single router

• each WAN link has limited
capacity

PSfrag replacements
WAN

lan1

lan2

lan3

Ran experiments on the Emulab Network Testbed

• Three LANs, each with...

− Five 850 MHz Pentium III processors
− 100 Mbps switched network (0.15 msec latency)

• WAN consisted of...

− Three network links with 2.0 msec latency
− Bandwidth ranged from 2 to 100 Mbps

Armada – p.24

Results: Effective Throughput

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Total client/server WAN bandwidth (Mbit/sec)

E
ffe

ct
iv

e
Th

ro
ug

hp
ut

 (M
bi

t/s
ec

) orig1
orig2
restruct1
restruct2
WAN bandwidth
2*WAN bandwidth

Armada – p.25

Results: Effective Throughput

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Total client/server WAN bandwidth (Mbit/sec)

E
ffe

ct
iv

e
Th

ro
ug

hp
ut

 (M
bi

t/s
ec

) orig1
orig2
restruct1
restruct2
WAN bandwidth
2*WAN bandwidth

PSfrag replacements

orig1

Armada – p.25

Results: Effective Throughput

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Total client/server WAN bandwidth (Mbit/sec)

E
ffe

ct
iv

e
Th

ro
ug

hp
ut

 (M
bi

t/s
ec

) orig1
orig2
restruct1
restruct2
WAN bandwidth
2*WAN bandwidth

PSfrag replacements

orig2

Armada – p.25

Results: Effective Throughput

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Total client/server WAN bandwidth (Mbit/sec)

E
ffe

ct
iv

e
Th

ro
ug

hp
ut

 (M
bi

t/s
ec

) orig1
orig2
restruct1
restruct2
WAN bandwidth
2*WAN bandwidth

PSfrag replacements

restruct1

different hosts

same host

Armada – p.25

Results: Effective Throughput

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Total client/server WAN bandwidth (Mbit/sec)

E
ffe

ct
iv

e
Th

ro
ug

hp
ut

 (M
bi

t/s
ec

) orig1
orig2
restruct1
restruct2
WAN bandwidth
2*WAN bandwidth

PSfrag replacements

restruct2
different hosts

same host

Armada – p.25

File Copy and Permutation

Copy distributed file from lan1 to distributed file on lan0.
PSfrag replacements

Input file
Output file

disk1
disk2
disk3
disk4· · ·

1
2
3
4
5
6
7
8

file

file

file

file

swrt dec cmp srd
file

file

file

file

file

file

PSfrag replacements
Input file

Output file
disk1
disk2
disk3
disk4· · ·

1
2
3
4
5
6
7
8

file

file

file

file

swrt

swrt

swrt

swrt

swrt

swrt

dec

dec

dec

dec

cmp

cmp

cmp

cmp

cmp

cmp

srd

srd

srd

srd

file

file

file

file

file

file

PSfrag replacements

Input file

Output file

disk1

disk1

disk2

disk2 disk3 disk4

· · ·

· · ·

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

Armada – p.26

File Copy and Permutation

Copy distributed file from lan1 to distributed file on lan0.PSfrag replacements
Input file

Output file
disk1
disk2
disk3
disk4· · ·

1
2
3
4
5
6
7
8

file

file

file

file

swrt dec cmp srd
file

file

file

file

file

file

np=all

PSfrag replacements
Input file

Output file
disk1
disk2
disk3
disk4· · ·

1
2
3
4
5
6
7
8

file

file

file

file

swrt

swrt

swrt

swrt

swrt

swrt

dec

dec

dec

dec

cmp

cmp

cmp

cmp

cmp

cmp

srd

srd

srd

srd

file

file

file

file

file

file

np=all

PSfrag replacements

Input file

Output file

disk1

disk1

disk2

disk2 disk3 disk4

· · ·

· · ·

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

Armada – p.26

File Copy and Permutation

Copy distributed file from lan1 to distributed file on lan0.PSfrag replacements
Input file

Output file
disk1
disk2
disk3
disk4· · ·

1
2
3
4
5
6
7
8

file

file

file

file

swrt dec cmp srd
file

file

file

file

file

file

np=1

PSfrag replacements
Input file

Output file
disk1
disk2
disk3
disk4· · ·

1
2
3
4
5
6
7
8

file

file

file

file

swrt

swrt

swrt

swrt

swrt

swrt

dec

dec

dec

dec

cmp

cmp

cmp

cmp

cmp

cmp

srd

srd

srd

srd

file

file

file

file

file

file

np=1

PSfrag replacements

Input file

Output file

disk1

disk1

disk2

disk2 disk3 disk4

· · ·

· · ·

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

Armada – p.26

File Copy and Permutation

Copy distributed file from lan1 to distributed file on lan0.PSfrag replacements
Input file

Output file
disk1
disk2
disk3
disk4· · ·

1
2
3
4
5
6
7
8

file

file

file

file

swrt dec cmp srd
file

file

file

file

file

file

np=0

PSfrag replacements
Input file

Output file
disk1
disk2
disk3
disk4· · ·

1
2
3
4
5
6
7
8

file

file

file

file

swrt

swrt

swrt

swrt

swrt

swrt

dec

dec

dec

dec

cmp

cmp

cmp

cmp

cmp

cmp

srd

srd

srd

srd

file

file

file

file

file

file

np=0

PSfrag replacements

Input file

Output file

disk1

disk1

disk2

disk2 disk3 disk4

· · ·

· · ·

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

Armada – p.26

Results (effective throughput)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

WAN bandwidth (Mbit/sec)

E
ffe

ct
iv

e
Th

ro
ug

hp
ut

 (M
bi

t/s
ec

) Single−file
Original
Restructured
WAN bandwidth

Armada – p.27

Results (different placements)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

WAN bandwidth (Mbit/sec)

E
ffe

ct
iv

e
Th

ro
ug

hp
ut

 (M
bi

t/s
ec

) Compressed np=0
Compressed np=1
Compressed np=all
WAN bandwidth

Armada – p.28

Post-Stack Seismic Imaging

Properties of seismic processing

• Compute intensive

• Large (terabyte) data sets

− Collections of files (> 1K)
− Each file contains a set of traces

(recorded pressure waves)

• Preprocessing

− Stack co-located traces
− FFT time traces
− Distribute frequencies to compute

nodes

Armada – p.29

Constructing the Armada Graph

 PSfrag replacements
ω

X

Y

Column

Tower

Row

Base nodes interface
with Armada

Connect with the data provider and describe compute node distribution

// called by all nodes,

// ... node0 gets graph from data provider

// ... constructor decomposes data (3D block decomposition)

TraceDataset dataset(comm, pmesh, providerURL)

Armada – p.30

Constructing the Armada Graph

 PSfrag replacements
ω

X

Y

Column

Tower

Row

Base nodes interface
with Armada

PSfrag replacements

ω

X

Y

Column

Tower

Row
Base nodes interface
with Armada

API

API

API

API

Storage servers
Compute partition

fft

stk

tdst

sdst

sdst

sdst

file

file

file

file

...

...

...

...

...

app-specific from data-providersmg

Connect with the data provider and describe compute node distribution

// called by all nodes,

// ... node0 gets graph from data provider

// ... constructor decomposes data (3D block decomposition)

TraceDataset dataset(comm, pmesh, providerURL)

Armada – p.30

Constructing the Armada Graph

 PSfrag replacements
ω

X

Y

Column

Tower

Row

Base nodes interface
with Armada

PSfrag replacements

ω

X

Y

Column

Tower

Row
Base nodes interface
with Armada

API

API

API

API

Storage servers
Compute partition

fft

stk

tdst

sdst

sdst

sdst

file

file

file

file

...

...

...

...

...

app-specific from data-providersmg

Append operators.

// called by node0

dataset.appendOp(new FFTOp());

Armada – p.30

Constructing the Armada Graph

 PSfrag replacements
ω

X

Y

Column

Tower

Row

Base nodes interface
with Armada

PSfrag replacements

ω

X

Y

Column

Tower

Row
Base nodes interface
with Armada

API

API

API

API

Storage servers
Compute partition

fft

stk

tdst

sdst

sdst

sdst

file

file

file

file

...

...

...

...

...

app-specific from data-providersmg

Append operators.

// called by node0

dataset.appendOp(new FFTOp());
dataset.appendOp(new StackOp());

Armada – p.30

Constructing the Armada Graph

 PSfrag replacements
ω

X

Y

Column

Tower

Row

Base nodes interface
with Armada

PSfrag replacements

ω

X

Y

Column

Tower

Row
Base nodes interface
with Armada

API

API

API

API

Storage servers
Compute partition

fft stktdst

sdst

sdst

sdst

file

file

file

file

...

...

...

...

...

app-specific from data-providersmg

Append operators.

// called by node0

dataset.appendOp(new FFTOp());
dataset.appendOp(new StackOp());

Armada – p.30

Constructing the Armada Graph

 PSfrag replacements
ω

X

Y

Column

Tower

Row

Base nodes interface
with Armada

PSfrag replacements

ω

X

Y

Column

Tower

Row
Base nodes interface
with Armada

API

API

API

API

Storage servers
Compute partition

fft stktdst

sdst

sdst

sdst

file

file

file

file

...

...

...

...

...

app-specific from data-providersmg

Restructure and Deploy the Armada graph.

// called by node0

dataset.open();

Armada – p.30

Constructing the Armada Graph

 PSfrag replacements
ω

X

Y

Column

Tower

Row

Base nodes interface
with Armada

PSfrag replacements

ω

X

Y

Column

Tower

Row
Base nodes interface
with Armada

API

API

API

API

Storage servers
Compute partition

fft stktdst

sdst

sdst

sdst

file

file

file

file

...

...

...

...

...

app-specific from data-providersmg

Restructure and Deploy the Armada graph.

// called by node0

dataset.open();
// ... connect app-specific with data-provider portion

Armada – p.30

Constructing the Armada Graph

 PSfrag replacements
ω

X

Y

Column

Tower

Row

Base nodes interface
with Armada

PSfrag replacements

ω

X

Y

Column

Tower

Row
Base nodes interface
with Armada

API

API

API

API

Storage servers
Compute partition

fft

fft

fft

fft

stk

stk

stk

stk

tdst

tdst

sdst

sdst

sdst

sdst

sdst

sdst

file

file

file

file

...

...

...

...

...

app-specific from data-provider

smg

smg

smg

smg

smg

smg

Restructure and Deploy the Armada graph.

// called by node0

dataset.open();
// ... connect app-specific with data-provider portion

// ... restructure graph

Armada – p.30

Constructing the Armada Graph

 PSfrag replacements
ω

X

Y

Column

Tower

Row

Base nodes interface
with Armada

PSfrag replacements

ω

X

Y

Column

Tower

Row
Base nodes interface
with Armada

API

API

API

API

Storage servers
Compute partition

fft

fft

fft

fft

stk

stk

stk

stk

tdst

tdst

sdst

sdst

sdst

sdst

sdst

sdst

file

file

file

file

...

...

...

...

...

app-specific from data-provider

smg

smg

smg

smg

smg

smg

Restructure and Deploy the Armada graph.

// called by node0

dataset.open();
// ... construct entire Armada graph

// ... restructure graph

// ... assign placement

Armada – p.30

Constructing the Armada Graph

 PSfrag replacements
ω

X

Y

Column

Tower

Row

Base nodes interface
with Armada

PSfrag replacements

ω

X

Y

Column

Tower

Row
Base nodes interface
with Armada

API

API

API

API

Storage servers
Compute partition

fft

fft

fft

fft

stk

stk

stk

stk

tdst

tdst

sdst

sdst

sdst

sdst

sdst

sdst

file

file

file

file

...

...

...

...

...

app-specific from data-provider

smg

smg

smg

smg

smg

smg

Restructure and Deploy the Armada graph.

// called by node0

dataset.open();
// ... construct entire Armada graph

// ... restructure graph

// ... assign placement

// ... deploy
Armada – p.30

Constructing the Armada Graph

 PSfrag replacements
ω

X

Y

Column

Tower

Row

Base nodes interface
with Armada

PSfrag replacements

ω

X

Y

Column

Tower

Row
Base nodes interface
with Armada

API

API

API

API

Storage servers
Compute partition

fft

fft

fft

fft

stk

stk

stk

stk

tdst

tdst

sdst

sdst

sdst

sdst

sdst

sdst

file

file

file

file

...

...

...

...

...

app-specific from data-provider

smg

smg

smg

smg

smg

smg

Collectively read dataset.

// called by all procs

int size=dataset.getLocalSize();
float *data = new float[size];
dataset.read(data);

// do computation ...
Armada – p.30

Experiment Setup

Original

PSfrag replacements

API

API

API

API

Storage servers
Compute partition

fft stktdst

sdst

sdst

sdst

file

file

file

file

...

...

...

...

...

app-specific from data-providersmg

Restructured

PSfrag replacements

API

API

API

API

Storage servers
Compute partition

fft

fft

fft

fft

stk

stk

stk

stk

tdst

tdst

sdst

sdst

sdst

sdst

sdst

sdst

file

file

file

file

...

...

...

...

...
smg

smg

smg

smg

smg

smg

Armada – p.31

Results (effective throughput)

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

WAN bandwidth (Mbit/sec)

E
ffe

ct
iv

e
Th

ro
ug

hp
ut

 (M
bi

t/s
ec

)

WAN bandwidth
Original
Restructured

Armada – p.32

Results (different latencies)

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

WAN bandwidth (Mbit/sec)

E
ffe

ct
iv

e
Th

ro
ug

hp
ut

 (M
bi

t/s
ec

)

WAN bandwidth
Original lat=0ms
Original lat=25ms
Original lat=50ms
Restruct lat=0ms
Restruct lat=25ms
Restruct lat=50ms

Armada – p.33

Related Work

Parallel processing of I/O streams

• PS2[Messerli, 1999]

− data-flow model with automatic parallelization

• DataCutter [Spencer et al., 2002]

− component-based, analytic model to decide parallelization

Armada does not force the whole application into a data-flow model
Armada widens data flow for parallel clients and parallel servers

Operation re-ordering to improve data flow, e.g., in databases

• dQUOB [plale et al. 2000]

− optimize query tree to move high-filtering portions close to data
− exploit well-defined properties associated with query processing

Armada provides a more general approach
Armada – p.34

Future Work

Other Applications

• fMRI application (time-series analysis of brain data)

• Can components be reused between applications?

Modifications to BENEFICIAL and COMMUTATIVE

• Non-greedy methods

• Analytic models to approximate benefit

Placement

• incorporate domain-specific information into the partitioner (compute
capacity, memory capacity, etc...)

• dynamic re-deployment when network conditions change

Tuning for cluster computing (in addition to the grid)

Armada – p.35

Summary

The Armada framework

• data provider can describe complex distributed data sets

• application describes processing required before computation

• data-flow model provides a “latency-tolerant” approach

Restructuring algorithm

• arranges graph to provide end-to-end parallel I/O

• enables effective placement of data-processing components

Placement

• domain assignments to minimize data flow.

• host assignments based on administrative domain policies.

Experiments demonstrate good performance in multiple environments.

Armada – p.36

Efficient I/O for Computational Grid
Applications

Ron Oldfield

Department of Computer Science, Dartmouth College

http://www.cs.dartmouth.edu/∼dfk/armada/

Supported by Sandia National Laboratories under contract DOE-AV6184.

Armada – p.37

http://www.cs.dartmouth.edu/~dfk/armada/

	Computational Grids
	The Armada Framework
	Armada
	Armada can...
	Restructuring
	Placement
	Talk Outline
	Ships
	Properties of Ships
	Request and Data Equivalent Ships
	Ships that Change Data Flow
	Parallelizable Ships
	Graph Representation
	Graph Restructuring
	The Restruct Algorithm
	Swapping Ships
	Beneficial Swap
	Restructuring the Example Graph
	Placement
	Partitioning an Armada Graph
	Experiments
	Representative Application
	Experiment Setup
	Results: Effective Throughput
	File Copy and Permutation
	Results (effective throughput)
	Results (different placements)
	Post-Stack Seismic Imaging
	Constructing the Armada Graph
	Experiment Setup
	Results (effective throughput)
	Results (different latencies)
	Related Work
	Future Work
	Summary
	~

