Process Query Systems for Surveillance and Awareness

Vincent Berk Wayne Chung Valentino Crespi

George Cybenko
Guofei Jiang

Robert Gray Diego Hernando
Han Li Yong Sheng

Thayer School of Engineering
Dartmouth College, Hanover NH 03755

ABSTRACT

Many surveillance and sensing applications involve
the detection of dynamic processes. Examples in-
clude battlefield situation awareness (where the pro-
cesses are vehicles and troop movements), computer
and network security (where the processes are worms
and other types of attacks), and homeland security
(where processes are terrorist financing, planning, re-
cruiting and attack execution activities). A Process
Query System is a novel and powerful software front-
end to a database or real-time sensing infrastructure
that allows users to define processes at a high level of
abstraction and submit process definitions as queries.
We describe a current working implementation that
has been used for vehicle tracking using an acoustic
sensor network and for computer worm detection.

Keywords: Tracking, Surveillance, Process Query Sys-
tems.

1. INTRODUCTION

Process Query Systems (PQS) are software systems that
allow users to interact with multiple data sources, such
as traditional databases (DBS) and real-time sensor feeds,
in new and powerful ways. In traditional DBS’s, users
specify queries expressed as constraints on the field val-
ues of records stored in a database or data recorded by
sensors, as allowed by SQL and its variants for streaming
data. By contrast, PQS’s allow users to define processes
and to make queries against databases and real-time sensor
data feeds by submitting those process definitions. A PQS
parses the process description and performs sequences of
queries against available data resources, searching for ev-
idence that instances of the specified process or processes
exist.

A major innovation of the PQS concept is the virtual ma-
chine that it presents to the applications programmer. Our
experiences with several application areas over the past
few years suggest that PQS can improve the effectiveness
of data-intensive applications programming by abstracting
away and standardizing much of the programming logic
and detail that is presently often painstakingly recreated
in low-level implementations. Moreover, the discipline of

process oriented thinking that PQS’s impose on applica-
tions developers will help develop more powerful and ro-
bust data-intensive applications more quickly.

Our efforts in designing and implementing a PQS are at
the exploratory stage. While an alpha version has been
implemented and tested with encouraging results, signifi-
cantly more basic research needs to be conducted to de-
velop a robust, general-purpose PQS. We believe this tech-
nology can have a significant impact on several homeland
security challenge areas such as: distributed infrastructure
monitoring and management, plume detection by an array
of sensors, vehicle tracking, worm detection and frequent
itemset discovery in counter-terrorism data mining.

In Section 2 we provide a description of the general archi-
tecture of our PQS. Then, in Sections 3 and 4, we present
two different examples, the former based on the classical
problem of tracking vehicles in an Euclidean space, and
the latter based on the problem of tracking active worms
in the Internet. An overview of work in progress concludes
the paper.

2. GENERAL ARCHITECTURE

The process query system consists of three major compo-
nents: User Interface, TRAFEN tracking and fusion en-
gine, and Message-Oriented Middleware. Distributed sen-
sor networks sense and acquire data on the battlefield or
within a computer network. A set of fuselets apply signal
processing and other logic to the raw sensor data to form
observation messages or events, e.g., e.g. tank observed
at 72.01/—43.02 (longitude/latitude). These messages are
published into the message-oriented middleware under spe-
cific topic headings, e.g., ground vehicle. On the other side,
the front-end interface allows users to define process mod-
els with high-level abstractions such as Hidden Markov
Models (HMM) [1], The process model, as well as a set of
message topics, are submitted to the back-end TRAFEN
tracking and fusion engine. TRAFEN parses the process
model and subscribes to those messages, available from the
middleware, that match the user-specified topics. These
messages could originate from sensors in the battlefield,
from intelligent databases, from human observers, or from
many other sources. Multiple Hypothesis Tracking (MHT)
algorithms are invoked with the user-defined process model
to determine the hidden relationships among the observa-

tions and to build hypotheses representing the true state
of the observed system. Hypothesis results and predictions
can be used to support decision-making processes. More-
over, they can be published back to the middleware as
message sources for other fusion engines. Sensor networks
can also subscribe to these hypotheses and predictions as
feedback to optimize their sensing tasks.

User Interface: Users select message subscription topics
and define process models via the user interface. They can
browse the topics published on the MOM and subscribe
to the specific topics of interest, and define process mod-
els using various high-level abstractions. A process model
describes the state transition of a tracked target, which
evolves with time according to specific known laws such as
the kinematic constraints on the target. State-transition
models and their encompassing process definitions can be
described at a high-level of abstraction with state equa-
tions, Hidden Markov Models (HMM), rule-based models,
and so on. Process definitions can be described with high-
level of abstractions with these models. For example, with
a graphical interface, users can use standard templates to
define the states and state transitions of an HMM process.
The process model, its parameters, and the event subscrip-
tion topics are formulated into a process query that is sub-
mitted to the back-end TRAFEN engine.

Message-Oriented Middleware (MOM): Messaging
is a method of communication between software compo-
nents or applications. MOM is a middleware communi-
cation mechanism that allows different, loosely coupled
applications to communicate with each other in an asyn-
chronous, connectionless way. The sender and the receiver
do not have to be available at the same time to communi-
cate via MOM, nor do they need to know anything about
each other except the message format. There are two gen-
eral types of messaging: message queuing and publish-
subscribe. Message queuing is a point-to-point commu-
nication model, while publish-subscribe provides delivery
to more than one receiver at a time. Publish-subscribe
is particularly useful when many receivers need the same
data, when high performance is required, or when the data
has to be delivered in real-time. Conceptually, messages
are clustered in the MOM into specific topic groups or
queues. In our framework, we are building a semantic
MOM based on Sun’s Java Messaging Service. Both top-
ics and message contents are marked up with DAML [2]
so that they can have embedded semantics. Sensor fuse-
lets push their observation messages to the MOM under
specific topic headings. On the other side, the TRAFEN
engine receives all messages within the same topic from
the MOM and starts the multiple hypothesis tracking pro-
cess. By clustering ad-hoc messages according to their
topic headings, the entire set of targets and measurements
are divided into independent groups. Instead of solving
one large tracking problem, a number of smaller problems
are solved in parallel. Therefore, we can manage the size
of the hypothesis space and the computing complexity of
each MHT algorithm.

TRAFEN: TRAFEN is designed as a generic fusion en-

gine to implement multiple hypothesis tracking/fusion pro-
cesses. After TRAFEN receives vehicle observations from
the MOM, for example, it uses Reid’s multiple hypothesis
tracking algorithm [3] and Bayesian formulations to deter-
mine the probabilities of alternative associations of obser-
vations to tracked targets, each possible association form-
ing a unique hypothesis (or sequence of related events).
Different data-association algorithms are used to cluster
events in different problem domains. Multiple target track-
ing algorithms, such as Reid’s algorithm, recursively cal-
culate the likelihood that a new observation is associated
with each existing hypothesis. Then the new observation is
added into one or more hypotheses according to the ranked
likelihoods, and the set of hypotheses is updated. The pro-
cess model specified in the query is used to compute the
conditional probability that an observation is associated
with the existing hypotheses. For vehicle observations, a
Kalman filter [4] (or other least-squares methods) may be
used to predict the vehicle state at a future time.

The TRAFEN engine consists of several main components:
MHT algorithms, prediction models, hypothesis manage-
ment and storage, and event subscription/publication.
Various MHT algorithms are implemented as modules in
our engine architecture. Every engine also includes a
pool of standard prediction-model implementations. As
we mentioned above, the process query includes parame-
ters that are the inputs to the related prediction models.
The MHT algorithms will be invoked with the instantiated
model and the message inputs from the MOM. Hypothe-
sis management involves several maintenance operations.
Observations not assigned to existing tracks initiate new
tentative tracks; a tentative track becomes a confirmed
track upon satisfying some quality tests; and low-quality
tracks, as determined by the update history, are deleted.

3. GROUND VEHICLE TRACKING

In this section, we present an original Java implementa-
tion of Reid’s classical Multi-Hypothesis Tracking algo-
rithm [3]. The original MHT algorithm was designed to
handle incrementally a ranked set of hypotheses, each hy-
pothesis consisting of a set of consistent tracks of observa-
tions. Reid distinguished two sensor groups that he called
Type I and Type II respectively. Type I sensors, such as
radars, are able to provide information on the number of
targets in the area being scanned, while type II sensors,
such as acoustic sensors, do not have this capability. This
difference affects the way observations are processed. Type
I sensors return groups of observations that are supposedly
taken at the same time (e.g., a radar scan), while Type II
sensors return single observations.

Our current implementation of the MHT algorithm as-
sumes that data are produced by fuselets based on Type
IT sensors. Thus, single observations are processed one at
a time and added to existing tracks, or are used to define
new tracks or are treated as noise or clutter. We are up-
grading our software, however, to cope with Type I sensors
as well.

One of the typical problems in the definition and mainte-

nance of multiple hypotheses of consistent tracks is that,
in the absence of information about the kinematics of the
moving targets, the set of likely hypotheses grows expo-
nentially. This is due to the fact that each new incoming
observation might be assigned, in principle, to any existing
track. Of course, perfect knowledge of the kinematics of
the targets would resolve completely these ambiguities, al-
lowing the system to determine the only consistent match-
ing between the observation and the tracks. This assump-
tion is obviously unrealistic, and it also would trivialize
the tracking problem. An acceptable solution may rely on
a stochastic model of the kinematics that could be used to
estimate the future positions of the current targets within
a reasonable timeframe.

For example, in his original paper, Reid uses Kalman fil-
ters [4] to model the kinematics of the targets together with
the accuracy of the sensor system, and thus constrain the
space of possible hypotheses considered at each step. We
also adopt the same technique, although, as we will see,
our software is predisposed to work with arbitrary predic-
tion models. In particular, predictors based on Hidden
Markov Chains [1] are currently under study.

Our system is capable of dynamically adapting to hetero-
geneous populations of targets (motorbikes, vans, tanks,
jeeps, trucks and so on) provided that a model of their
kinematics is available. Such models are retrieved and up-
loaded dynamically (possibly from remote sources) during
the processing of single observations that are typically ac-
companied by a “vehicle type” label. The result is an ex-
tremely flexible and powerful system expandable ad infini-
tum to incorporate different tracking logics that are able to
process observations of the most diverse phenomena: me-
chanical targets (as in this case), malicious software prop-
agation (e.g., worms) or people movements and itineraries.

Basics on MHT

Kalman Filters: A Kalman filter is a recursive
solution to the discrete-data linear filtering problem (3, 4].
It assumes that the random process to be estimated can
be modeled in the form

Xk+1 = Pxx + I'wi. (1)

The observation is assumed to occur at discrete points in
time following the linear relationship

zx = Hxyx + vk, (2)
where

xk (n x 1) process state vector at time ty,

® (n x n) transition matrix relating xx to Xk4+1 in the
absence of a forcing function,

wi (n x 1) process noise vector, assumed to be a white
sequence with known covariance matrix @,

I' (nxn) precision matrix that selects or amplifies random
kinematics effects due to the pilot,

zx (m x 1) vector measurement at time ¢,

H (mxn)measurement matrix in absence of measurement
noise,

vk (m x 1) measurement error, assumed white sequence
with known covariance matrix R,

Zx (n x 1) vector measurement at time t.

If the measurements could be uniquely associated with
each target, then the conditional probability distribution
of the state variables of each target would be a multivari-
ate normal distribution given by the Kalman filter. The
mean Z and covariance P of this distribution evolve with
time according to the following “time update” equations.
In these equations, “overline” means predicted value, while
“hat” means estimated value:

Xit1 = Rk, Pirp = ®P+TQr". (3)
When a measurement is received, the predicted values are
combined with the measurement to obtain the estimated
values. Note the use of the blending factor K to produce
that combination:

e = Xk+ K[Zk — ka] (4)
f’k = fk — FkHT (HﬁkHT =+ R)ilﬂﬁk (5)
K = PHTR™'. (6)

Multiple Hypotheses: At any given time during
the recursive algorithm, MHT keeps the hypotheses that
have the highest likelihoods. Each time a new observation
is received by the MHT algorithm, the algorithm must
generate the set of all possible hypotheses that explain
such an observation. There are three basic possibilities:

e The observation is added to an existing track. To
compute the likelihood of this hypothesis, the dis-
tance between the current observation and the pre-
dicted state of the track must be computed. In gen-
eral terms, the farther the observation is from the
predicted value, the less likely it is that the associa-
tion is correct. The distance is normalized using the
covariance of the prediction error and compared to a
threshold value to decide whether it is possible that
the observation belongs to the track.

e The observation corresponds to a new target, in which
case a new track is created.

e The observation is due to noise or clutter in the sens-
ing system, in which case it is discarded.

Therefore, generally each hypothesis in the current hy-
pothesis set generates several hypotheses each time a new
observation is added. To avoid excessive increase in the
number of hypotheses handled by the algorithm, it is com-
mon (and implemented in this system) to perform a prun-
ing operation after adding an observation, so that only the
most likely hypotheses are kept.

Computation of the likelihoods: The likelihood
of each hypothesis (PF) is obtained recursively from that of

the hypothesis from which it branches (Pf~!). A detailed
description of the derivation of the formula for the proba-
bility is provided in [3]. This formula shows the likelihood
of each hypothesis after adding a collection of simultaneous
measurements (type I sensor, according to the terminology
in [3]):

1 —_
P = LB ppyOrer gty ()
Npr
N] NZn - HE, B)S | PF, (8)
m=1

where c is a normalizing factor, Pp is the probability of
detection, Npr is the number of detected or confirmed tar-
gets in the measurements (Z,,), Nrgr is the total number
of targets implied by the previous hypothesis, Nr7 is the
number of false targets among the measurements, Nyt is
the number of new targets, Brr and Sy are the densi-
ties of false targets and new targets, respectively, Z,, is
the mth observation in the collection that is being added,
B is the covariance of the prediction error, and S, is the
probability that the type of target in the mth observa-
tion matches that of the existing track. We added this
last term S,, to account for the possibility of tracking dif-
ferent target types, which (according to our model) can
be distinguished within a certain resolution by the sensor
system (i.e., there is in general a nonzero probability that
an observation labeled with a certain target type really
corresponds to a different type).

If the observations are added one at a time, the same for-
mula is valid, although in this case only one from Npr,
Nn7, Npr will be 1, (and the other two will be 0), and
there are no (1 — Pp) terms.

MHT-Kalman Implementation Details

As mentioned before, Reid’s MHT uses a Kalman Fil-
ter predictor in order to decide whether to associate a
new observation with an existing track and to compute
hypothesis likelihoods. Formally, a Kalman Filter can
be defined as a pair of specifications: KF =< K,0 >,
where K =< ®(T),T',Q(T) > captures the kinematic
model of the target, and O =< H, R > specifies the “ob-
server” characteristics, i.e., the functionalities and accuracy
of the sensor that returns observations of the target’s state
(see previous section). Note that ® and @ are functions
of time. In general, the tracking algorithm will need a
particular instance of these specifications in order to cope
with a reported target. The information is codified us-
ing advanced mark-up formatting languages like XML or
DAML, and is stored in relational databases that can be
remotely accessed and queried by any instance of MHT-
Kalman.

In what follows, we describe some of the main Java classes
that implement the core of the MHT-Kalman logic.

The MHT class implements our variation of Reid’s MHT
algorithm. The following parameters are relevant: beta

values BnT,Brr, which are density of detected, but un-
labeled, targets and the density of false targets, respec-
tively; Pp, which is the probability of detecting an object
and is part of the sensor’s XML specification; v%, which
is the threshold for adding a new observation to an exist-
ing track, specifying the maximum relative distance from
the actual observation to the predicted state; and observer,
which is an instance of the class Observer described below.

Our MHT algorithm associates a likelihood object with
each track. This object contains the (recursively defined)
value of the current likelihood of the hypothesis: P}. The
computation of Pi“'1 then requires the above parameters
plus information provided by each track through their pri-
vate Kalman filter.

Class MHT maintains a hypothesis set, which is updated
each time a new observation is added. Class MHT com-
putes the new hypotheses that branch from the existing
hypotheses to explain the received observation, and prunes
the results so that only the most likely ones are kept.

The Observer class handles the O specifications. When
instantiated, the class accesses a database of XML/DAML
specifications and extracts the matrices H and R and the
detection probability Pp.

The VehicleKinematics class handles the K specifications.
When instantiated, the class accesses, as before, a database
of XML/DAML specifications and extracts the matrices
®(T),T',andQ(T), as well as the maximum speed of the
target (which is used as a parameter to the Kalman fil-
ter, and indeed other properties of the target kinematics
could be added in future versions). Since Q(7') and ®(T)
are in general functions of time, the respective entries will
contain mathematical expressions involving a free variable,
namely, time 7'. Thus, the class parses the entries of those
matrices and generates a convenient representation of their
expressions in the form of trees of operators, which are
stored inside MathParser objects.

The Predictor class is an interface for a subclass that
performs predictions using a Kalman filter. Predictor ob-
jects are particular to each track. In other words, when a
new track is created, a new Kalman Filter is created and
associated with that track (see Figure 1).

The KalmanFilter class implements the Predictor inter-
face. It provides all the functionalities of a Kalman
Filter. In particular, it requires, at the beginning, an
Observer object, a VehicleKinematics object and an ini-
tial Observation of the target’s state in order to build and
initialize the filter. This implies the creation and initial-
ization of all the needed data structures. These include:

1. T(t), P(t): mean position and error covariance;

2. Z: state observation necessary to produce a predic-
tion (filter update);

3. B7!||B||: auxiliary matrix useful to compute the fil-
ter value K (see Reid’s paper);

4. ®(T),T,Q(T), H, R: parameters of the filter.

The state prediction depends on the Kalman parameters
and on two dynamic elements: the mean state of the target

Observation

"vehicle type" “fuselet type"

Environment

K+0+o
/\
KamanFilter
K NI

"vehicle type" /(0 \'fuselet type"
VehicleKinematics

XML Specifications

filename["vehicletype"]| | filename["fuselet type']

Figure 1: Dynamic Creation of a Predictor object (a
Kalman filter) necessary to start a new track.

‘ last observation assigned to track ‘

updateState

X(0),P()

observation to be matched

Figure 2: Use of a Kalman filter to assign observations
to an existing track.

Z, and the mean error covariance matriz P. These are, in
general, specific to each track, and should be part of its
hidden state (encapsulated in the Predictor class). Thus,
each track is given a Predictor that the MHT Algorithm
uses transparently to predict new states and evaluate the
metric dg(Zm,T) = (Zm —HZ)T B~ (Z,, — HT), where Z,,
is the candidate observation to be matched against the ex-
isting track being modeled by the respective Kalman filter.
This value is then used to check whether the assignment
criterion: dg(Zm, HT) < v? is verified (see Fig. 2).

4. TRACKING ACTIVE WORMS

TRAFEN abstracts away the details of observation col-
lection and hypothesis management, allowing developers
to devote their entire attention to producing an effec-
tive, underlying model for the observed system. As a test
of TRAFEN’s extensibility, we applied TRAFEN to the
problem of detecting active Internet worms [5].

An active Internet worm is malicious software (or malware)

Infection Percentage at Detection Time versus Network Size
14 T T

T T T T T T
Infection Percentage at Detection Time ——+——

12

10

o]

Infection Percentage

o | | | | | | | |
100 200 300 400 500 600 700 800 900 1000
Network Size (x1000)

Figure 3: The percentage of vulnerable machines that
are infected at the time that TRAFEN detects a sim-
ulated worm.

that autonomously travels from host to host, searching for
vulnerable, uninfected systems. Recent examples include
Code Red v2 and Sapphire, which exploited flaws in Mi-
crosoft servers and infected 360,000 and 75,000 machines
respectively [6, 7]. Code Red, Sapphire and most other ac-
tive worms find vulnerable machines by generating pseudo-
random IP address and then probing if the desired vulner-
able service is running at those addresses. In addition,
these worms typically probe addresses as quickly as possi-
ble, so that they can infect as many machines as possible
before system administrators can detect and react to them.
Sapphire, for example, infected most vulnerable machines
within five minutes of its launch [7], far exceeding human
response time and indicating the need for automated worm
detection.

One attractive way to detect a propagating worm automat-
ically is by monitoring ICMP Destination Unreachable (or
ICMP-T3) messages. When one host attempts to contact
an unreachable target address, the last router on the path,
if configured to do so, will send an ICMP-T3 message to
the sending host. The last router on the path is the router
that decides that the target address is unreachable; this
router may be anywhere between the sender’s network and
the target’s network. Active worms, through the process
of probing randomly selected IP addresses, will attempt to
contact many unreachable machines, and will generate an
increasing amount of ICMP-T3 activity as they spread and
infect more machines. Observing this increase is a reliable,
and early, indicator of worm activity.

To detect worms based on their induced ICMP-T3 behav-
ior, we deploy instrumented routers that send copies of any
generated ICMP-T3 messages to a set of analysis stations.
These analysis stations aggregate the ICMP-T3 messages,
and generate a scan alert whenever a single source address
tries to contact the same service on a configurable num-
ber of unreachable hosts (as well as in several other cases
corresponding to different kinds of scans). These alerts,

which are expressed in XML, become the observations
that are fed into TRAFEN. Since TRAFEN provides the
observation- and hypothesis-management infrastructure,
the only customization consists of two Java classes, one
that converts the XML observation to and from an appro-
priate internal representation, and one that encapsulates a
ruleset that determines the likelihood that an observation
(scan) sequence indicates a propagating worm. TRAFEN
loads both classes dynamically, and accesses them through
a domain-independent interface. In our deployed proto-
type, the ruleset is suitable for fast-moving worms such
as Code Red and Sapphire, and expresses likelihood as a
function of the number of related scans occurring within
different time windows.

Figure 3 shows the detection performance of this ruleset for
a simulated worm. The x-axis is the number of addresses
in the simulated network (in thousands), and the y-axis
is the percentage of vulnerable machines that the worm
infects before it is detected. In this simulation, 25% of the
address space was reachable, 1% of the address space was
reachable and vulnerable to the worm’s exploit (both an
unusually high percentage), and 2% of the routers were in-
strumented to send their ICMP-T3 messages to the analy-
sis stations. The graph shows that detection performance
increases as the size of the simulated Internet increases.
With a network size of one million addresses, TRAFEN
is able to detect the worm before even 1% of the vulner-
able machines are infected, providing ample time to take
defensive action. When deployed on the current IPv4 In-
ternet (having 2°? addresses) where a 2% router coverage
corresponds to approximately 3.5 Class A networks (which
is achievable with cooperation from a minimal number of
service providers), detection performance is expected to
improve even further.

In applying TRAFEN to the worm-detection problem, we
needed to provide only state representation and likelihood
functions, allowing us to focus on how worms behave,
rather than how to manage a large set of observations.
As the worm-detection project continues, we are develop-
ing Kalman filter and Hidden Markov models that can de-
tect stealthy and slow-moving worms. All of these models,
which are concrete instantiation of process query models,
can be expressed as compact classes and simply dropped
into the TRAFEN infrastructure, allowing extremely rapid
development. An added benefit is the ability to look at
the same datastream with multiple instances of TRAFEN,
each using a different process query model, to provide
multiple concurrent views on worm epidemics. Realizing
that the current process query model is rudimentary, yet
very effective, more refined models certainly will lead to
even faster and more accurate detection of active Internet
worms with lower router coverages.

Work in Progress
e Type I versus Type II Sensors. When dealing with

Type I Sensors, we should be able to work with sets
of observations. Thus, we are extending the MHT al-

gorithm to process objects of a class ObservationsSet
that may contain only one Observation object, as in
case of type II Sensors.

e Specification Ontologies. We are exploiting on-edge
technology to define suitable distance metrics be-
tween kinematics and fuselet specifications. The pur-
pose of this is to quantify and improve adaptation
capabilities of the system when trying to retrieve the
“best” specifications for the entities being tracked.

o Worm Detection. In addition to improving the mod-
els, we are looking at Internet-scale deployment of
the ICMP-T3 sensor network, as well as developing a
version that can be used within individual intranets.

References

[1] Lawrence R. Rabiner. A Tutorial on Hidden Markov
Models and Selected Applications in Speech Recogni-
tion. Proceeding of the IEEE, 77, Num. 2:257-286,
1989.

[2] Deborah L. McGuinness, Richard Fikes, James
Hendler, and Lynn Andrea Stein. DAML+OIL: An
ontology language for the semantic web. IEEE Intelli-
gent Systems, 17(5), September/October 2002.

[3] Donald B. Reid. An algorithm for Tracking Multiple
Targets. IEEE Transactions on Automatic Control,
AC-24, Num. 6:843-854, 1979.

[4] Robert G. Brown and Patrick Y.C. Hwang. Introduc-
tion to Random Signals and Applied Kalman Filtering.
John Wiley & Sons, 1983.

[5] Vincent H. Berk, Robert S. Gray, and George Bakos.
Using sensor networks and data fusion for early de-
tection of active worms. In Proceedings of AeroSense
2003: SPIE’s 17th Annual International Symposium
on Aerospace/Defense Sensing, Simulation, and Con-
trols, Orlando, Florida, April 2003.

[6] David Moore, Colleen Shannon, and Jeffery Brown.
Code Red: A case study on the spread and victims
of an Internet worm. In Proceedings of the Second In-
ternet Measurement Workshop (IMW 2002), Marseille,
France, November 2002.

[7] David Moore, Vern Paxon, Stefan Savage, Colleen
Shannon, Stuart Staniford, and Nicholas Weaver. The
spread of the Sapphire/Slammer worm. CAIDA Tech-
nical Report, Cooperative Association for Internet
Data Analysis (CAIDA), 2003.

