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Abstract

This thesis proposal deals with optimal observation of large collections of changing objects. These

objects can change at random times, so we cannot know the state of objects for times at which they are

unobserved. The goal of an observer is to maintain acceptably accurate state estimates while minimizing

observational cost. In the thesis work, our goals are to (1) create models for this type of system, (2) show
how these models can be empirically constructed by actually observing real systems, and (3) develop

e�cient algorithms for the optimal allocation of observation resources within this framework. An example

of this type of optimization arises in the observation of World Wide Web (WWW) documents by web

search engines and related web software applications. Our initial results include (1) developing statistical

models for such systems; (2) collection of empirical data about how web documents change; and (3)

development of �nite-horizon algorithms for maximizing an index's accuracy. Although the algorithms

presented are intended for optimizing the recency of document indices, they are general enough to be

applied to any dynamic collection of objects. The work is important and novel in that it takes proper

account of the cost of observing, a concept that is crucial to monitoring problems in many communications
systems.

1 Introduction

In any system in which observation resources are limited, a choice must be made as to how they are best

allocated. The guiding principles in this allocation are essentially independent of the system under obser-

vation: an observer desires comprehensiveness and accuracy, attained at the price of making observations

and interpreting the results. While a system is not under observation, its state is accumulating uncertainty

according to the dynamics of its evolution. When this uncertainty becomes intolerable, observations are
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made and combined with past state estimates to form a su�ciently accurate estimate of the current system

state.

This is not a new idea{biological sensory systems are always forming state estimates using limited ob-

servation capability. Moreover, they are extremely e�cient, in that they rarely waste e�ort paying attention

to slow-changing or unimportant systems. Human vision discerns movement within static �elds, and smells

and sounds cease to be novel after they have been sensed for some short time. Consider where visual focus

is directed when driving: the road is the source of the most important information, as well as the source

which changes most quickly. Changes in the state of other items, such as the rear-view mirror image, the

vehicle speed, the radio reception, and the fuel remaining are deemed either less important or more slowly

varying, and are therefore given less frequent visual attention.

To illustrate and formalize some of these characteristics of observation systems, we propose an in-depth

analysis of an example. A World Wide Web (WWW) search engine is a dedicated observation system with

the goal of having the most accurate picture of the Internet possible at any given time. To achieve this goal,

limited computational, network, and storage resources are devoted to scouring the Web for new documents,

and also to re-examining old documents to inspect them for changes. Whether done in sequence or in

parallel, a search engine must always decide what page or pages to examine next. This reduces to some

simple questions: when is the best time to re-examine a document, given knowledge of that document's

history and the priority placed on having correct knowledge of its state? Indeed, how should we describe a

document's state?

If resources were unlimited, optimality would be a non-issue: each and every document could be monitored

as frequently as desired, watching for changes to appear. Of course, an observation does have obvious costs

associated with it, since a machine uses time (some network latency and some CPU cycle time) to retrieve

and inspect a document, and disk space to store the results. In exchange for this cost, the search engine

bene�ts from a more current index of previously explored documents, a more comprehensive collection (if

new documents are discovered), and an accurate picture of the \dynamics" of the documents in question.

An understanding of how documents change is necessary to maximize the recency of the index, since

knowing a document's change dynamics allows us to waste fewer observations. When the engine must decide

which document to examine next, some documents will be more likely to have changed since last inspection

than others. It makes sense to re-examine these more often than documents which exhibit greater stability.
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Algorithms for selecting the next observation can also account for how the collection may look as a result of

page checks yet to be run, so that planning can take into account the likely outcome of making observations.

Looking ahead requires that we consider not only the immediate result of an observation, but also the long-

term value of the information so obtained. If the index is being used for user searches, then it has the

most value for frequently-requested documents. It seems reasonable that resources should be preferentially

allocated to the documents that are popular, fast-changing, or both.

For all documents, this requirement can be interpreted within a common framework: we will choose to

observe a document when the uncertainty in its state becomes intolerable. A documents's dynamics will

determine how quickly we lose con�dence in previous observations, and the popularity of that document

will determine how much uncertainty is tolerable. This fundamental idea was developed in [CBB+97] in the

context of alleviating uncertainty through communications actions. The work described systems in which

knowledge of dynamics was put to use in anticipating the accumulation of uncertainty.

We do not begin with knowledge of the dynamics of our documents prior to their observation, so planning

must involve building models from previous observations. This is a tricky problem, since we will be basing

observation schedules on these dynamic models. Similar problems in the experimental design literature

are referred to as \allocation problems" [HS98], classic examples of which are \bandit problems" [Ber87].

The terms stems from the plight of a casino gambler, having the option of playing some number of slot

machines (colloquially known as \one-armed bandits"). The payo� from each machine is governed by some

unknown probability distribution. The gambler wishes to maximize his winnings, but without knowing

which slot machine is likely to pay o�, his strategy is initially uncertain. Every play he makes is a mixture of

experiment and attempted pro�tability|the gambler bets the cost of one observation that he will eventually

increase his expected winnings. This is done by modifying strategy and playing the most pro�table machines,

while still occasionally exploring less well-understood possibilities.

For the search engine, the parallel is played out with the search engine's web robot as the gambler, and

individual documents as slot machines. The payo� is expressed in terms of the expected bene�t gained

by re-indexing a page. Though bandit problems are fairly tractable for problems involving only a few

machines, they quickly become complicated as problem size increases. Inasmuch as a lower bound on the

size of the indexable WWW has been estimated to be near 320 million pages [LG98], the web gambler

faces a challenging task. Further complicating the game, a document's change probability is generally non-
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stationary: page changes tend to become more likely after some time has passed since the last change. The

web robot also assigns additional value to having looked at all pages in the collection; the gambler would

be happy to play only one machine forever, if it always paid o�. Still, the underlying problem remains the

same: what is the best way to bet the cost of observation to maximize winnings?

2 Analysis and modeling

Before considering the value of experimentation, it is necessary to understand how the problem can be

approached if we have precise knowledge of document dynamics. To do so, three things are essential: a

representation of the document's state, knowledge of the dynamics of state evolution, and a formalization of

the value of perfect state knowledge.

2.1 State de�nition

To choose an appropriate state de�nition, we �rst consider the reasons pages change. The simplest possible

model assumes that page changes occur like lightbulbs failing, such that page \lifetimes" are governed by

a single-parameter memoryless process. Some promising work has been conducted for describing the main-

tenance of document collections in which pages change according to exponential distributions with known

parameters [CLW97], in which it is shown that all pages in a collection should be revisited at intervals that

are as regular as possible. However, some page change dynamics may not be well-described by memoryless

processes, so these results may not apply. Additionally, it may not be easy to determine in advance which

pages' dynamics are memoryless and which are not. In this section we demonstrate that the time since a

page last changed can be an important factor in predicting the likelihood of future changes.

Viewed very simplistically, page changes occur when a page's maintainer notices and reacts to newly-

discovered information related to that page's content. The time between page changes is partly from waiting

for these motivations to arrive, and partly from waiting for the maintainer to respond. By modeling these two

times as independent random variables, we can draw some simple conclusions about their sum. Although

the accumulation of motivation may progress according to rather complicated dynamics, assume for this

discussion that motivation arrives in a memoryless fashion, such that the time between these arrivals is

governed by

D1 (t) = �1e
��1t; t � 0. (1)
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Further, assume that the time it takes the maintainer to respond to the arrival of new motivation is a similar

random variable:

D2 (t) = �2e
��2t; t � 0 (2)

In (1) and (2), the parameters �i describe the speed of the two processes, with large values corresponding to

shorter times. The total time taken from motivation to response is the sum of these two random variables.

Since the two times are independent, the probability of a particular sum is the product of the two probabilities

of the summands. To �nd the probability of a particular sum t, we integrate the product over all possible

two-term combinations that add to t. This integral is a convolution of (1) and (2):

D3 (t) = D1 (t) �D2 (t) = �1�2

Z x=t

x=0

e��1xe��2(t�x)dx =
�1�2

�2 � �1

�
e��1t � e��2t

�
(3)

If �1 = �2, the �nal result is indeterminate (0=0), but this problem can be avoided by simplifying the

integrand of (3). Notice also that (3) is maximized for the value of t where D1(t) and D2(t) intersect:

tmax = (�1 � �2) ln

�
�1
�2

�
(4)

An example of how the distributions are related is shown in Figure 1. Next, we show that the sum of these

two memoryless variables is no longer memoryless. For a memoryless distribution f(t), the passage of a time

t0 should not change the distribution. If f(t) is causal (i.e., f(t) = 0 for t < 0), then this implies that:

f (t) =
f (t+ t0)

1�
R t0
0
f (t) dt

(5)

This is just a requirement that the distribution f (t) be self-similar, such that if time advances by t0, a

simple rescaling of f (t+ t0) will recover the original function f (t), as is easily con�rmed for exponential

distributions. To show that (3) is not memoryless, we can use (5), or we can simply observe that it cannot

be self-similar. Clearly, as the time t0 advances past tmax, the function goes from being unimodal (having

maximum at t = tmax � t0) to being monotonically decreasing (having maximum at t = 0), and therefore

does not preserve the original shape.

If the decay constants in D1 or D2 are very di�erent, then the resulting page change interval distribution

will be nearly memoryless. When either �i is large, then Di resembles an impulse �(0), so the convolution (3)

will return a distribution that is very nearly exponential with the smaller decay parameter. This corresponds
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Figure 1: The sum of two memoryless random variables is no longer memoryless

to the case in which either D1 or D2 dominates the sum: reasons to change a page appear much more quickly

(�1 large) than the responses, or the page maintainer is very quick to respond when motivators appear (�2

large). Regardless of how close �1 and �2 are, (3) will always be dominated by the smaller decay parameter

for large t.

This simple model of how pages change suggests that it may not always be appropriate to assume that

page changes are independent of the age (time since the page was last updated) of the page. We temper this

by saying that the distribution may be nearly memoryless under some circumstances. Nonetheless, we model

the probability of a page's modi�cation as a function of the time since the last modi�cation, to account for

the possibility of time-dependence.

2.2 Time-since-modi�cation as a Markov chain

Since the probability of a page changing may be a function of the time elapsed since the previous modi�cation,

at least some portion of the page's state must be its age. While other factors undoubtedly in
uence a page's

likelihood of change, this proposal assumes that the likelihood of a change is completely determined by

the age. While this age could be treated as a continuous state, quantizing will allow us to keep track of
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a large number of models by decreasing storage requirements per monitored document. Any reasonable

discretization of this time will serve our purpose, such as the number of days since the last page change, for

example. Using this de�nition of state, a probability distribution of the time intervals between changes can

be represented as a Markov chain. This is an oft-used means for describing time-dependent recurrent events;

see [Fel68] for example. Given a state s = n days since the last change, there are only two things that can

occur: either the state will advance to s = n+1, or it will reset to s = 0. If we model N +1 states, then the

state s = N + 1 can be treated as \N or more days since last change." In this way, we can de�ne a matrix

of transition probabilities as

M =

2
6664
preset (0) 1� preset (0) 0 � � �
preset (1) 0 1� preset (1) � � �

...
...

. . .
...

preset (N) 0 � � � 1� preset (N)

3
7775 (6)

If preset(t) 6= 18t 2 [0; N ], then all states of M are recurrent. The function preset (t) can be determined

either from the distribution of time intervals between changes, or from the distribution of observed ages

for a particular page. If we �nd either by estimation from samples, we are implicitly assuming stationarity

of the underlying change dynamics1. Both the age and lifetime distributions (whether or not they can be

modeled) can be used to calculate the conditional probability that a reset will occur in the following time

interval, given that no change has occurred for t time steps. If the time between page changes (lifetime) is

distributed according to a discrete probability mass function f(t), then

preset (t) =
f (t)

1�
t�1P
k=0

f (k)

(7)

In modeling M for a page, we will only be able to de�ne f(t) for values up to some t = N . At the upper

age limit, the de�nition for preset breaks down, since preset (N) would be unity. This would imply that if

the page ever reaches age N , then it will change with probability 1 within the next time step. In reality,

though, there must be some chance that the state will remain \N or more time intervals since last change,"

or si = N . One way to represent this possibility is to assume that preset(N) = preset(N � 1), or that the

reset times are memoryless after a certain time has elapsed.

1Additional model types are probably needed and will be addressed further in the thesis. For example, empirical modelling

will be inaccurate for a page that changes every weekday, but never on the weekends. The inaccuracy in the model corresponds

to the fact that we have not captured the entire state.
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Generally, it will be easier to observe ages of objects rather than change intervals2. Webpages typically

have a LAST MODIFIED date in the HTTP header, allowing us to sample the age of the document at any time.

Over time, one can build up a distribution g(t) of observed ages for the document. Moving from an age

distribution g(t) to preset is straightforward. As with the function f(t) de�ned for (7), we express the age t

of an object in some arbitrary units of time. The two probabilities that we wish to determine for age t are

the probability of aging to t+1 and the probability of being reset to age t = 0. That is, some fraction of the

objects \dies" (changes) before reaching the next age. This fraction, which is preset (t), is just the percent

di�erence between successive elements of the age distribution:

preset (t) =
g (t)� g (t+ 1)

g (t)
(8)

To get a feeling for how the matrix M corresponds to di�erent change distributions, we present some

simple examples. If a page changes on a purely periodic basis, say every 3rd time unit, then the matrix M

will be

M =

2
664
0 1 0 � � �
0 0 1 � � �
1 0 0 � � �
...

...
...

. . .

3
775 (9)

If the system changes according to a Poisson process, then it is memoryless, so the reset probability is

independent of state:

M =

2
6664
� 1� � 0 � � �
� 0 1� � � � �
...

...
. . .

...
� � � � 0 1� �

3
7775 (10)

We emphasize that this particular de�nition of state is not the only useful one; other models can emphasize

di�erent aspects of the problem. If we were interested only in capturing the fact that one or more changes

had occurred, a model could be used that is similar to the one used in the classic machine replacement

problem [How60]. This model would be similar to M, except that it would not monitor the age after a page

change had occurred. The system would begin in a transient state, \unchanged, with age i", and when

a change occurs, the system would enter an absorbing state, \changed, with unknown age". Observation

2Observing change intervals directly would involve recording the state and then monitoring the page at a high sampling rate.

There can be serious di�culties with aliasing, as any change which is observed might be only the last change in a long series.
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would force a reset to the transient state having the appropriate age. This and other state de�nitions will

be explored more fully in the thesis.

Formally, we de�ne the ijth element of M to be the probability that a page of age i will become age j

on the following time step. More generally, by raising M to an integer power k, we can �nd the probability

(for initial age i) that the system became age j after k time steps have elapsed since the last observation:

Prob (st+k = jjst = i) =
�
Mk

�
ij

(11)

As k grows without bound, the ijth element of Mk approaches the stationary transition probability �j ,

which is the probability that the page will be observed to be age j if we are given no knowledge of the history

of the page. This is precisely the age distribution mentioned above, g(j):

lim
k!1

�
Mk

�
ij
= �j = g (j) (12)

2.3 De�ning a cost function for the index

Using the model just developed, we can de�ne an objective function that can be optimized for the index of

the collection. The objective in a real system could be fairly complex; we will not seek to incorporate all

these features into our initial work on the cost function. Instead, here are two possible choices for objective

functions:

1. Minimize the expected number of pages that are incorrectly indexed in the collection. Objects in the

collection are indexed correctly if no changes have occurred in the object that have not been recorded

in the index.

2. Minimize the total time out-of-date for the entire collection (as was developed in [CLW97]). Unrecorded

object changes add to the cost in proportion to how long the object is expected to have been out-of-date.

We restrict the problem space using some simplifying assumptions. First, assume the document collection

contains a constant d documents. Second, assume that pages can be retrieved at a rate of � pages per day.

De�ne the states corresponding to the rows of the matrix Mr to denote the age in days of the rth page in

the collection. Any unit of time could be used, so long as it is consistent across the collection and the rate
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� is expressed in the same unit. For each page r, we know that it was last observed kr days ago to have age

ir. The probability that page r has changed during this kr-day interval is

Prob (changej fir;Mr; krg) =
P

j2[0;ir+kr�1]

�
Mkr

r

�
irj

= 1�
�
Mkr

r

�
ir(ir+kr)

(13)

We note that this cost is between 0 and 1, corresponding to the cases in which we are absolutely certain that

the page is not out-of-date (0) or is out-of-date (1) at the end of a day.

Using this result, we can formulate costs such as the two listed above. For example, at any given time,

the expected total number of pages that are incorrectly indexed (the indexed version is out-of-date) is just

the sum of the probabilities listed in (13) over the entire collection:

C(1) =

dX
r=1

�
1�

�
Mkr

r

�
ir(ir+kr)

�
(14)

Since all terms are on [0,1], the cost C(1) is nonnegative and can be no greater than the number of documents

d.

We can calculate the second metric, the expected time out-of-date, by performing a similar sum in which

the out-of-date probabilities weight the number of days out of date to which they correspond:

Z (ir; kr) =

kr�1X
j=0

(kr � j)P (j + ir; ir) (15)

Here, P (j; ir) is the probability that a page goes out-of-date at exactly age j, given that the page was last

observed to have age ir. This can be found from the conditional probabilities preset(t). For example, P (1; 0)

is, trivially, just preset(0). The probability of having gone out of date on the second day, P (2; 0), requires

that the page has both aged past the �rst day, with probability (1� preset(0)), and reset on the second day,

with probability preset(1). These are independent events, so

P (2; 0) = (1� preset(0))preset(1). (16)
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This same logic describes P (N; ir), since the event of resetting on the Nth day is conditioned upon the

independent events of having reached that age, one day at a time. Generally,

P (j; ir) = preset (j) [1� preset (j � 1)] : : : [1� preset (ir)] , (17)

which can be written as the repeated product

P (j; ir) = preset (j)

j�1Y
m=ir

[1� preset (m)]. (18)

The terms in the product describe the independent probabilities of progressing through each of the ages from

ir to j � 1, which we multiply by the probability of a change on day j. Note that these probabilities can be

calculated recursively:

P (j + 1; ir) = P (j; ir)
[1� preset (j)]

preset (j)
preset (j + 1) (19)

Recursion can also be used to simplify the calculation of (15). As an example, consider the di�erence

between �nding Z(ir; 3) and Z(ir; 4), which demonstrates how to advance the cost contributed by a single

page if one day elapses:

Z (ir; 3) = 3P (ir; ir) + 2P (ir + 1; ir) + P (ir + 2; ir)

Z (ir; 4) = 4P (ir; ir) + 3P (ir + 1; ir) + 2P (ir + 2; ir) + P (ir + 3; ir)

(20)

If the argument j is advanced by 1, we can simply add to our previous cost value a partial sum of the

sequence P (j; ir). Using (20), the di�erence in consecutive values would be calculated as:

Z (ir; 4)� Z (ir; 3) = P (ir; ir) + P (ir + 1; ir) + P (ir + 2; ir) + P (ir + 3; ir)

= S3 (ir) + P (ir + 3; ir)

(21)

where we have de�ned

SN (ir) =

N�1X
j=0

P (j + ir; ir) (22)

to be the Nth partial sum of the sequence of probabilities P (ir + j; ir). Obviously, this partial sum can be

calculated recursively as well, since SN+1(ir) = SN(ir) + P (ir + N; ir). Being a partial sum of mutually

exclusive and exhaustive probabilities, SN (ir) approaches 1 as N !1. The probabilities are exclusive, since
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a page cannot become out-of-date on more than one day, and they are exhaustive in that the only possible

times for the page to go out-of-date are t 2 [ir;1].

Summarizing, we can recursively calculate Z as

Z (ir; N + 1) = Z (ir; N) + SN+1 (ir) (23)

In the limit, each step simply adds one to the expected number of days out-of-date, corresponding to the

notion that an in�nitely old page will have been modi�ed at least once, and therefore grows one more day

out-of-date for each day that goes by without an observation.

Having de�ned Z(ir; N), the cost function for the entire collection is just the sum of this metric over all

documents:

C(2) =

dX
r=1

Z (ir; kr) (24)

2.3.1 Greedy cost minimization

Using (14) and (24), we can �nd the best way to reduce the costs that we will incur in the coming day.

By our assumption, we can check � pages per day. The smallest possible cost for the following day can be

obtained if we fetch and re-index the � pages corresponding to the largest terms in the cost summation.

These terms correspond to those pages with the largest probability of being out of date (14), or those that

we expect to have been out-of-date the longest (24). For all of the � pages we fetch, the probability of

being incorrectly indexed is zero. If there is no single best choice for the � pages, then we can select � at

random from the pool of best choices. This situation occurs when applying (14) if more than � pages have

probability 1 (to working precision).

These are the greedy versions of cost minimization, inasmuch as the greatest immediate cost reduction

is chosen. Re�nements of these methods operate along the same lines, observing those � pages which a�ord

the greatest reduction in cost. More complex methods can �nd the expected cost for more than a single day,

and the actions corresponding to the lowest long-term expected cost can be used. These will be discussed in

a later section, giving more assurance of long-term optimal performance.
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2.3.2 \Liveness" conditions

While having the advantage of being relatively simple, greedy algorithms may force suboptimal long-term

performance. For example, in the re-indexing system, there is the possibility of never checking some subset

of the pages. This is a situation that must be avoided, especially if all items to be indexed are equally

important. In queuing models for computer operating systems, the analogous constraint that all processes

be served is termed a \liveness" condition, which would not be met if there were a subset of pages that

changed so quickly that its members always contributed the largest terms in the cost function. Fortunately,

the two algorithms presented both can be shown to eventually check all pages.

We �rst consider liveness with respect to the expected pages out-of-date described by (14). Since each

term in the summation is a probability, no term can be larger than 1. Moreover, once a term becomes unity,

it remains so until the page to which it corresponds is checked. If all terms eventually become 1, then all

pages will be checked. Examining the form of each probability term (as given in (13)), it is clear that this

probability becomes unity for page r for any time that forces the sum to include an entire row of the matrix

Mr. As mentioned above, if there are more than � pages corresponding to terms having probability 1, then

some subsidiary selection process must be used. If no preference is given to any page, then even a random

selection will guarantee that all pages having the maximum probability (in this case, 1) will be checked

eventually. Therefore, the liveness condition is satis�ed by the one-step greedy minimization of the expected

number of non-current pages.

Liveness follows in similar fashion for the expected number of time units out-of-date in (23). If the pages

with the � largest values of Z(ir; kr) are selected for observation, as in the greedy algorithm, then any page

will eventually be included in the observed set. This stems from the fact that Z(ir; kr) will increase without

bound if page r is unchecked, thereby guaranteeing that page r will have a large enough cost to guarantee

its inclusion in the observed set (if we wait long enough).

To show this, we de�ne the smallest member of the inspected set of � inspected documents at time step

t to have expected time out-of-date Cmin(t). For the collection, there will be some time Cmax that is greater

than or equal to Cmin(t) for all t. That is, there is a largest member of the set of smallest costs. In order for

a document to be included in the inspected set of � documents, it is su�cient to guarantee that its expected

total time out-of-date be greater than Cmax. From (23), as kr grows without bound, we are eventually

just adding unity to the cost with each passing day. Therefore, the expected days out-of-date Z (ir; kr) will

13



eventually become greater than any �nite value Cmax. By analogy, imagine we have a lawn in which each

blade of grass will grow forever (becoming more out-of-date) if we never cut (observe) it. Although grass

in the lawn grows at di�erent rates, no matter how high we set the wheels of the mower, we can always be

assured that any blade will eventually grow high enough be cut.

2.3.3 Extending the horizon: two-day cost functions

Having an assurance of liveness is not enough to be satis�ed with the long-term performance of the system.

The one-step algorithm does not take into account anything other than the current probability of change for

various pages. Indeed, no one-step method will make use of the di�erence in change rates among pages. By

using our suspicions of likely behavior beyond the �rst time step, we can improve expected performance in

future phases of observation. We explore this by considering cost functions evaluated over two days.

A simple two-day example Consider the following simple system that demonstrates how to take ad-

vantage of page change rates. There are two pages, A and B. Page A changes quickly: it has a probability

of 85% of having been changed today, and if unobserved, it will have a 95% chance tomorrow. If, however,

we observe it today, there will be a 25% chance of it having been changed by the end of tomorrow. Page B

changes more slowly. It has an 80% chance today, which becomes 81% tomorrow if B is unchecked today.

If it is checked today, then tomorrow's probability will be 5%. Assume we can only choose one of these

to observe per day, and that we wish to minimize the total expected number of pages out-of-date over the

two-day period:

1X
t=0

�t [Prob(A changed; t) + Prob(B changed; t)] (25)

Here, � 2 [0; 1] is a \discount factor" with which we account for the relative value of cost avoided today

versus that on subsequent days. This is a re
ection of the possibility that immediate bene�t may be more

valuable than deferred bene�t. For this illustration, we assume � = 1.

There are four possible strategies for two-day observation. These can be written as sequences of observa-

tions, namely AA, AB, BA, and BB. If we observe a page, then it contributes zero cost on that day, since

we consider it \up-to-date" if indexed within the last day. Therefore, the cost for observing A on both days

is exactly the cost of not observing B on those days, namely, 0:8 + 0:81 = 1:61. Likewise, we can �nd the

two-day cost for each possible sequence of observations, as shown in Table 1. As can be seen, the greedy
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Sequence Cost Comment

AB 0:8 + 0:25 = 1:05 lower �rst day cost; one-day algorithm would pick this one
BA 0:85 + 0:05 = 0:90 lower total cost; two-day algorithm would pick this one
AA 0:8 + 0:81 = 1:61 page B ignored
BB 0:85 + 0:95 = 1:80 page A ignored

Table 1: Possible costs in example two-page, one-check system

algorithm would select a suboptimal two-day strategy.

General two-day costs In the general case, we have d pages and � observations. Each of the four possible

strategies chosen for page r will have a single cost associated with it: (i) the cost of not observing on the

�rst day but then observing on the second; (ii) the cost of not observing on either day; (iii) the cost of

observing on the �rst day but not on the second; and (iv) the cost of observing on both days. The current

cost calculations have the appealing feature that choosing to observe one page does not a�ect the cost that

might be contributed by other pages. That is, the cost of not observing a page on any given day depends

only on its age, dynamics, and how recently it was observed.

Moving through these cost possibilities in order, we know that the cost of not observing on the �rst day

is the same as was given in (13):

CXOr
=

X
j2[0;ir+kr�1]

�
Mkr

r

�
irj

= 1�
�
Mkr

r

�
ir(ir+kr)

� 1 (26)

Here, we introduce some new notation; we write two-day strategies for page r as sequences of X 's (do not

observe) and O's (observe). The �rst letter is the action on the �rst day, and the second letter indicates the

second day's action. Thus the two-day cost of not observing page r on the �rst day and then observing it

on the second day is written CXOr
.

Alternatively, if we choose not to observe on the second day, we will add additional cost to CXOr
to

obtain CXXr
. The probability that the page has gone out-of-date by the second day is exactly like (26),

except that the page has aged by one day. This is accounted for by incrementing the value of kr; if we choose

not to observe on the second day, the cost for that day only is:

X
j2[0;ir+kr ]

�
Mkr+1

r

�
irj

= 1�
�
Mkr+1

r

�
ir(ir+kr+1)

� 1 (27)
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We note that this second-day cost is greater than or equal to the �rst-day cost: by waiting an additional

day, we can only add to the probability of having gone out of date. Speci�cally, we add the probability that

the page went out of date on the additional day, which we calculated in (18). Adding (27) to the �rst-day

cost (26), we obtain CXXr
: the two-day cost of not observing on either day (denoted CXXr

):

CXXr
= 2�

�
Mkr+1

r

�
ir(ir+kr+1)

�
�
Mkr

r

�
ir(ir+kr)

= 2CXOr
+ P (kr + ir + 1; ir)

(28)

This cost is the entire cost for both the AA and BB options in Table 1, since both required that one of the

pages not be observed for both days. In general, this will be the largest possible cost for a single page over

the two-day period, but it cannot be greater than 2. Moreover, from the second line of (28) we know that

CXXr
� 2CXOr

� 0 (29)

Next, we consider the cost COXr
, incurred if we observe page r on the �rst day but not on the second

day. Zero cost is contributed on the �rst day, and the second day contribution depends on the new value of

k+r = 1 (days since the �rst-day observation), and the newly-observed age i+r . Since only a distribution of

possible values of i+r is known, the second-day cost will be a weighted sum of probabilities from the matrix

Mr of one-day state transition probabilities (6). If the page was observed to be in state jr on the �rst day,

then the probability of it being out-of-date at the end of the second day is just preset(jr), as de�ned in (7).

These probabilities are also the �rst column of the matrixMr. In our cost function, the values in this column

vector will contribute in proportion to their probability of occurrence. These probabilities are obtained from

the row over which we sum in (26), or the distribution of possible ages on the previous day. Therefore, the

probability that the page is out-of-date at the end of the second day, given that the page was observed on

the �rst day, is

COXr
=

NX
jr=0

�
Mkr

r

�
irjr

Mjr1 � 1 (30)

Note that this cost, like CXOr
, can be no greater than 1. If we expect that page r has changed with some

large probability, then we would rather observe it today than tomorrow: CXOr
> COXr

. Alternatively, if we

expect that no change has occurred yet, then we would rather wait to make an observation. For example, if

a page will change tomorrow with probability 1, but de�nitely will not have changed by the end of today,
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then it bene�ts us to wait until tomorrow to observe it: 0 = CXOr
< COXr

= 1. Most cases are less extreme

than this, but we emphasize that the sign of the di�erence CXOr
� COXr

can be positive or negative.

Finally, for completeness, we note that two observations of page r will force it to contribute zero cost:

COOr
= 0 (31)

This is generally the best option when page r is changing very rapidly, such that CXOr
� 1 and CXXr

� 2.

Clearly, this implies that the page changes essentially everyday, making it an almost guaranteed success.

Now that we can determine a cost for all possible strategies, we are able to add these costs for an entire

collection. Any observation plan for n days will partition the d pages into 2n groups corresponding to the

possible n-day strategies. In the case of n = 2, the groups are:

OO =
�
OO1; OO2; : : : OOjOOj

�
;

XO =
�
XO1; XO2; : : :XOjXOj

�
;

OX =
�
OX1; OX2; : : : OXjOXj

�
; and

XX =
�
XX1; XX2; : : :XXjXXj

�
:

(32)

The sizes of the groups must be nonnegative, and are constrained so that no more than � observations can

be made in a single day, and all documents are accounted for:

jOOj+ jOX j+ jXOj+ jXX j = d

jOOj+ jOX j = �

jOOj+ jXOj = �

(33)

The �rst relation is a constraint that each document is assigned exactly one strategy, and the next two

constrain the number of observations per day. Notice that these imply jOX j = jXOj. Since there are three

equations and four unknowns, the system reduces to a single parameter choice. Once any one of the sizes is

�xed, then the others are �xed as well|we could, for example, freely choose the number of documents that

would be observed on both days at some 0 � k � �.

The \observe-n-times" group (e.g., group OO) will always contribute zero cost; other groups may have

nonzero cost. The cost for the collection is the sum of the cost over all members of all nonzero cost groups:

C2
(1) =

X
k2XX

CXXk
+
X
l2OX

COXl
+

X
m2XO

CXOm
(34)
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(b1,1)

(a1,1)
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(c2,1)

(c4,1)

(c3,1)

Figure 2: Two-day strategy assignment (capacity; cost) network with k observations in class OO

In a collection of d documents, in which we can check � per day, there are dC
2
� possible combinations of

two-day strategies. A brute-force approach, in which we evaluate a cost for each option, is entirely infeasible

for the collection sizes under consideration.

Foruntately, the two-day problem can be stated as a simple minimum-cost network 
ow problem, as

diagrammed in Figure 2. In this context, we think of documents \
owing" to particular two-day strategies,

building the sets (32). Since no document can be assigned to more than one strategy, this is an integer


ow problem. If the costs, sources, and sinks were real numbers, the problem restatement would not have

helped|the multicommodity minimum cost integer 
ow problem has been shown to be NP -complete (see

[CCPS98] for example). However, since the sources and sinks are all of integer size, integer 
ows can be

found using standard algorithms without additional constraints [Ber98].

Each graph of this type has d unit sources corresponding to the documents in the collection, and 4

variable-size sinks corresponding to the allowable strategies. The sink sizes enforce the constraints on the

number of observations and the number of strategies to be assigned. All sources are connected to all sinks

by unit capacity links. Costs on these links correspond to those presented above as CXOr
(26), CXXr

(28),

COXr
(30), and COOr

(31). Only a few costs are (generically) labeled in Figure 2 to avoid clutter.

Turning attention again to the sinks, we recall from (33) that the set sizes can be �xed by making
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Figure 3: Two-day strategy assignment network corresponding to Table 1

one free parameter choice, say jOOj = k; 0 � k � �. This determines the sizes of the other strategy

groups, which is also the size of the corresponding sinks. For each allowable value of k, there is a single

lowest cost \strategy 
ow"; Once the sink sizes are set, the solution of the subproblem proceeds according

to the standard methodology (see [Ber98] for more) for �nding minimum-cost 
ows. Several algorithms

are available; all choices (for non-integer 
ow formulations) are either weakly or strongly polynomial in

the number of edges. Each subproblem can be solved in polynomial time (no worse than O(16d2 log 4d)

[SKPT94]), so solving � such problems (one for each allowed value of k) is no worse than O(16�d2 log 4d).

The optimal strategy is to choose the k for which the 
ow cost is smallest. As an example, in Figure 3 we

show the networks corresponding to the two subproblems which we solved in forming Table 1.

The problem is (at worst) a series of � minimum-cost 
ow problems, although in most cases, it is likely

that the complexity is much better than stated above. Each subproblem is just that of a transportation

problem form d unit sources to 2n sinks (for n days). The reduced complexity is expected because the

solutions to the 
ow problems should be related. For example, we might start with k = �, solve the 
ow

problem, and then back out one element from the OO group and choose where to reassign it. For instance,

a simplex-based solution [Lue84] to any one of the subproblems (the network corresponding to a particular

choice of jOOj = k) need not waste time using arti�cial variables to �nd an initial basic feasible solution,

since these solutions are easily found through other means. Moreover, the better the initial guess, the faster

the simplex method will �nd a solution. Therefore, if we create our initial basic feasible solution for the
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k+1th subproblem from the optimal solution to the kth subproblem, the simplex algorithm could converge

more quickly than it might if starting from other initial solutions.

Speculation aside, much work remains to be done on making the method scale in the number of pages,

observations, and days. Since the graphs involved will often be very large, our work will include approxi-

mation methods for obtaining near-optimal 
ows. Promising steps have been taken through application of

properties like (29)3, and in grouping documents with similar dynamics into \meta-documents" to reduce

the number of nodes in the graph. Approximation will be indispensible in a system where optimality is less

of a concern than execution speed.

2.4 Accounting for unequal cost of observation

Our problem statement above includes a number of assumptions; we consider a more general case in which

one of these is removed. Speci�cally, throughout the preceding discussions, we have assumed that � pages

could be checked per day, and all at the same rate. While this may be true on average, there is de�nitely

a variation in service times required for the processing of pages. Further, these times can vary dramatically

even for a single document. Download and processing times are both proportional to document size, and

available bandwidth depends strongly upon the time of day (e.g., one expects long service time around 4:00

PM EST). Real systems might bene�t by accounting for this variation both among di�erent documents and

for a single document.

2.4.1 Deterministic document retrieval times

We assume that all documents require some constant time to process, but that this time may not be the

same for di�erent documents. This requires us to restate our objective, since we can no longer count on a

constant number of pages processed per day. Speci�cally, we wish to discover incorrectly indexed pages as

quickly as possible.

To quantify this, we introduce some notation. We would like to determine an optimal ordering of pages

to check, S� = fs1; s2; : : : ; sdg, such that the expected time t taken to �nd an incorrectly indexed page is

minimized. Each page i has a �xed probability Pi of having been changed. In order to consider Pi constant

and calculable from (13), we must create a new list S whenever the probabilities Pi have changed. A time

3For example, it is clear that pages with the largest values of CXXr should be on a \hit-list" for observation sometime in

the near future, due to the high cost of leaving them untouched.
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Ti is required for processing the ith page. The time t expected to �nd an incorrectly indexed page can be

expressed by a probability-weighted sum of these times. If we assume some ordering S as listed above, then

this time can be written:

t = Ps1Ts1 + (1� Ps1) [Ps2Ts2 + (1� Ps2) [Ps3Ts3 + (1� Ps3) [: : :]]] (35)

The solution to scheduling problems having this form is worked out by Moizumi in his work on the

\traveling agent problem" [Moi98]. In Moizumi's analagous version of the problem, a single mobile agent

[Gra97] is tasked with visiting a sequence of machines in search of information. As in our problem, there

is a processing time Ti and a probability of success Pi associated with the search for information on each

machine. The planning problem is to determine the order in which to visit machines to minimize the time it

takes the agent to �nd the desired information. It is shown that the machines should be visited in decreasing

order of Pi=Ti. The proof is based on an exchange argument, in which a criterion is derived to justify the

exchange of two machines in the list. If all possible exchanges are performed, then a sorted list of Pi=Ti will

result:

S� = fs1; s2; : : : ; sdg ; where
Ps1
Ts1

�
Ps2
Ts2

� � � � �
Psd
Tsd

(36)

This result is intuitively pleasant|we have moved from obtaining some �xed amount of bene�t per page,

to an expected bene�t per unit time. In an economic context, we think of comparing salaries being o�ered

by di�erent employers. Note that this does not necessarily correspond to the maximum income over time,

since the probabilities can change. Still, to minimize the time taken to acquire our next unit of income, we

will always wish to work for the highest salary for as long as we are allowed to do so. This corresponds to the

intuitive notion that a page having Ti = 1 second and Pi = 0:9 would have a payo� rate of 0.9 changed pages

observed per second, and would provide the same utility as checking a sequence of two pages both having

Ti = 0:5 seconds and Pi = 0:45. These two could be checked within one second, and if their changes were

independent, then the expected changed pages observed per second would also be 0:9. In this formulation,

we also assume that there is no reason to prefer a correct index entry for one document over that for another;

the value of a correctly indexed page is independent of the page.

Metrics such as that in (24) require a new problem statement, since the discovery of a changed page is

valued in proportion to its expected number of days out-of-date. In this case, (35) is rewritten to account
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for the relative merit of indexing one page versus another. We de�ne Bi to be the value obtained with

probability Pi from page i in time Ti. If we assume the bene�t Bi for a page is acquired linearly over the

time Ti, then the problem can still be stated as a minimization of the expected time it takes to obtain one

unit of bene�t. The changes to the expected time (35) are cosmetic if we assume that a unit of bene�t can

be obtained in time Ti=Bi:

t = Ps1
Ts1
Bs1

+ (1� Ps1)

�
Ps2

Ts2
Bs2

+ (1� Ps2)

�
Ps3

Ts3
Bs3

+ (1� Ps3) [: : :]

��
(37)

The solution to this problem is equivalent to that of an auxiliary problem with unit bene�ts and new times

T 0i = Ti=Bi. We can substitute the times T 0i into (36) to obtain the optimal ordering

S� = fs1; s2; : : : ; sdg ; where
Bs1Ps1
Ts1

�
Bs2Ps2
Ts2

� � � � �
BsdPsd
Tsd

(38)

We can calculate the values to be sorted into lists of the form in (36) and (38). Namely, for page r the lost

bene�t rate (or lost salary) for that page in terms of expected unobserved changed pages per second is

Pr
Tr

=
1

Tr

�
1�

�
Mkr

r

�
ir(ir+kr)

�
(39)

In terms of incremental improvement in the expected number of days out-of-date, using (15), we have

PrBr

Tr
=

1

Tr
Z (ir; kr) (40)

Moizumi's problem formulation di�ers from ours in some important ways. First, both our probability of

\success" and our processing latency are both strong functions of time. Therefore, planning by the Pi=Ti

method will only be valid for time scales on which both the probability and time spent are essentially

constant. While this may be an appropriate assumption for timescales on the order of a few minutes, it is

certainly not correct when used for longer scales. The tradeo� for ignoring variation in the probability and

the retrieval time is that we accept that some error will develop in the ordering as time elapses. After either

the probability or the retrieval time has changed signi�cantly, we must re-examine the order in which we had

planned to fetch pages. The fact that we might need to re-plan also implies that a one-day greedy planning

method is almost certainly not optimal, by the same arguments presented in the construction of the Table

1 example.
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The second di�erence in the two problems is a smaller one, but is still worth noting. In the agent planning

problem, the agent is allowed to stop after the information is found. In other words, only one unit of bene�t

needs to be acquired, and then the task is over. Our problem is di�erent in that we are required to continue

even after a success|when a changed page is found, there is certainly no reason to stop looking for more.

Instead, our problem is like a sequence of traveling agent problems, in which we must �nd the optimal

sequence of machines to visit so as to maximize incremental bene�t. After each success, we re-plan so as to

obtain further bene�ts as soon as possible. If we are already using a sorted list of bene�t rates, and those

bene�t rates are still accurate, then there is nothing new to do after a page is successfully re-indexed. The

�rst page retrieved in the \new" problem would have been the next page fetched in the old problem, since

the ones just checked now have zero probability of being out-of-date.

2.4.2 Stochastic retrieval times

Up to this point in our discussion of accounting for variable observation costs, we have been assuming that

there is a single, average service time that characterizes each page in the collection. Of course, there is much

more information available regarding service time. This time depends upon the available network bandwidth;

large and rapid variance in download time is quite common [HL97].

A speedup or slowdown in download times during the execution of an observation schedule would not

have a dramatic e�ect on the optimality of the ordering if the e�ect was the same for all pages at the time of

a single retrieval. That is, if all pages experience a uniform rate change by some �xed multiplicative factor,

then the relative order is still the same. To see this, consider that terms of the form of (39) and (40) will have

the same ordering if all times are scaled by the same value4. Therefore, even though it may take a great deal

longer to move through the list, the order in which we would like to fetch pages would be una�ected. It is

unclear whether this is a reasonable simpli�cation in practice, but the problem is made much more complex

if we cannot assign a single time to each page.

The worst case, as far as complexity is concerned, is that in which we can arbitrarily select the transfer

time for a particular document by scheduling it for a particular time of day. Rather than being able to

simply order Pi=Ti terms, each document would have an entire distribution of costs associated with it, since

the order in which the documents are fetched a�ects the processing time distributions associated with them.

Cases discussed up to this point did not have this property; the bene�t obtained by retrieving one document

4A uniform processing rate change is equivalent to a change in time units.
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did not a�ect that which could be obtained by observing another. While this problem may be discussed in

the thesis, it is unlikely that any methods based on a distribution of values of Ti would be acceptable in

practice for anything but the smallest domains, such as non-WWW observation problems.

2.4.3 Di�culties due to variation in retrieval times

Using the methods suggested above for pages with non-constant retrieval times will result in indexing prefer-

ence being given to documents that are either closer to the database or smaller in size (both make Tr small).

That is, we select between two documents with identical change probability based upon either how far away

they are (if of identical size) or how large they are (if at the same location). If we truly value only the

expected number of current pages or some other metric that does not account for how the entire collection is

treated, then this is not a problem. Intuitively, though, an index should not assign preference based strictly

upon convenience of indexing. Methods are needed for removing unwanted bias against documents that are

either larger or farther away.

If this bias is not removed, then liveness conditions might not be met in our formulations to this point. In

the case in which all the retrieval times are the same (namely, 1=�), we had assurance that every document

would be examined, because all pages would eventually reach a stage in which they would have been changed

with probability 1. Sorting by this value guaranteed that all pages would eventually be revisited. However,

when we divide through by retrieval time, even a page that was absolutely guaranteed to have changed since

the last observation might not ever be fetched if the time required to examine it was too large. This could

be due to the document being large, or being at a great distance. If we are only able to observe from one

location, then we require weighting parameters to remove the bias against large or distant documents.

2.5 Reducing observation costs using mobile agents

These two biases naturally lead into two targeted solutions whereby we might make limited use of remote

sites. Up until this point, we have assumed that there were few things we could do to reduce the price of

making a particular observation. The best that could be done was to make observations at di�erent times

of day, by which we can do a fair job of selecting the observation cost. We are still inclined to remove the

biases mentioned above, and two approaches seem natural. It is critical that observation time be reduced.

The two sources of this time are network latency and document size. In this section, we discuss how these

di�culties can be ameliorated by moving the observer closer to the data and using encoding schemes so as
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to enable more frequent observation of large pages.

To even consider use of a remote observation post, there must be remote machines available for our use.

We may not have signi�cant privileges on these machines, but even a very limited use, such as making a

single observation from a remote machine, could be helpful. Mobile agents [Gra97], or autonomous programs

that can migrate under their own control, are a means by which such limited access might be granted. If

we have this access, then we can choose to make observations from machines based upon whether or not it

bene�ts us to do so. By adding mobility to the observer, we give it the freedom to make more observations

in the same time (being in closer proximity to the resource) and the chance to perform pre-�ltering on the

result. We emphasize that there is no need to use an agent solution if full access to a machine exists; the

idea of distributed web robots is already in use (e.g., [AL98]). If we have full access to a machine, the only

reason not to have a search robot permanently resident on the machine would be the overhead involved in

merging results from distributed observers.

In particular, we seek solutions that remove the bias against large or distant documents. To accomplish

this, the simplest type of remote observer might migrate to the vicinity of a document (or collection) of

interest, compress the documents and send them back to the home machine, where they would be decom-

pressed and analyzed. If the remote machines are at a great distance, this could result in a signi�cant time

savings. More complicated agents might transmit only the changes in page state in some compressed form.

This would be especially appropriate for large pages that only experienced minor changes. Being able to

transmit changes in state this way is a large step towards the use of \delta encoding" (analogous to MPEG)

schemes for HTTP transmissions [MDFK97]. The key to making this type of encoding work is to package the

agent with knowledge of the previous state of the page. Then, when a change is observed, the agent need

only transmit the change in the page's index entry, not the entire page or even the entire index entry. This

scheme has the desired features of reducing network tra�c as well as removing bias against large or distant

pages.

As packaging agents with an index entry and a lookup mechanism might produce a rather large piece of

code, a simpler �lter would probably be a better candidate for a remote observer. Large routines such as

compression algorithms might be made available as part of standard libraries on remote machines, obviating

the need to carry compression code from machine to machine. The proxy server agent could be modi�ed

so that it would only return requested pages if they did not match a previously hashed version of the page,
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Figure 4: Remote observation

carried with the agent. This agent could observe these documents more frequently (being closer to the

resource of interest) and then send pages back to the server (compressed, if utilities are available to the

agent) only if they had changed. A typical retrieval task would entail sending an agent with instructions to

look at some set of documents and return compressed versions of those that do not match a hash carried by

the agent. Mobility proves useful in that an agent can move to a better vantage point prior to making each

subset of its observations.

The idea of distributing observers which then report back to a central dispatcher is one step towards

making the indexing process less of a \pull" technology and more of a \push" one. Formally, this di�erence

can be seen in the decreased symmetry of messages between the agent and the indexing system, as discussed

in [CB98]. A single monitoring agent could return an arbitrary number of observation results to its point of

origin. Clearly, dispatching such an agent to perform observations results in a large observation cost savings

from the perspective of the central indexing system, but it is not yet clear what form this savings will take.

While mobility may be a valuable option, we need to know the relative merit of observing locally versus

using a mobile agent on a remote machine. Consider three machines, A, B, and C, as shown in Figure 4.

Machine A contains the main document index database, machine B contains a document of interest, and

machine C is available for use to a mobile agent. Note that this is the only mode in which machine C can

be used; for whatever reason, we are not allowed to compile and install code there on a permanent basis.

We wish to determine what observation scenarios favor the use of a mobile observer in this situation. To do

this, consider a comparison of the two scenarios shown in Figure 4; speci�cally, compare the time it takes to

transfer a document directly from B to A versus the time it takes to send a remote observer to C, observe

the document at B and return relevant information. More precisely, the document has size SD bytes. The

link from machine i to j has latency Lij seconds, and an e�ective transfer rate of Nij seconds per byte. k
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observations made directly from machine A would take time

t1 = k (2LAB +NABSD) (41)

The request for the document is assumed to be small enough that the time taken to transfer it is essentially

the same as the link latency. Half of the latency term is due to this request, and half is due to the response.

We compare t1 with the time t2 taken to perform the same k observations using a mobile agent of size

SA = �SD transferred to machine C. Further, we assume that the agent is clever enough to compress the

document to a fraction � of its original size before transmitting �SD bytes of index information back to A.

The total time is then

t2 = (LAC +NAC�SD + Cstartup) + k [(2LCB +NCBSD) + 
 (LAC +NAC�SD)] (42)

To initiate the agent on the remote machine takes a time Cstartup. For simple agents, this should

be the only computation time on the same order as the transfer times. Other computation times, such

as compression/decompression times, are assumed negligible by comparison. This might be accomplished

through some form of run-length encoding, so that the compression and decompression times partly overlap

the transmission time. Also, notice that the agent's messages to the home machine are only required for

the fraction 
 of the observations on which a changed page is observed, since no communication is necessary

if a page has not changed. It is immediately clear that the download portion of t2, namely the term

k (2LCB +NCBSD), must be strictly less than t1 to even consider the use of a remote observer. If this is

the case, then the sum of the outer terms in (42) must be less than the savings in download time for it to

be worthwhile to observe remotely. This is a restatement of the obvious fact that remote observation is a

good option when we save more by downloading at the alternate site than we spend in sending an agent and

returning results. The times t1 and t2 can be estimated in advance to determine the relative bene�t of the

two modes of observation.

To clarify the relation between the times, assume the latency terms Lij and the startup cost are zero.

Ignoring the latency terms is reasonable: when the latency term is large, it indicates that the �rst packet

will take a long time to arrive and that all subsequent packets will probably be of similar speed. Since

transmission is a two-way procedure (requiring acknowledgement packets as well as trasmitted ones), the

Nij term has tends to be large when Lij is large. Particularly for large messages, it is likely that the NijSD
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terms will dominate transfer times. The startup time on the remote machine is harder to ignore, although as

the number of observations becomes larger, this time becomes less of an issue. After removing these terms,

normalize by document size SD , and divide through by k to obtain a requirement on the normalized time

per observation, as a function of k.

1 >
NAC

NAB

�
�

k
+ 
�

�
+
NCB

NAB

(43)

Note the behavior of this average time as k becomes large. As would be expected, the portion of the �rst

term due to the initial transmission of the agent disappears, and we are left with two terms. One term gives

the relative speed of remote observation as compared to standard observation. The other term describes the

compression achieved by sending fewer messages and reducing their size. The sum of these two normalized

times must be less than unity in order to make a remote observation worthwhile.

2.6 Multiple tasks, �ltering, and change assessment

This was a relatively simple comparison, but we state it to emphasize that agents can present advantages even

in the most basic usage. However, an observation agent can be given tasks that are arbitrarily complex. For

example, it need not perform observations of only a single page, and it can be free to move to a better vantage

point if this saves time. In fact, the agent will multiply its e�ciency if it observes many documents that might

be resident on the target machine, B. An agent that is to observe multiple documents will be slightly larger

than one tasked with observing a single page, since it will be required to carry some compressed version of

the state of target documents as well as extra observation instructions. Still, the compressed version might

be quite small, perhaps only a few integers worth of hash values per page. Although this added weight

will increase the time to dispatch the remote observer, the extra time is a relatively small, one-time cost.

Multiple observations of multiple documents will serve to amortize this cost over time. Additionally, as an

agent completes observations, it can \diet" by dumping data corresponding to completed tasks, whereupon

it can migrate a bit more quickly to the next observation site.

Whether observed by an remote agent, or by a robot running on the home machine, there must be

a well-de�ned means by which to determine whether or not a page has \changed." We have been rather

slippery about avoiding explanation of what might be meant by this, so as allow for more general types

of observation. If one de�nes a change in the strict sense of whether or not any bytes were altered, this
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may be problematic. There will be situations in which the object in question has certainly changed, but

the change that occurred was insigni�cant: unimportant changes would include the \counter" images on

some webpages, randomized advertisements chosen for display, extra whitespace in the HTML source, and

anything else essentially unrelated to the content of a document. We emphasize that a document's content

is user-speci�c: it is always necessary to assess what portion of a page's content is of interest. For example,

certain robots (users, in their own right) may be tasked with looking for new links. Changed pages that

do not have new links are then no longer of interest, and are therefore not considered to have been altered.

Simple �ltering tasks such as this could be carried out to determine if a document's change is of interest.

In this light, a change is best de�ned not just by changing page content, but rather by an alteration in

the projection of page content into the subspace of user needs and interests. This forces us to attempt to

divide page content into \content-related" and \non-content-related" subspaces. Such subspaces could be

very di�cult to characterize, requiring some analysis of page content and of what it was about the page that

changed. Encapsulated in this is the need to recognize things such as advertisements and any content that

varies somewhat randomly. Another approach to this would be setting a threshold on how large a change

must be before it is considered noteworthy. This could be as simple as choosing a percentage change, and

monitoring the number of bytes in the page. If it ever moved outside of this range, then a \change" would

have occurred. The threshold would then be reset, and the process would continue.

Accurate projections onto user needs will probably only become more important as the content of web

pages becomes more dynamic. It is quite likely that in the future no two documents obtained from the

same URL will be entirely \alike." That is, content will be customized to such a degree that documents will

never remain the same for more than one viewing. The basic question is, what portion of a page is drawing

the users to examine it? In other words, a change is important if it occurs in that portion of the content

which draws users to examine the page. Changes that are not part of user's search criteria are irrelevant and

should be ignored. Obviously, separating the important changes from the unimportant ones is quite tricky,

requiring us to classify changes topically, stylistically, syntactically, and so on. The real bene�t to the user

is not to have an index that is 100% correct, but rather a current index of relevant topics only. In this light,

if a change is important to anyone, then it is worth noting, but the more users that bene�t, the greater the

priority.
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Dates Task

10-12/1998 Initial theoretical work and proposal
1-2/1999 Expand analytical models, to include multi-step formulation of

non-constant retrieval time.
1-3/1999 Simulation and performance analysis of algorithms in MATLAB

3-4/1999 Program web robot database interface (parser already exists)
3-4/1999 Program web page retrieval module (to be built upon the wget

engine).
4/1999 Debug retrieval engine

4/1999-1/2000 Robot startup and continuous operation
4/1999 Run robot with uniform indexing strategy for initial month

6-7/1999 Continuous-time problem formulations, and alternative (non-
WWW) applications

5/1999 (Optional, but desirable) Program CGI interface to the search
database.

7-9/1999 Further expansion to include alternative state de�nitions and dy-
namic collection metrics.

6/1999 Experiment with remote observation via transportable agents|
coding and testing stage.

7/1999 Test remote observation methods
8/1999 Consider/develop remote observation via meta-search (i.e., use of

existing search tools as remote tools
9-1999 Robot performance analysis, benchmarked against Dartmouth's

own search indexing system and external engines.
9-10/1999 Desired new features can be integrated into web robot; di�erent

coverage area.
10/1999-3/2000 Ongoing robot performance analysis

1-3/2000 Pursue something novel and inspirational, depending upon what
looks interesting and worthwhile.

3-5/2000 Complete written thesis
5/2000 Final editing
5/2000 Present thesis

Table 2: Proposed schedule of future work

3 Schedule of future work

Many possibilities have been presented, making it important to know what results will indicate that the

thesis is complete. In this section, we discuss the work that will be conducted over the next year and a

half to set forth a contract of sorts. Our goals in the thesis work are twofold: we would like to develop the

theory of optimal observation, and show how it can be implemented in practical applications. A preliminary

schedule for achieving these goals is shown in Table 2.

Following further development of the theory, simulations will be written in MATLAB to test and compare

the algorithms to be used in the operation of an optimal web robot. We then plan to use these algorithms

to optimize actual WWW observation. Code has already been written or obtained for the main features of
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the robot, namely HTTP page retrieval and parsing. The code yet to be written includes a simple indexing

scheme, an interface to our Informix database server, and perhaps even an external search interface, although

these are not likely to be critical in the earliest implementations. A number of tests are planned, the largest

of which involves running a web robot on some limited domain (most likely pages within *.Dartmouth.edu).

Robots will be benchmarked against existing engines, such as Dartmouth's own engine5 and also external

commercial engines. We will monitor the \e�ciency" of the engine, by keeping tabs on the results of our

observations. In general, an observation scheme should show an increase in the number of changed pages

discovered per observation, although we note that this could be increased simply by not observing for a very

long time. Nonetheless, if this is not observed, then existing models of page behavior will probably need

to be revised. Some limited comparisons showing the merits of remote observation are planned. These will

involve the construction of observation agents to collect data remotely. If possible, this will proceed via a

comparison of the di�erent methods of monitoring a remote domain (where we are allowed to run agents)

both locally and from remote observation outposts.

Beyond practical implementations, there is a great deal of mathematical study yet to be done, so as

to make the theory more general. One of the most promising directions is the movement of the theory

into continuous-time domains. For example, equations like (6) can be generalized to arbitrarily �ne quan-

tizations of time, whereupon they approach some continuous analog. The system described to motivate

time-dependence was a very simple continuous system that we would like to expand upon. Systems like

this have been explored in advanced statistics, in the context of \renewal processes" [Fel71]. In exploring

this theory, we seek to generalize the discrete versions into continuous ones. When a continuous theory is

adequately developed, it will be possible to investigate other real-world applications.

It is likely that the theory may already have been considered in other domains, such as in the decision of

how �ne a mesh is needed in a �nite-element application (spatial observation), or in the choice of sampling

rates in A/D systems that must monitor multiple channels. For this reason, an extensive exploration of

related work will be take place throughout the development of the thesis.

5http://ultraseek.dartmouth.edu:8765/
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4 Conclusion

The \information age" is de�ned by our having access to unprecedented quantities of information, so vast

in fact that we are forced to intelligently allocate observation resources. The �rst steps have been taken in

the development of a theory of optimal observation, as we begin investigation of a means by which we can

optimize monitoring of large collections of changing objects. In particular, a means has been presented by

which to streamline the observation and maintenance of a collection of WWW documents. Speci�cally, we

have suggested a Markovian model, describing the dependence of change probability on age. This model

was used to construct two types of cost metrics, both of which are based upon being able to calculate the

probability of a page having been changed after some time has elapsed since the last observation. Thus far,

we have assumed a static collection with known document-change statistics. In the coming year and a half,

this theory will be implemented, and expanded into more realistic scenarios involving non-constant retrieval

times and time-varying document collections. In the thesis work to come, we hope not only to extend the

theory into this domain, but also to generalize it so that it can be applied to observation of any object

collection.
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