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ABSTRACT

Many modern information management tasks consist of an observer that must maintain current
knowledge of a collection of changing information. The goal of this observer is to maintain acceptably
accurate state estimates given limited observation resources, such as bandwidth, time, and storage.
Good examples of such “observation problems” are found in any situation where bandwidth is
limited and old observations become less useful over time. Two such examples are maintaining
a search engine’s index of the World Wide Web (WWW) and automated monitoring of multiple
sensors. This thesis addresses the general observation problem by (1) devising a formal framework
of what it means to be “up-to-date”, (2) gathering empirical data about the web that allows us to
apply this framework to an important setting, and (3) presenting algorithms for scheduling revisits
to optimize formal performance measures. One year’s worth of web page observations are analyzed
to show how quickly and in what ways web pages change. The observations are used to estimate
the distribution of web page change rates. Using this data as a model of the web we present and
benchmark an algorithm for optimizing the observation of a set of web documents such that fewer
changes go unnoticed. Our experiments on real search engines show that between 40 and 50% of
results returned have been altered at least once since the search engine last observed them. Our
algorithm can theoretically reduce these figures to between 36 and 44%, assuming that existing
search engines currently use simple round-robin re-indexing strategies. These methods benefit the
“overworked” observer much more than the one with ample bandwidth, and are general enough to

be of use in a wide variety of monitoring tasks.
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Chapter 1

Introduction

Just weeks prior to the Soviet invasion of Czechoslovakia, Corona satellite imagery of the area
showed military buildup, but no signs of imminent attack. By the time another round of imagery
was available, it was too late to react; the invasion had already taken place [M0099]. In a real
sense, the information obtained by the satellite weeks earlier was no longer useful. The fact that
information has a useful lifetime is well known in the intelligence community.

On the other side of the Iron Curtain, an entirely different problem existed. The East German
secret police, the Stasi, was especially vigilant in monitoring its own people—it is estimated that
one of every three East Germans was a Stasi operative of some sort. Their “missions” were simple,
mostly consisting of monitoring neighbors or other people with whom they had frequent contact.
Information was gathered in copious quantities, ranging from diaries to odor samples, all neatly
cataloged and stored for future use. The basements of the former Stasi headquarters are filled
with reports, observations and gossip about who was and was not engaged in some sort of subversive
activity. This is to say nothing of the records that were destroyed as the Stasi fled their headquarters.
Overwhelmed by the sheer volume of information they held, the Stasi was probably unable to cull
the useful or interesting tidbits from the dross.

No longer just the problem of the information-rich intelligence community, we all face the problem
of high volume, dynamic information source organization and upkeep. Information overload, as it
has come to be known, is exacerbated by a new challenge: the dynamics of information sources. The

problem is the same for everything from a newspaper to a temperature sensor. When monitoring



such a source of information, when can it be said that a previous observation has gone bad? How does
this information translate into strategies for observation when only limited resources are available?

This is not a new problem, and there are some very well-established solutions. Biological sensory
systems are always forming state estimates using limited observation capability in such a way as to
balance uncertainty against the importance of things being observed. Moreover, biological sensory
systems are extremely efficient, in that they rarely waste effort paying attention to slowly-changing
or unimportant systems. Human vision, for example, is specifically tuned to discern movement
within static fields: in this sense it is optimized for “change detection”. Moreover, odors and noise
cease to grab one’s attention after they have been sensed for some short time. Again, a sort of
“novelty filter” exists to optimize attention for change detection. Consider where visual focus is
directed when driving: the road ahead is the source of the most important information, as well as
the source which changes most quickly, thus the majority of focus is placed there. Changes in the
state of other items, such as the rear-view mirror image, the vehicle speed, the radio reception, and
the fuel remaining are deemed either less important or more slowly varying, and are therefore given
less frequent visual attention. Buried somewhere deep within our brains is the capability to assess
what is worth our attention, and how much attention it deserves.

As information sources become more numerous and more dynamic, the cost of keeping up in-
creases. This thesis investigates the balancing act faced when monitoring a collection of dynamic
information sources. We discuss one domain (the World Wide Web) at length, considering how fast
its documents change and what it means for a web index to stay current. For simple classes of web
monitoring systems, our idea of “up-to-dateness” is combined with data to see how a theoretical web
index might perform. This is augmented by experimentation to assess how well modern search en-
gines perform in this regard, as well as by data on the ways in which web pages change. We conclude
with algorithms for implementing a practical system for optimizing observation. Though much of
the discussion centers on the web, monitoring problems are also of more general interest. Indeed, the
central problem of the information age is the management and indexing of large, dynamic volumes

of information, whatever those may be.



1.1 Information as a depreciating commodity

Any information has a useful lifetime: knowledge is a depreciating commodity. Buying a car is a good
analogy, since the car begins to lose value as soon as it is driven off the lot. In the information domain,
there is an expenditure of computational resources, such as bandwidth, storage, and computation
cycles, to obtain momentarily current knowledge.

This “purchase” of information has two defining characteristics: first, there is an initial value for
correctness, and second, there is a rate of depreciation. The value of having certainty can probably
best be seen in the consequences of being wrong. Compare, for instance, knowing whether there is a
bus coming down the street you wish to cross, versus knowing what the latest fad collectibles fetch on
the open market. The second part of an information purchase is how long the information is expected
to last. When do we next expect that we need to look left and right again to check for oncoming
traffic? Simply put, when the uncertainty about a previous observation becomes intolerable (the
meaning of which depends upon context), it is desirable to observe again. The idea of assigning
a value to a reduction in uncertainty was formally explored in [CBB*96], providing much of the
inspiration for this work. Present worth and rate of deterioration are both equally important in
deciding upon a purchase of information.

As an alternative to the commodity viewpoint, we can also see information as a consumable
supply, like paper or gasoline. Namely, acquired information is “used up” after some time and must
be re-acquired. Inherent in this idea is that there is some expected long-term cost to keeping a
current knowledge of any single source. Given a large number of dynamic sources to index, and only
limited resources (bandwidth, computation and storage) available to do so, a decision must be made
as to what should be observed, and when these observations should be made.

Here is a contrived example to give a feel for the tradeoffs involved. A source of information
that changes daily (say, a newspaper) requires approximately daily observation if one wishes to stay
current. We defer discussion of precisely what it means to be current until later. Clearly, observing
a daily-changing source consumes about 30 times the bandwidth as would be necessary to watch a

source that only changes monthly (but only 1/30 of the storage, if the sources are all of equal size).



For an index of sources in which any correct index entry is equally valuable, it would seem that it is
best not to try to keep up with the fastest changing sources. Consider these alternatives: we could
either (1) observe the single fast-changing source daily, or (2) observe 30 different slowly-changing
sources. If all these sources are of equal value, there is little reason to observe the daily source. The
strategy of observing the daily source would leave us with an index in which 30 out of 31 entries
were out of date, while the alternative would have a much higher percentage correct. Resources are
spent to literally buy time, specifically, the time until the next observation is required. The daily
source will need to be observed each day—this is how long the purchase of index correctness will last.
An observation of the monthly source will not expire for 30 times that time period.

But there is a catch. What if, due to popularity or demand, it is more important to know what
is going on in a fast-changing source? Returning briefly to the analogy of indexing information to
buying automobiles, a car’s value is not just that it is a car, but that it provides transportation to
individuals. The same is true for a school bus, or a subway. The higher cost of maintaining (and
acquiring) mass transit systems as an alternative to cars is justified by the fact that their utility is
multiplied by many users. The right metric for this system should account for how many individuals
can be moved reliably from point A to point B, not just whether or not it is a functional piece of
machinery. By analogy, monitoring “high-maintenance” information sources can be partly justified

by the scale of the benefits.

1.2 Observing the World Wide Web

Since its inception scarcely a decade ago, the World Wide Web has become a popular vehicle (so
to speak) for disseminating scientific, commercial and personal information. The web consists of
individual pages linked to and from other pages through Hyper Text Markup Language (HTML)
constructs. The web is patently decentralized. Web pages are created, maintained and modified at
random times by thousands, perhaps millions, of users around the world.

The task of maintaining an index of the web has been taken on by the search engine, playing a
role loosely equivalent to that of traditional library catalogs. However, a single edition of a book or

magazine does not change once it is published, whereas web pages often do. Therefore, web search



engines must occasionally re-visit pages and re-index them to stay current. This is an enormous
challenge considering that recent empirical studies by Lawrence and Giles [LG99] have estimated
the size of the publicly-indexable web to be at least 800 million pages (and climbing). The size of
the web is only one factor in the re-indexing problem; the rate at which pages change is equally
important.

Re-indexing the web is only one example of an observation problem; our web analysis is built upon
a formalization of the concepts used for measuring the “up-to-dateness” of any index of changing
information sources. This includes a discussion of different models of information source dynamics.
From this, we move into performance metrics for gauging how current an index of information sources
is. Beginning with simple notions of probability of entries being out-of-date, we lead into a novel
concept, the idea of («, 8)-currency. This defines our notion of being up-to-date as a probability,
a, that a search engine is current, relative to a grace period, 3, for a randomly selected web page.
Loosely speaking, an index entry for a given object is said to be [-current if the object under
observation has not changed between the last time it was indexed and § time units ago. In this
context, 3 is the “grace period” during which changes are allowed to go unobserved. In the context of
the web, a search engine for a collection of web pages is then said to be (a, 8)-current if a randomly
(according to some specified probability distribution) chosen page in the collection has a search
engine entry that is B-current with probability at least a. We develop an exponential probabilistic
model for the times between individual web page changes, as well as a model for the distribution
of the change rates defining those exponential distributions. Lastly, this model is applied in the
context of devising methods for practical optimization of real observation systems.

Our observational data is based on statistics gathered from roughly three million web pages
specified by over 30,000 users of a web clipping service [Inf95]. We have observed pages at a rate
of about 100,000 pages per day, for a period of approximately one year, recording how and when
these pages have changed. The data indicate that the time between modifications of a typical web
page can be modeled by an exponential distribution, which is parameterized by the rate of changes
for the page. Our data further indicate that the reciprocal of that parameter, which is the expected

time between changes, is well-modeled by a Weibull distribution across pages.



To get an intuitive feeling for the concept of (a,f)-currency, consider some examples. The
numbers are purely speculative. We might say that a daily newspaper is (0.90, 1 day)-current when
it is printed, meaning that the newspaper has at least 0.9 probability of containing 1 day current
information on topics of interest to its readers (this reader interest is the specified probability
distribution). Here “1 day current” means that events that have happened within the last day
(which is the grace period) are not expected to be reported and we “forgive” the newspaper for not
reporting them. Similarly, hourly television news would be (0.95, 1 hour)-current and so on. The
idea is that we are willing to “forgive” an index or source if it is not completely up-to-date with
respect to the grace period. The grace period is a domain-specific, tolerable time lag between a
change in an information source and when that change should appear in an index. Any index of
information sources has a spectrum of possibilities, such that for any grace period 8 there exists a
probability a of being current with respect to that period.

Our empirical analysis of web page changes is combined with existing estimates of the web’s size
to estimate how many pages a search engine must re-index daily to maintain («, 8)-currency of the
entire indexable web, if all web pages in the collection are reindexed with the same time between
observations. Using 800 million documents [LG99] as the size of the web, we show that a (0.95,
1 week)-current search engine must download and index at a rate of around 50 megabits/second
(using an average page size of approximately 12 kilobytes, as was true of our data, and assuming
uniform processing). A (0.95, 1 day)-current search engine, by comparison, must re-index at the
rate of 104 megabits/second. These figures are based upon our model of web page change rates, but
these results allow estimation of re-indexing rates in order to maintain general (a, 8)-currency of a
web index using other models as well.

These estimates of re-indexing rates assume that there is a single re-indexing period for all
documents. As was made clear in the example of reading periodicals, it may be advantageous for a
search engine to pay more attention to items that change quickly, are popular, or both. Given models
of object dynamics and popularity, what observation schedule maximizes the probability of being (-
current? This question is posed in both discrete and continuous time frameworks subject to different

modeling assumptions. In discrete time, the problem is shown to be equivalent to a minimum-cost



flow problem, in which objects are mapped to strategies in such a way as to minimize cost. The
continuous time problem, in which we assume that objects change according to independent Poisson
processes, consists of forming an optimal partition of the space of monitored objects and dividing
available bandwidth among the partitions. We will see that the discrete-time framework allows for
better modeling precision, while the continuous time formulation is more practical to apply for large
monitoring systems. We will also show how a typical search engine could expect between 5 and 10

percent performance improvement if these optimizations are applied.

1.3 Related work

Much of the optimization work hinges upon identifying rates of change, or values, of objects by
repeated observation. These observations are then used to formulate schedules based on estimates.
The problem of modeling an unknown distribution in the context of possible rewards is an old prob-
lem, addressed in classic texts on probability theory ([Fel68], [Fel71]), and dynamic programming
([Ber87], [How60]). Linear programming [Lue84] and combinatorial optimization [Ber98] are often
used in a formal solution. Our continuous-time optimization routine implements a simulated anneal-
ing algorithm, which is popular in neural networks [Hay94]. We use Nelder-Mead optimization for
finding minimum variance estimates to the distribution of change rates for web pages. This method
is useful for unconstrained local optimization of scalar functions of a vector argument; [PFTV92]
contains an excellent description and code for implementation.

The re-indexing scenario may be thought of as a very large adaptive sampling procedure, or
“multi-armed bandit problem” (see [HS98]), in which the cost of making an observation is balanced
against the possible benefits obtained by viewing the document. Given the size of the indexable
web (320 million pages [LG98] in 1998, and 800 million pages [LG99] in 1999), it is probably not
tractable to treat the search engine’s problem as a strict multi-armed bandit approach, although
there are some useful tie-ins. One important difference between the search engine index problem
and the typical multi-armed bandit problem is that the objective is to make the best index possible,
rather than just to make good single index entries. So whereas a hypothetical player would happily

play over and over on a bandit that always returns winnings, the search engine cannot spend all of



its time re-indexing only the pages that change very fast. Smaller problems might be nonetheless
be treatable by this approach.

In modeling the dynamics of web documents, we find that there is significant overlap between
the problems of designing a current index and a good web cache. As mentioned in [DFKM97],
good cache design depends upon knowledge of both resource dynamics and client access patterns.
Resource dynamics are investigated in [DB96], and client access patterns are studied in almost all
papers on cache consistency (usually under the guise of a hit-ratio). The index maintained by an
engine can be viewed as a large summary cache that is required to preempt the requests of its users.
The web index need not require strong consistency, as only document summaries are presented.

Like a cache, an index may benefit from knowing the expiration time of a document in order
to determine when it should be viewed again. Of particular interest is work into adaptive time-to-
live (TTL) settings, such as in the Alex system [Cat92] and the Harvest [BDH94] system (also
[CDN*96]), where a server adjusts the TTL setting to a percentage of the age of a document at
the time it is requested. This is a fairly simple model, based on the reasonable assumption that
an old document is less likely to change in the near future. Our work is an expansion of this
principle. We develop probabilistic models and establish precise relations between the probability
density of observed age and the probability density of observed time between changes. In addition,
we consider how the age distribution depends upon the the time of creation of an object. Not
surprisingly, observed ages in a growing population tend to be shifted towards zero age. We discuss
why a growth model is necessary to use age distributions for estimating distributions of change rates
in an index.

Relatively little work has focused on combining document models with search engine scheduling;
Coffman et. al. [CLW97] studied the search engine scheduling problem under the assumption of
Poisson page change processes. Their work showed that if service times follow the same distribution
for all documents, then each document should be re-indexed as regularly as possible, which is con-
sistent with the memoryless properties of the underlying exponential distributions. For a particular
cost function, they show that each document’s optimal sampling frequency is determined by the

decay constant for that document’s change distribution, giving the time between changes. Our mea-



sures of performance are similar in spirit, but introduce a temporal and probabilistic relaxation of
what it means to be up-to-date, namely the concept of («a, 3)-currency. We feel that this relaxation
is useful since it gives a better match to intuitive notions of currency. We further extend their work
by making use of resource popularity as well as change rate in our optimization routine. We feel that
these are necessary and important modifications. For example, the idea of (a, 8) currency allows us
to cast [CLW97] as an algorithm for maximizing a measure of currency while keeping 8 = 0, but we
feel there are many monitoring applications where a non-zero grace period is more appropriate.

How search engines actually prioritize observations tends to be proprietary. It is likely that
engines do at least prune their indexes to eliminate redundant or useless content, however this
is determined. This does constitute a sort of optimization of the re-indexing process, since less
redundancy in a collection translates into more bandwidth available for re-indexing. There are a
few cases in which these designs have been discussed in the literature, specifically the Google search
engine papers ([BP98], [JCP98]) as well as other crawler designs useful for generating topic-specific
indices [CvdBD99] and general-purpose crawlers [HN99]. In [BP98] we find a good exposition of
the practical issues facing a large scale search engine, such as a high-level layout of search engine
architecture. They also discuss the PageRank metric, which is a rough measure of how often the
URL is linked to by higher ranking sites. PageRank (or other similar measures) could provide a good
means for partitioning a space of monitored objects according to popularity. They also indicate that
it is feasible to crawl and index on the order of 10 million pages per day. This figure suggests where a
modern search engine should fall within the specturm of («, 3)-currency. It is important to note that
[BP98] lists change-rate based scheduling as an area for future work, as does [JCP98]. In [JCP9§]
we find a strategy for crawling pages expected to have high PageRank. This is similar to the results
of our observation optimization routines, which clearly show how some part of a collection should
be given preference in the re-indexing process. Our optimization lends mathematical justification to
the preferential crawling idea. A good summary of what is known about other commercial engines
is provided in [Nic97], although the paper’s data on re-indexing rates may be inaccurate since the
work is now a few years old, and the technology involved is evolving rapidly.

As of this writing, the only commercial search engine which actively claimed to do any sort of



preferential examination of documents based upon their age was Infoseek, in their Ultraseek intranet
search engine [Inf99]. Though the details of their system are proprietary, the system is built upon
placing all documents in the collection in one of a number of fixed-rate queues, the rates of which
are logarithmically distributed between a minimum and maximum polling rate. Within each queue,

“round-robin”)

documents are examined based on an least-recently-used (LRU; also referred to as
protocol. All parameters (number of queues, min/max polling rates) are user-defined. Over time,
documents are placed in the queue that seems to best match their change rate. The idea is to evenly
distribute wasted observations across the collection. The nature of the model used to determine
queue placement is unspecified, but if applied correctly the model can give significantly better index
freshness as compared to a uniform, single-queue LRU policy. However, leaving parameter choices
to users (rather than tuning them automatically) can easily result in suboptimal performance. We
investigate the theoretical performance of a similar system and attempt to optimize its performance.
By varying the rate at which each sub-queue operates, as well as the boundaries between queues,
some gains in performance can be attained.

Some important factors in gauging the scale of the problem faced by web observers are the size
of the web, as estimated by [LG98] and [LG99]. The first paper uses the statistical overlap in search
engine indices to estimate web size by looking at the common web pages contained within different
commercial search engines. It is based upon a sample of 575 queries made by employees of the
NEC Research Institute. By assuming the search engines index independent sections of the web, the
overlap between search engine responses allows estimation of the size of the web. The second paper
actively sampled random IP addresses for web servers, then applied hueristics to remove servers not
part of the so-called “publicly-indexable web”. An exhaustive crawl was then done within each of
these sites. counted documents, then extrapolated to estimate the total size of the web.

Additional web size estimates are available from [Pit98], which is an extensive literature summary
detailing many web characterization efforts prior to 1998, also including mention of various Zipf-type
[Zip49] power-law distributions found on the web. More recent work showing power law distributions
within in-degree distributions can be found in [BKM*00]. This work might be especially helpful in

estimating the distribution of site popularity, which is an important factor to consider in designing
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good algorithms for keeping up with the more important sites on the web.

The oft-cited figure for web pages changing every 75 days comes from [Kah97]; it was unclear
from the article how a document was defined. Namely, if a document changes 10 times, does it
contribute 10 samples to the average, or only one? Our estimates are formed such that each URL
contributes equally to the page lifetime distribution; we expect that our figures would be much
shifted to a lower range if we had one contribution to the distribution for each separate instance
of a web page. Kahle’s article does have some insight into the web’s utility as a tool for providing

references in scientific papers.

1.4 Summary of major results

Chapter 2 presents the theory behind assigning a probability of change to monitored objects in a
collection, as well as performance metrics for gauging how “up-to-date” an index is. Both discrete
and continuous time frameworks are discussed. The discrete time model defines the state of a
monitored object, with respect to change detection, as the (integer) number of time units since
the last change occurred. In conjunction with a matrix of transition probabilities, we model the
probability of a monitored object having changed since the last observation and thereby are able
to assess how current an index will be for a given observation strategy. We then make a transition
to continuous time, treating an object’s changes as a renewal process. The concepts of lifetime
and age are extended to continuous time. Index performance metrics derived from these models
are introduced for both discrete and continuous time monitoring systems. From simple metrics of
the expected number of index entries that are not current, we move to a more formal definition of
(a, B)-currency than that given earlier in the introduction.

Following the theoretical development, Chapter 3 details the web page data that has been col-
lected by the Informant! over the past year. The Informant is a web clipping service run at Dart-
mouth in support of over 30,000 users from around the world, downloading around 100,000 web
pages per day on their behalf. We give an overview of the kinds of data retained in our observation

database, as well as the sampling methods (and associated biases) used to obtain this collection.

'http://informant.dartmouth.edu/
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Within the data, we look at change modalities, and the distribution of page ages and page lifetimes.
By representing a document as a term vector, in which individual components correspond to words
in a document, we present data on how the words in a sample of documents evolves in time. This is
a step towards normalizing the meaning of “change” for a web page. The latter half of the chapter
assumes a simple, memoryless page change model and uses observed age and lifetime data to esti-
mate the distribution of mean change times for the web pages in our collection. This distribution of
change rates is then applied to show how current we expect a search engine to be when using a basic
round-robin re-indexing policy, given different processing rates. We compare this to experimentally
derived values for four commercial search engines.

Chapter 4 presents both discrete and continuous time methods of optimizing re-indexing strate-
gies, not necessarily restricted to the web. The discrete time algorithm poses the problem by
assigning objects to observation strategies that have different costs so as to keep a fixed number of
observations per time unit. The discrete-time algorithm’s complexity (exponential in the number of
time units) inspires a simplified approach based on partitioning the space of observed objects accord-
ing to popularity and change rate. In this scheme the optimization consists of forming a partition of
the object space, then allocating rate to each bin in the partition. Through our tests of the second
algorithm, we show that observers whose bandwidth is very limited stand to gain much more than
those with ample bandwidth. As expected, these performance gains come at the expense of the least
popular, fastest changing objects. We also show the benefits that can be expected when the size of
a collection of monitored objects is reduced by eliminating redundancy. The thesis concludes with
a summary and a number of suggestions for future work. An appendix contains some interesting

power-law distributions we ran across in studying our web page data.
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Chapter 2

Information monitoring theory

To begin our investigation of information source monitoring, we review the theory behind the
discrete-time models introduced in the thesis proposal [Bre98]. The discrete-time approach allows
for very general models of how an information source can change. However, in some circumstances,
more simplistic models are required, so we show how the discrete-time models carry over into more
restrictive continuous time representations. Both the discrete and continuous time models focus on
defining the probability of an object change as a function of the time since the last change occurred.
In discrete time, this dependence is expressed using a Markov process, while the continuous time
version models changing objects as a renewal process. The chapter concludes with ways to measure
the performance of an index of changing sources, for both continuous and discrete time settings.
This theory provides the foundation for both the empirical studies of the web in Chapter 3 as well

as the observation optimization routines presented in Chapter 4.

2.1 Modeling changes in observed sources

The goal of our object change models is to estimate the distribution of time between changes, or
lifetime, both for single objects and for entire populations. Our approaches all assume that there
is some way to estimate the probability of change over a given timespan for any object under
observation. This probability depends upon both what constitutes an object’s state, as well as how
much of a movement in this state is to be considered a “change”. How the state is defined is domain

specific, as is the associated definition of a change to that state. When watching stock prices, a
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Figure 2.1: Lifetimes vs. ages. A single lifetime is represented by the time separating changes, which
are denoted by x’s in the graph. For each lifetime, the age (shown as a dashed line) increases linearly from

0 to the lifetime, then resets to 0 as the next lifetime begins.

change might be defined as a change in price of more than 3%, or perhaps a long term average
decline. A change on a web page could be defined as anything from changing a single character
to some discernible alteration in topic. Still, what is most common to all these applications is the
dependence of the probability of change upon the elapsed time since the last change.

A good analogy for the sequence of object changes is a system of replacement parts. Imagine
a light fixture into which we place a lightbulb. Whenever that bulb burns out, it is replaced
immediately. We speak of the time between lightbulb failures as the “lifetime” of a bulb. At a
specific instant, we define the time since the present lifetime began to be the “age” of the bulb.
The analogy to an observed object is that the lifetime is the time between changes (where change is
arbitrarily but unambiguously defined). The age is the time between a given instant and the most
recent change prior to that instant. We diagram these concepts in continuous time in Figure 2.1;

there are discrete time versions of these concepts as well.
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2.1.1 Time-since-modification as a Markov chain

We begin our modeling efforts by modeling an object’s state using only its age: the state of an
object is the time since it was last changed. The age is assumed integer in the discrete time case.
While other factors will undoubtedly influence an object’s modification, we begin by assuming that
the probability of a change is completely determined by the age. This could (and will) be treated
as a continuous state, but quantizing will allow us to develop a feel for how these types of models
perform. Any reasonable discretization of this time will serve our purpose, so long as the probability
of a change occurring is relatively constant within that period. Using this definition of state, a
probability distribution of the time intervals between changes can be represented as a Markov chain.
This is an oft-used means for describing time-dependent recurrent events; see [Fel68] for example.
Given a state s = n time units since the last change, there are only two things that can occur.
One possibility is that the object will not change, and the state will advance to age s = n + 1.
Alternatively a change will occur, and the age will reset to state s = 0. If we model N + 1 states,
then the state s = N + 1 can be treated as “N or more days since last change.” In this way, we can

define a matrix of transition probabilities as

Preset (0) 1 — preset (0) 0
Dreset (1) 0 1- Preset (1) .-

M = : : . . 2.1)
Dreset (N) 0 e 1- Dreset (N)

Whenever preset(t) # 1 Vt € [0, N], all states of M are recurrent. The function prese: (t) can be
determined either from the distribution of time intervals between changes, or from the distribution
of observed ages for a particular page. By finding either distribution by estimation from samples,
and then applying this model for all future time, we assume stationarity of the underlying change
dynamics. Both the age and lifetime distributions (whether or not they can be determined from
samples) can be used to calculate the conditional probability that a reset will occur in the following
time interval, given that no change has occurred for ¢ time steps. When the time between changes

(lifetime) is distributed according to a discrete probability mass function f(t), then
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Dreset (t) = i (22)

1Y 1)
k=0

In modeling M for an object, we will only be able to define f(t) for values up to some t = N.
At the upper age limit, the definition for preser breaks down, since preser (V) would be unity. This
would imply that if the state ever reaches age N, then it will change with probability 1 within the
next time step. In reality, though, there will generally be some chance that the state will remain
“N or more time intervals since last change,” or s; = N. One way to represent this possibility is to
assume that preset (V) = Preset (N — 1), or that the reset times are memoryless after a certain time
has elapsed.

Sometimes, it is easier to observe ages rather than change intervals (lifetimes). Attempting to
observe change intervals directly can cause difficulties with aliasing, as an observation will generally
only indicate the most recent change. Web pages, for example, often have a Last-Modified date in
the HTTP header, allowing the age of the document to be sampled at any time. Over many samples,
one can build up an estimate of the probability distribution g(t) of observed ages for such documents.
Moving from an age distribution g(t) to preset is straightforward. As with the function f(t) defined
for (2.2), we express the age t of an object in some arbitrary units of time. The two probabilities
that we wish to determine for age ¢ are the probability of aging to ¢ + 1 and the probability of being
reset to age t = 0. That is, some fraction of the objects “dies” (changes) before reaching the next
age. This fraction, which is preses (t), is just the percent difference between successive elements of

the age distribution:

g —g(t+1)

Dreset (t) = g (t)

Notice that g(t) must be monotonically decreasing.
To get a feeling for how the matrix M corresponds to different distributions of time-between-
changes, we present some simple examples. If an object changes on a purely periodic basis, say every

3rd time unit, then the matrix M will be
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(2.4)

= o O
OO =
O = O

If the system changes according to a Poisson process, then it is memoryless, so the reset probability

is independent of state:

p 1—p 0
p 0 l_p ...

M= |, . . : (2.5)
p ... 0 1—p

We emphasize that this particular definition of state is not the only useful one; other models can
emphasize different aspects of the problem. If we were interested only in capturing the fact that one
or more changes had occurred, a model could be used that is similar to the one used in the classic
machine replacement problem [How60]. This model would be similar to M, except that it would
not keep track of the age after a page change had occurred. The system would begin in a transient
state, “unchanged, with age i”, and when a change occurs, the system would enter an absorbing
state, “changed, with unknown age”. Observation would force a reset to the transient state having
the appropriate age.

Formally, we define the z'jth element of M to be the probability that an object of age i will
become age j on the following time step. More generally, by raising M to an integer power k, we
can find the probability (for initial age 7) that the object is age j after k time steps have elapsed
since the last observation:

Prob (sy4x = jls¢ = i) = [MF] (2.6)

ij
As k grows without bound, the i jth element of M* approaches the stationary transition prob-

ability 7;, which is the probability that the page will be observed to be age j if we are given no

knowledge of the history of the page. This is precisely the age distribution mentioned above, g(5):

lim [M*], = m; =g(j) (2.7)

k—o0

17



2.1.2 Continuous time, discrete age models

Just as the Markov model allows us to represent the probability of occupying any integer age after
some number of discrete time steps, it permits an alternative interpretation as the probability
distribution of ages within a population of objects having the same starting point. In the same
way, we can model the variation in this distribution in continuous time. This evolving distribution
can itself be considered the state of a single entity (analogous to quantum mechanics), or it can
be interpreted as an age distribution over many individuals within a population. Using either
interpretation, this class of models uses discrete ages, but models the variation of this distribution
in continuous time. Define the value S; of a state ¢ describes what portion of the population has a
particular discrete age 1. When normalized, the state vector S can be interpreted as a probability
distribution. Of course, allowing the values of S; to be non-integer does not permit an interpretation
as “exact number of pages having age ¢”. This is a step towards having a model which is continuous
in both the progression of time and the measurement of age. The model can be used to examine
how age distributions like (2.7) behave when a population is growing exponentially.

The aging of objects in this system can be described by a finite system of differential equations,
with one equation describing the rate of change of every state. Each state variable is analogous to
the probability of occupying the corresponding state in (2.1). In the case of continuously-varying
state, the rate of change of S; is the rate of transition out of state 4 — 1 into state ¢, minus the rate
of transition out of state ¢ into either the base state, 0, or into the state one age ahead, i + 1. Now
if all objects occupying state ¢ — 1 are identical, then outbound transition rates from ¢ — 1 to i are
proportional to occupancy of the state, S; 1. This is true for those departing to state i+ 1 and also
for those returning to state 0. We collect these ideas together in a single equation, which expresses

the rate of change of the occupancy S; as

ds;
dt

= Ci—1Si-1 — (Ci + R;)S;. (2.8)

Each C; gives the rate at which age i entities progress to age ¢ + 1. The constants R; describe the
rate at which age i entities return to age 0. If a uniform spacing of the ages i is desired, then the

sum C; + R; should be independent of i. Alternatively, a nonuniform spacing could have a rate sum

18



C; + R; that is altered to match the intended width of the age bin . The sum C; + R; is an indirect
measure of the relative rate of the progression of time (fixed) and the progression from state i to
possible target states 0 and ¢ + 1.

For exponential growth of such a population, the base state 0 receives a continuous infusion in
proportion to the total occupancy of all states, in addition to the increase due to the start of new

lifetimes for all states. Thus we have that

ds N i=N
0
= —CoSo + K ; Si + ; R;S;. (2.9)

Here K is the growth rate of the population (for exponential growth). If the population is neither

growing nor shrinking, then K = 0. Combining (2.8) and (2.9), the system of rate equations becomes

ﬁ@ —Co+K R +K Ry+K -+ Ry+K So
El Co -Ciy— R 0 s 0 S1
doa | _ 0 Cy -Cy—Ry - 0 Sy (2.10)
dsy 0 0 ce Cn_1 —Cn—Ryn Sn

We can check the validity of our rate equations by requiring that any choice of K, C;, R; satisfy a

conservation law; we should have that

Y si=KY s (211)

This forces zero population growth when K = 0. Adding all the equations in the system (2.10) gives
the conservation relation (2.11) as an identity, so any set that has the form (2.10) is conservative.

Solutions to (2.10) are not difficult in principle; any equation of the form
S'(t) = AS(t) (2.12)

is solved by

S(t) = e**S(0) (2.13)

where we have used a matrix exponential. Once the constants defining A are known, a time-

varying population vector S(t) is easily (if slowly) calculated. A continuously-varying discrete age
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distribution can be found by normalizing S(t),
96i,t) = =), (2.14)
where the index 7 denotes the age bin in question. By hypothesis, the population is exponentially

growing. If we treat the sum as a single variable o, we can infer! from (2.11) that

do(t)

Tl Ko(t) = o(t) = Pyek? (2.15)

Therefore we can replace the denominator of (2.14) with a single exponential, and choose Py to

match the initial population size
N
Py =) Si(0) (2.16)
i=0

Choosing Py = 1 is a convenient choice, so that one begins with a state vector S(0) that is a proper
probability distribution.

Calculation of matrix exponentials is very computationally expensive, which makes this type of
precise modeling quite impractical for a large number of states. The model still has value in showing
the form of age distributions within exponentially-growing populations. Nonetheless, due to the
complexity of the matrix exponential model, we will need to employ some simplifying assumptions

to move to continuous time, continuous age models.

2.1.3 Continuous time, continuous age models

An entirely different approach to the problem is to model the changes in a single observed object
as a renewal process [Pap84]. In this section, we will assume individual lifetimes are independent
and identically distributed continuous random variables, and that the lifetime distribution of a
particular object does not change over time (the distribution is stationary). Not surprisingly, the
lifetime probability density, f(t), is closely related to the age probability density, g(¢). The act

of observing “the age is ¢t units” is the same as knowing “the lifetime is no smaller than ¢ units.”

We note in passing that o(t) could be found as a special (scalar) case of (2.13) by using A = K and S(0) = P,.
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Figure 2.2: Relationship between lifetime and age distributions. On the left, we show three hypo-
thetical lifetime distributions; a Gaussian (dotted), Weibull (solid), and an exponential (dashed). On the
right, we show the corresponding age distributions. For the Gaussian, the age distribution is a renormalized
and shifted complementary error function (erfc). For the exponential, the age and lifetime distributions are
identical. The age distribution for the Weibull has a more general shape. Note that periodic lifetimes imply

uniform age distributions.

Intuitively, this indicates that the PDF g(t) should be proportional to the probability 1 — F(t) of
a given lifetime exceeding t units, where F'(t) is the CDF corresponding to f(t). To make g(t) a
proper probability distribution, the constant of proportionality is chosen so that g(t) is normalized.
This intuition proves correct and formal methods [Pap84] show that

1- F(t)

9(t) = En-F@dt

(2.17)

This relation is analogous to the combination of (2.2) and (2.3), which describe the discrete lifetime
and age distributions. Some examples of this relationship are shown in Figure 2.2.

Establishing the relationship of age to lifetime is useful, since it may be difficult to sample the
distribution f(t) directly. Rather, it may be easier to estimate change rates using samples from the
age distribution g(t) and then use (2.17) to estimate F'(t) and then f(t). Aliasing of f(¢) may happen
when a page change is observed, since an observer can only conclude that one or more changes have
occurred since the previous observation. In observing ages, there is no such difficulty. Avoiding the

aliasing problem is not magic; we are merely making proper use of the fact that another observer has
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sampled the modification time on our behalf. As mentioned earlier, observation of a web page age
requires the availability of the Last-Modified information. If this information is not available then
we have no choice but to deal with the aliasing problem by estimating f(t) from observed lifetimes.

Much of what was presented in the earlier sections allowed for the probability of a change to vary
with time. While these models are useful when computational resources are plentiful, observation of
large collections will force some simplifying assumptions. The simplest possible lifetime model, and
a good one to use to reduce the difficulty in modeling, is one in which objects change memorylessly.
Intuitively, this means the probability of an object being altered in some short time interval is
independent of how much time has elapsed since the last change occurred. This is a common model
used in queuing systems and statistical reliability theory [Pap84]. For such objects, f(¢) is an
exponential distribution with parameter A. The exponential distribution has many useful qualities
that permit some pleasant closed-form solutions. In Chapter 3, we will discuss why this distribution
is a good choice for modeling many web pages.

Objects for which f(¢) is an exponential distribution also have exponentially distributed ages

g(t), since
1-F.(t) = 1-(1-¢e™)
— M
implies
1— F.(t e~
g(t) = T ( ) = X ¢
Jo L —F.(t)]dt Jo e
= e M (2.18)

This means we can estimate an object’s lifetime PDF, assuming an exponential distribution, using
only age observations. If these are not available, then we must accept that aliasing will occur in the

direct observation of changes.
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2.2 Measuring performance in monitoring systems

Using the different types of models developed in the first half of this chapter, we can devise different
ways to measure the performance of a monitoring system. These ideas will be applied in Chapter 4

to develop optimization routines for scheduling observations.

2.2.1 Discrete time performance metrics

For the discrete-time model where a document moves between ages according to a Markov process,
we can define an objective function that can be evaluated for an index. The objective function in a
real system could be much more complex; we will not seek to incorporate all features into our initial

work on the performance function. Here are two possible choices:

1. Count the expected number of objects that are incorrectly indexed. An object in the collection
is indexed correctly if no changes have occurred for the object that have not been recorded in

the index.

2. Add the total time out-of-date for the entire collection (as was developed in [CLW97]). Un-
observed object changes add to the cost in proportion to how long the object is expected to

have been out-of-date.

We restrict the problem using some simplifying assumptions. First, assume the collection of
objects under observation contains d objects (we will treat d as a constant for convenience). Second,

assume that objects can be retrieved at a rate of N, objects per time interval. Let M,. be a matrix of
transition probabilities for the rth object, as was defined earlier in (2.1). The states of this system,

corresponding to the rows of M., are the possible ages of the rth object in the collection. Any unit
of time can be used, so long as it is consistent throughout the collection and the rate IV, is expressed
in the same unit. For each object r, we know that it was last observed k, time units ago to have

age i,. The probability that object r has changed during this k,-unit interval is
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Prob (change| {i,,M,, k.}) = Mlﬁr]i j
FE[0,in+kp—1] "
(2.19)
_ kr
= 1- [MT ]ir(ir+kr)

We note that this cost is between 0 and 1, corresponding to the cases in which we are absolutely
certain that an object is not out-of-date (0) or is out-of-date (1) at the end of a time interval.

Using this result, we can formulate costs such as the two enumerated above. For example, at any
given time, the expected total number of objects that are incorrectly indexed (meaning, the indexed
version is out-of-date) is just the sum of the probabilities listed in (2.19) over the entire collection,
S0

C(l) = z (1 - [Mﬁr]ir(i,+k,))' (2.20)

r=1

Since all terms are on [0,1], the cost C(;) is nonnegative and can be no greater than the total number
of objects, d.

The complement of each term in the summation (2.20) can be used if it is preferable to express
performance as the probability of an object being correctly indexed. In this case, we write the

probability of a randomly selected object being up-to-date as

1
a= - Z [M,’fr]ir(wm. (2.21)

In the next section we return to this idea of calculating the probability « of a random object being
correctly indexed.

The second metric listed, the expected total time out-of-date for all objects, is calculated using
a sum in which the out-of-date probabilities weight the corresponding number of time units out of

date. Thus we express the second cost function as

d
Ciy =Y Z (in, kr) (2.22)
r=1
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where the expected number of time units out-of-date for object r is given by

kr—1

Z i ke) = 3 (k= J) P (j + i ir): (2.23)

Here, P(j,i,) is the probability of an object changing (and thereby going out of date) at exactly
age j, given that the page was last observed to have age ¢,. This can be found from the conditional
probabilities preser(t). For example, P(1,0) is, trivially, preset(0). The probability of having gone
out of date on the second time unit, P(2,0), requires the object to have both aged past the first
time unit, with probability (1 — preset(0)), and changed on the second time unit (conditioned upon
not having changed on the first), with probability prese¢(1). The probability of the combination is

just the product of the individual probabilities, so that
P(27 0) = (]- — Preset (0))pTeset(1)- (224)

This same logic describes P(N,i,), since the event of changing on the N th time unit is conditioned

upon the events of having reached each age in succession, one integer age at a time. So, in general,

P (.7; Zr) = Preset (.7) [1 — Preset (.7 - 1)] L [1 — Preset (l,.)] ) (225)

which can be written using a repeated product

P (ir) = preset () [] [1 = preset (m)]. (2.26)

m=t,

The terms in the product describe the probabilities of progressing through each of the ages from
ir to 7 — 1, given that no change had occurred up to that point. The repeated product is then
multiplied by the probability of a change at time interval j. Note that these probabilities can be

calculated recursively, since

pu+ug:p@uﬂ%¥%%9%mdu+n. (2.27)

Recursion can also be used to simplify the calculation of (2.23). As an example, consider the

difference between finding Z(i,,3) and Z(i,,4), which demonstrates how to advance the cost con-

25



tributed by a single object if a single time unit elapses:

Z(ip,3) = 3P(ip,ir) + 2P (ir + 1,i,) + P (ir + 2,iy)
(2.28)
Z(ip,4) = 4P (ip,ip) + 3P (ip + 1,iy) + 2P (ip + 2,ir) + P (ir + 3, i)

If the argument j is advanced by 1, we can simply add to our previous value a partial sum of the

sequence P(j,i,). Using (2.28), the difference in consecutive values would be calculated as:

Z (ipy4) — Z (17,3) = P (ir,ir) +P@Er+1,4:) +P@Gr+2,4p) + P>ir +3,4r)
(2.29)
= S3(ir)+ P(ir +3,ir)
where we have defined
N-1
Sy (ir) = > P(j +inir) (2.30)
7=0

to be the Nth partial sum of the sequence of probabilities P(i, + j,i,). Obviously, this partial sum
can be calculated recursively as well, since Sy41(4r) = Sy (i) + P(ir+ N, i,). Being a partial sum of
mutually exclusive and exhaustive probabilities, Sy (i,) approaches 1 as N — oo. The probabilities
are exclusive, since an object cannot change on more than a single time interval, and they are
exhaustive in that the only possible times for the page to go out-of-date are t € [i,, 00].

Summarizing, we can recursively calculate Z as
Z (ir, N+1) = Z (ir, N) + Sn1 (ir) (2.31)

In the limit, each step simply adds one to the expected number of time units out-of-date, correspond-
ing to the notion that an infinitely old object will have been modified at least once, and therefore

grows one more time interval out-of-date for each time step that goes by without an observation.

2.2.2 Continuous-time performance: («, 3)-currency

From the discrete time measures used above, we now turn our attention to measures of performance
in continuous time monitoring systems. Specifically, we introduce the intuitive concept of (a, 3)-

currency, which builds upon the idea of counting the correct objects in an indexing system. When we
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Figure 2.3: Definition of “B-current”. This diagram shows what is necessary for an index entry to
be current with respect to a grace period, 5. In order to be -current, no modification of an object can go

unobserved up to 8 time units before the present.

presented (2.21), we mentioned how it is sometimes desirable to find the probability of a random item
being correctly indexed. This section expands upon this idea. In combination with a distribution of
change rates for a collection of objects, this new performance measure will allow us to estimate the
speed of re-indexing required in order to maintain a given level of currency.

Recall from the introduction that an object’s index entry is f-current if the object has not
changed between the last time the object was re-indexed and S time before the present. In this
sense, we are willing to forgive changes that have occurred within 8 time units of the present. The
grace period, [, relaxes the temporal aspect of what it means to be current. The smaller f is, the
more “current” our information about the page is. See Figure 2.3 for a graphical depiction of the
concept.

To determine whether or not an index entry for an object is B-current, we need to know the most
recent time ta at which it changed. Assume that the object was last observed at time t,. With
this notation, the index entry corresponding to an object is B-current at time ¢, if the page did

not change between the last observation (at time ¢,) and 8 units before the present, or time ¢, — 8
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(assuming t, < t, — ). For t, > t,, — (3, the entry is by definition S-current because the most recent
unobserved change can occur either within the grace period or before we observed the object at t,,
but this includes all past time.

Combining these two cases, the probability that the index entry for an object is S-current at

time ¢, > t, + 0 is

Pr( a fixed object is f-current | t,,t,) =1 — Pr(t, <ta <tn —f) (2.32)

where these probabilities are understood to be for a fixed, given object within the index. We now
compute the probability « that the index entry for a randomly (according to some probability
distribution) selected object is S-current. This probability distribution can be thought of as a

demand imposed upon the index by its users.

Probability of S-currency for a collection of memoryless sources

The above expression (2.32) for a single object is stated in terms of a conditional probability. Given
a prior distribution on the variables ¢, and t,,, we can use Bayes’ Theorem or the total probability
theorem to eliminate them.

In our model, each object has a change rate A and an associated distribution of re-indexing
times T' (a periodic re-indexing system will have a single constant 7Ty). These parameters determine
density functions which, together with the grace period 3, specify the probability a of being (-
current. First, define the probability Pr(an object is S-current | A, T, 3,t,) to be the probability of
a single index entry being [-current given A, T, 8, and the time ¢, at which the index is examined.
Second, define the density h()A,T') to be the joint probability density for (A,T). We assume that
h(A,T) is independent of the time t,,, which is distributed according to a density z(t,). Using these

densities and Bayes’ Theorem, the probability « that the system is S-current is

a = Pr(The index is f-current)

/// [Pr(a single object is S-current | A, T, t,,)x(tn)dtn| h(A, T)dAdT (2.33)
The integral is restricted to the first octant since no negative times or rates are allowed. In some
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settings, it is reasonable to assume a dependence between T and A, since different re-visitation
periods may be desirable for sources with different change rates. We investigate this in the chapter
devoted to optimizing observation of changing sources. An explicit dependence between the two,
where T = w()), will change the outer integral over the (A, T)-plane into a line integral. For
example, setting a constant revisit time T = Ty selects the line parallel to the A-axis, and the
differential element along this line remains dA\.

We will now evaluate (2.33) for a single, memorylessly-changing object. As before, this object
has a change rate A, and is observed periodically (every T time units). The probability that the next
change occurs in the time interval [¢;, 2], where the last observation or change (whichever occurred

most recently) was at time ¢, < t; < to, is

to—t,
/ e~ Mt = e~ Mti—to) _ g=Alta—to) (2.34)
t

1—to

When t; = t,, this reduces to

1 —eMta—to) (2.35)

so that the probability that an object change did not occur in the interval [t,, t2] is the complement,
1- (1 - e*“z*to)) = eMta—to), (2.36)

To evaluate (2.33) we need to specify the function h(A,T") as well as the distribution of times
z(t,) over which we average the S-currency of the index. First, we consider the limits on the inner
integral over t,. Assuming as we have that all the objects change memorylessly, it is sufficient
to evaluate the inner integral in (2.33) over a single observation period T, since adding additional
periods would only replicate the integral over one period.

For convenience, we choose an interval starting at ¢, = 0, at which time an observation was
last made, and extends until the time 7' at which the next observation occurs. Using this interval,
the probability that the object does not change between t, = 0 and t = ¢, — 3, and is therefore
B-current, is

Pr(B-current |\, T, t,) = e Mtn=B) for B < t, < T (2.37)
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by the above discussion. Further, note that the object is f-current with probability one in the

interval [t, — 83, t,]. Specifically,

Pr(B-current |\, T,t,) =1for 0< ¢, <f (2.38)

Combining these, the expected probability of a single object being S-current over all values of the
observation time t,, using a uniform density z(¢,) = 1/T, is just an average value of the piecewise-

defined Pr(S-current |A,T,t,) on the interval ¢,, € [0,T]. This gives

Pdtn [T 1 s
Pr (B-current |\, T,8) = — 4+ —e MRt (2.39)
o T )y T
B 1—e MT=H)

In the first integral of (2.39), the probability of being S-current is one when ¢, € [0, 5], since this
would force any change to be within 8 units of the present. We can clean up (2.40) by expressing
B as a fraction v of T' (that is, 8 = vT') and setting z = A\T. With these changes, (2.40) becomes
a function of the expected number of changes per re-indexing period, 2z, and the ratio of the grace
period to the observation period, ». When z > 1, an object is expected to change once or more
prior to T, whereas z < 1 suggests fewer than one change expected before T. What fraction of
these changes fall within the grace period f is loosely described by the parameter v; some curves
are shown for different choices of v in Figure 2.4.

We note in passing some properties of the curves in Figure 2.4 that verify our intuition. First, note
that the probability of being -current goes to v as the expected number of changes per observation
period AT approaches infinity. A large number of expected changes per observation period implies
an object which is observed much too slowly; the object changes many times between observations.
As such, in the high rate limit, v simply represents the percentage of these changes that occur
during the grace period. For the case of a small number of expected changes per observation period,
where objects are sampled much faster than they change, the probability of a page being S-current

approaches one, regardless of the grace period fraction v.
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Figure 2.4: Probability of 3-currency vs. expected number of changes per observation interval.
Expected value of Pr(8-current |(A\,T,v)) as a function of expected number of changes per observation

period z = AT and grace period percentage v = §/T

2.3 Summary

This chapter has presented some selected theoretical aspects of monitoring changing information
sources, to be applied in the context of the web in Chapter 3 and in optimization routines presented
in Chapter 4. We began by considering discrete-time, Markov chain models in which the age, or
time since the last change, was used as the state of an object. This led to a hybrid model that
allowed each state’s occupancy to vary continuously rather than discretely. This second model was
a stepping stone towards the final model, which treated both time and age as continuously-varying.
For both the discrete and continuous time cases, we constructed performance metrics that allow
us to gauge how up-to-date an index of changing sources is. This progressed from the expected
number of objects that are out of date (in the discrete case), to the concept of (a, 8)-currency (in
the continuous case). The latter metric was then applied to find the probability of being S-current
for objects that change in a memoryless fashion. We concluded with a calculation of the expected
probability « for a collection of such objects, according to an imposed demand distribution. In
Chapter 3, we will present data obtained by monitoring HTML documents on the World Wide Web,

an excellent example of just a collection of monitored objects. Chapter 4 will synthesize the theory
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from this Chapter with the data to be presented in Chapter 3.
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Chapter 3

A case study: Observing the
WWW

A good example of a large observation system, and one with wide general exposure, is the WWW
search engine. These systems have undertaken the enormous task of attempting to observe, index,
and catalog the material on the web for the benefit of their users, done in such a way as to satisfy
user queries with accurate and up-to-date references.

The accessibility and scale of the web makes it an excellent testbed for a study of monitoring
systems in general. Search engines provide baseline guides for index performance, and web documents
are easy to download and inspect for changes. These factors provide an environment that is readily
testable and convenient to analyze. The lessons learned during this analysis apply to any large
observation system. In this chapter we investigate the ways in which web pages change, as well as
how often these changes take place. Using these estimates, it is possible to use the theory from
the previous chapter to gauge how current search engine indices can be kept when using simple

re-indexing strategies.

3.1 Web page data collection and analysis

We have collected a large sample of web page data to study web documents’ inherent rate of change.
This is a crucial factor in the search engine’s re-indexing problem—observations must be scheduled

often enough to keep track of changes. For our data collection, we use observations made by a
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Field | Description

1. url | Complete web page URL

2. title | First 80 characters of page title

3. lastmodified | Last-modified date in seconds since 1/1/1970 00:00:00 GMT
4. last_observed | Observation time in seconds since 1/1/1970 00:00:00 GMT
5. | content_length | Content length (in bytes) mod 232

6. num_tokens | Number of structural “tokens” mod 232

7. num_images | Number of <IMG> tags mod 2°

8. num_links | Number of <A ...> tags mod 2'°

9. num_tables | Number of <TABLE> tags mod 2°

10. num_forms | Number of <FORM> tags mod 2°

11. num_ads | Number of 468 x 60 images (common advertisement size) mod 2°
12. num_lists | Number of <OL> and <UL> tags mod 2%

13. text_hash | the timel6-bit hash of combined plain text strings

14. image_hash | 16-bit hash of image SRC references

15. link_hash | 16-bit hash of hyperlink HREF references

Table 3.1: Web page summary data retained from each observation This table gives the categories
of data collected on each observation, for all web page observations made between March 1999 and March
2000. The table is organized by database field along with a short description of each field’s contents. Short

hash functions were used for efficiency of computation and storage.

web clipping service called “The Informant” (mentioned in the Introduction) that downloads and
processes on the order of 100,000 HTML web pages daily. It performs two types of tasks: it monitors
specific URLSs on its users’ behalf, and it runs standing user queries against one of four search engines!
at specified intervals. Any of three events trigger a notification of a user by email: (1) a monitored
URL changes, (2) new results appear in the top results returned by a search engine in response to
a standing query, or (3) any of the current top search results shows a change.

In March 1999, we began archiving HTML page summary information for all page downloads. As
of this writing, we have downloaded and processed over 350 gigabytes of HTML data. The categories
of summary data retained from the year’s observations (from the Informant’s data between late
February 1999 and March 2000) are listed in Table 3.1. The archived information includes the

last-modified time stamp (if given), the time of observation (using the remote server’s time stamp if

possible), and stylistic information (number of images, tables, links and similar data). In addition,

! AltaVista, Excite, Infoseek, and Lycos
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beginning in February 2000, we began keeping a term vector? representation of about 1/8 of our
observations, along with the links observed in each document and the text enclosed within those
links. For the observations for which only the summary information was recorded, the database could
cover a long time period without occupying too much space. The year’s worth of raw numerical data
for the 150,000-page sample used to generate our plots occupies about 130 megabytes. Additionally,
we have kept the URL’s and titles (the first 80 characters) for all pages observed. The indices into
this data occupy about as much space as the data itself, so the total size is around 10 gigabytes,
which is an acceptable size considering the time span and the number of pages tracked (around
3,000,000). We use an Informix Universal Server (v9.1) database on a Sun Ultra 30 and have around
28 million distinct observations of roughly three million unique URLs (not including search engine

results pages).

3.1.1 Sampling issues

We should note that the Informant selects and monitors web pages in a very specific way, so con-
clusions from the data must be interpreted only after knowing our sampling methods. Since the
Informant makes repeated observations primarily of those pages ranked high by search engines,
there is a bias against those pages that are not relevant to our users’ standing queries. Our sample
is also biased towards the URLs that users have deemed worth monitoring. While neither of these
is crippling, they do slant our results towards those pages that our users wish to monitor. We do
not claim that this bias is a popularity bias, since our users’ queries are not necessarily the same as
those which are of general interest.

Another important consideration is the sample rate. Standing queries are run at most once
every three days for any single user, and some users’ queries are run once every seven days or more.
Therefore, the only way a page is observed more than once every three days is if it is needed by
a different user on each of those days. Many monitored sites exhibit a partial overlap between

users, resulting in observations made at irregular intervals. A number of popular sites (news sites,

2A “term vector” is a vector in which components correspond to words, and the value of each component is the

number of times the corresponding word appeared in the document.

35



shareware distributors, proficient “keyword spammers”?) fall into this category. Moreover, to keep
our service from annoying providers of popular content, we cache pages (and delete the cache prior
to gathering each day’s results), so that no more than one observation is made of a single page
per day. In addition, since we run our queries periodically and only at night, sample times for any
given page are correlated. For an illustration of this, see Figure 3.2, which shows a scatter plot of
observation time and modification times.

Aliasing is also a concern. For extremely fast-changing pages, it is quite possible that many
changes will occur between observations, making direct observation of all such changes impossible.
When Last-Modified information (that is, a formal filesystem timestamp in the HTTP response
header) is given, we can work around this by estimating change rates from observed ages rather than
lifetimes. This will be discussed in greater detail in later sections.

While Last-Modified information is available for around 65% of our observations, the absence
of such information does seem to indicate a more volatile resource. Specifically, for our data, not
having this timestamp makes an observation of any given resource about twice as likely to show a
modification. This makes some intuitive sense, since the purpose of providing a timestamp is to help
web caches—timestamps are generally not provided for pages that are either dynamically generated
or uncacheable for some other reason. Therefore, estimates of change rates based solely on pages
that provide a timestamp are lower bounds (slowest estimate). Timestamps also show, indirectly,
that most webpages are modified during the span of US working hours (between approximately
8 AM and 8 PM, Eastern time). This is shown in Figure 3.1. This is where any assumption of
stationarity in change probability will break down; modifications are less likely during the low times
on this plot.

Another look at how the Last-Modified times are distributed is provided in Figure 3.2. This is a
scatter plot of a sample of Informant downloads, showing one year’s worth of observation timestamp
samples. The most obvious features in the plot are the broad vertical white areas, which correspond

to the times when data was not being gathered, due to server downtime or other difficulties. In the

3This is the practice of filling documents with popular search terms, enclosed in comments or some other unviewable

format, so that search engines will return the page as a result even when its viewable content is not relevant.
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Figure 3.1: Histogram: Last-modified times (GMT), mod 24 x 7 hours. Peaks in modification fre-
quency are clearly visible during US working hours, and diminish on weekends. Assumptions of stationarity
in page alteration probability will break down at this scale. The day labels correspond to the workday in

the United States; hence “Weds afternoon” is aligned with midnight Thursday GMT.

darker regions, a close look reveals that they are actually composed of dark bands separated by thin
white bands, since our observations were all made at night, between about 9:00PM Eastern time
and sometime the next morning (generally between 4 and 7AM). Third, notice the thinning that
occurs within a horizontal stripe around late December every year, when even web administrators
go on vacation and do not alter documents as frequently.

A quick assessment of the data also suggests that the age distribution is getting wider; it seems
that probability mass is accumulating in the tail. This is shown in Figure 3.3, as a dependence of
the age distribution on time. In the figure, light color represents higher probability density, and
dark is lower probability. The lighter area towards the top right corner of the plot corresponds to a
slight increase in the probability mass in this region. The changes to the age distribution over the
year’s worth of observations are fairly small; we will consider it to be constant in later sections and

average the distribution over the entire year.
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Figure 3.2: Last-modified time vs observation time This scatter plot shows what time periods are
covered in the Informant dataset. Each dot is an observation; this is just a small fraction of all of our data.
The horizontal axis shows the observation time, and the vertical axis shows Last-Modified times observed.
Broad, vertical white stripes are times during which the Informant was not gathering this data at all, due
to server downtime or other glitches. The many narrow white stripes separating the observation times
correspond to the daytime; downloads were only run at night. This plot seems to show that the distribution
of Last-Modified times is getting wider as time progresses; new times are appearing at the front of the
distribution faster than the tail is losing density (see Figure 3.3 for more). Also, as a point of trivia, notice
the horizontal lower density bands near each year boundary, showing that there are fewer modifications to

web pages in the vicinity of the Christmas and New Year’s holidays. The units on both axes are decimal

years.
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Figure 3.3: Log-probability age density vs. observation time This plot shows a time-dependent age
distribution that confirms that the tail of the web’s age distribution is lengthening. The vertical axis shows
document age (in years) and the horizontal shows observation time (as a decimal fraction of the year). The
image is colored according to log-probability density; light color is higher probability density and dark is
smaller. The upward trend of probability mass in the tail is fairly small in terms of the total portion of the

population represented. On a linear color scale this trend would be almost imperceptible.
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3.1.2 Characterizing web documents and changes

With our web page data, we can see what kinds of things characterize web documents as well as
document changes. For example, a very broad definition of change is the one in which any of the
items listed in Table 3.1 (except URL or observation time) is altered for a document from one
observation to the next. Given a randomly selected page change (not the same as a random change
for a random page), what percentage will include an alteration to each of the above attributes? This
is important when one is considering how a restricted definition of change will alter the number of
changes observed and thus affect the measurement of the change rate. We show a chart depicting
this comparison in Figure 3.4.

The single best indicator of change in our data kept for each observation is the content length,
closely followed by the hash functions of link and image references, and the hash of the plain text.
The plain text is the user-viewable text. Obviously, this is not the best way to catch all changes;
a hash of the entire document or a byte-by-byte diff* would catch all changes. Calculating the
diff would require storing the previous instance of the page for comparison. The plain text hash,
by contrast, is not altered by extra whitespace or changed markup. A good indicator of general
style change is a count of the number of “tokens” or stylistic elements, which changed in 56% of all
observed changes. When the number of tokens does not change, it is likely that the page will look
very similar to the previous instance. Also note that about 39% of all changes included a different
number of links, as compared with a change to the link hash function in about 72% of changes.

As an example of how one might use this data, consider the example of a “prospector” robot that
goes about looking for links to new pages so as to expand a search engine’s coverage. Such a robot
would be well served to revisit pages that frequently added new links, regardless of how else they did
or did not change. By defining a change in a page to be a change to either the number of links, or
the text contained in the HREF fields on that page, one could isolate pages that tend to provide new
links. Moreover, the dynamics for link addition might be quite different than those for other types of
change on a web page. Going one step further, the utility of these links could be measured in terms

of their popularity once included in the index. In this way the space of documents could be divided

4This is a UNIX command for performing such comparisons.
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according to how often pages provided new links, and how valuable those links eventually prove
themselves to be, using a dynamic programming-type approach to page retrieval [Ber87]. Though
we will not attempt to do so in this thesis, this idea could be used as a formal basis for heuristic

methods for crawling, such as those outlined in [JCP98] and [CvdBD99].

3.1.3 Web page style and age

Not surprisingly, there is a correlation between the style of a webpage and its age. For example, in
Figure 3.5, we show how the distribution of content-lengths and number of images depends upon
age. Each plot shows two distributions, one using data from pages last modified between 6/94 and
6/95, the other using pages between 6/98 and 6/99, to show how more recently modified pages are
frequently longer and have more images. Both distributions in the figure argue for the importance
of space-saving technology (such as compression techniques in the HTTP-1.1 standard, cascading
style sheets (CSS), and use of Extensible Markup Language (XML) where appropriate). Similar
trends, sometimes much more pronounced, are seen in the usage of second-generation tags, such
as the <TABLE> and <FORM> tags. While it might be feasible to use stylistic cues to estimate ages
for pages that do not provide a timestamp, a far better solution is for content providers to include
one along with an estimated expiration time. The HTTP standard has provisions for providers
to include such information in the header as part of Cache-control fields. This potentially has
many benefits, including better cache performance [Not99] and fewer wasted observations by search
engines (if honesty in expiration estimation is enforced).

A popular question regarding our data is, “What about dynamically-generated pages?” We
can determine an upper bound on what percentage of pages are dynamic by looking at how many
pages change on every repeat observation. Following [DFKM97], we have plotted a cumulative
distribution function of “change ratios” in Figure 3.6. A change ratio is defined by the number of
changes observed, divided by the number of repeat accesses made. Obviously, this statistic depends
heavily upon the sample rate, but it does give a feeling for the distribution of change rates. We
have plotted change ratios corresponding to pages that were observed six times or more. A unit

ratio indicates a resource that always changes faster than the sample rate, meaning it may be totally
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Figure 3.4: Percentage of all page changes on which given attributes changed For web page
changes in a list of observations of 150,000 web pages, this figure shows what percentage of web page changes
included a change in each attribute measured. For example, on the far left, we show that the content length
changed for about 83% of all changes observed. Note also that “plain text” is just the user-viewable text

(i.e., markup and whitespace are ignored).
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Figure 3.5: Stylistic clues to webpage age. On the left, we show two distributions of content-length,
or the number of bytes in a webpage. One is for pages dated between 6/94 and 6/95, the other is for pages
last modified between 6/98 and 6/99. Widespread use of space-intensive scripting languages and stylistic
elements (K<FONT> tags, precise table and image sizing, and so forth) has driven the content length upwards.
It will be interesting to see if CSS (Cascading Style Sheets) reduces this. On the right, a similar trend is
seen in the number of images, often used in more recently modified pages to make a more visually appealing

presentation. Much of this reflects the shift from an academic-centric web to a commercial-centric one.
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Figure 3.6: Cumulative distribution of change ratios. The “change ratio” for a page is defined as
the number of changes observed divided by the number of repeat accesses. We have plotted the cumulative
distribution of this statistic for pages which have been observed six times or more. This shows that no more
than 4% of these pages are totally dynamic, while we have never observed any sort of change for 56% of
pages. These values are very dependent upon the sampling scheme and are therefore not directly comparable

to numbers taken from web caching studies.
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dynamic, although it may just change very quickly. The plot shows that 4% of pages changed
on every repeat observation (70% of these pages did not give a timestamp), while no change was
observed for 56% of pages. The average page is observed 12 times over an average of 37 days, so the
percentage of pages that did not change would be much smaller if the monitoring were over a longer

timespan.

3.1.4 'Web page age statistics

The difference between a downloaded page’s last-modified timestamp and the time of observation is
defined as the page’s age, just as it was used in the previous chapter. Recording the ages of the pages
in the Informant database allows us to make several inferences about how those ages are distributed.

Estimates of the probability density function (PDF) and the cumulative distribution function
(CDF) of web page age are shown in Figures 3.7 and 3.8. A few observations about these plots
give insight into the distribution of document ages. From the CDF, we see that about one page in
five is younger than eleven days. The median age is around 100 days, so about half of the web’s
content is younger than three months. The older half has a very long tail: about one page in four
is older than one year and sometimes much older than that. In a few rare cases, server clocks are
set incorrectly, making the timestamp inaccurate. The oldest pages that appear to have correct
timestamps are from around 1992, some of which are “archaeologically” interesting®. Our data on
page age is similar to that found in an earlier study [DFKM97]; when the histograms in Figure 3.7
are altered so that the bins have the same size as in [DFKM97], our distribution matches their data
for “infrequently-accessed” HTML pages.

Typical age observations are shown in Figures 3.9 and 3.10. Since pages are only observed for
as long as they remain in any user’s search results, the majority of pages in our collection are only
monitored for a timespan less than the total length of the study. As such, no alterations are ever

observed on about 56% of the pages we have monitored®. This type of behavior often appears like

5These may not be around for long; before they disappear, see http://www.w3.org/Out-Of-Date/ hyper-
text/DataSources/ WWW /Servers.html (a listing of web servers from 1992) or http://www.hcc.hawaii.edu/guide/

www.guide.html (a web guide from 1993)
6This statistic obviously depends upon the length of time we monitor any given web page
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Figure 3.7: PDF of web page ages. Here we show an estimate of the probability density function
(PDF) of web page age, generated using a histogram having logarithmically sized bins. Obviously this only
represents pages for which Last-Modified dates were given. Several times are labeled; we infer from the
peak at 1 minute that many servers round both modification and request timestamps to the nearest minute.
Notice that ages between about 2 and 10 hours are almost uniformly distributed; this may be a consequence

of running our downloads at night when pages are much less likely to be modified. Last, note the periodicity

in observed ages past 1 day, corresponding to the period shown in Figure 3.1.
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Figure 3.8: CDF of web page ages. The cumulative probability density function (CDF) of web page age

was formed by estimating the integral of the function shown in Figure 3.7.
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Figure 3.9: Example age observations for relatively static pages. Many of the pages we monitor do
not change during the time they are observed, like the examples shown here. The upper plots are histograms,
and the lower plots show the raw data. These examples show that many of the pages are quite old, and for
some of them, the only change they will ever experience is their eventual disappearance (as when a server

no longer exists, the page is moved by its owner, and so forth).

the examples shown in Figure 3.9. From these observations it cannot be determined whether these
pages are totally static or that they may just change at a very low rate. We proceed with the
assumption that all pages are dynamic, even if the only change they will ever experience is their
disappearance. This assumption is necessary to avoid having to guess what fraction of pages will
never change; such a figure would be necessarily be pure speculation. For pages that do have these
longer lifetimes, the best we can do with our data is to obtain several (dependent) samples of the
age distribution.

When web pages are more dynamic, their age samples look more like the examples in Figure
3.10, where the pages progressed through many changes while we have observed their ages. This
usually produces distributions close to an exponential PDF. Some rapidly changing pages appear
to be periodic, though the period is rarely larger than one day. Periodicity can be inferred from
age distributions that appear to be approximately uniform. Still other pages are entirely dynamic,
generated anew with each access, but these are not more than 4% of our collection, as could be seen

from Figure 3.6.
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Figure 3.10: Example age observations for changing web pages. For some of our pages, we have
observed a number of changes over a long timespan. The distribution of ages over this time is often approx-

imately exponential, as can be seen in the histograms. The raw data is shown in the lower plots.

3.2 Term vector-based change analysis

At some point in the study of changing documents on the web, one must ask which changes are
important. Towards answering this question, part of our work has focused on examining exactly
what is altered within the textual content of a page. Using a term-vector approach, we have tracked
the evolution of thousands of web pages in this space and present the results of that study in this
section.

To this point, we have discussed statistics on rate of change with no regard for the size of the
changes in question. Here are two possibilities between which we would like to distinguish: one
web page might experience many small changes that do not significantly change its content, while
another web page might change so radically that successive instances have almost no similarity to
one another. A discussion of change is much more meaningful when the definition of change is
normalized in some way.

The question of a change’s importance is a difficult one. Two types of error can occur. After
a change to the page, it may no longer be among the best responses to a user’s query, and the
changed page may now be a good response for another query where it had not been listed before.

Restated, does the page still belong among the same query results after the change has occurred?
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Alternatively, if the change were observed, would this cause the page to be listed as a result for
another query? Towards answering these questions, we consider how a simple search engine’s query

response accuracy might be affected by changing pages.

3.2.1 Term vector evolution

One of the oldest models used in information retrieval is the term vector model ((WMB94] has a
good discussion), in which a document is modeled as a collection of words and their corresponding
frequency within that document. The frequency measure can be absolute (number of occurrences of
each word) or relative (as a fraction of all possible words). For example, if there were a hypothetical
language containing only two words, “a” and “b”, the string “ababbbbb” could have the term vector
representation < 0.25,0.75 >. In some cases it is more convenient not to normalize the term vector,
so that the magnitude of the term vector gives an idea of the length of the document. This would
make the vector above < 2,6 > instead. Using binary term vectors (presence or absence of a term),
Boolean queries can easily be expressed as dot products of bit vectors. Though simple search engines
can be built using these representations, most commercial engines go well beyond, even so far as
to store entire documents. Nonetheless, term vectors do provide a convenient mathematical means
to represent a document’s content. The “terms” in question need not be single words per se, as
stemmed words, phrases, or projections of the vector onto subspaces of the term vector space could
be used as components instead.

However a term vector is constructed, the rate of change of documents on the web makes it
reasonable to consider the dynamics that describe changes from one vector in this sequence to the
next. Web pages can then be visualized as in Figure 3.11 as vectors that drift in term space as their
content is altered. Some pages will simply experience small, random motions in the vicinity of some
mean value, while others will appear to take more of a “random walk” from their initial positions.
In this section, we present some statistics on how a large sample of term vectors has evolved over
a 45-day period. These data were collected from the Informant’s web cache between February 20,

2000 and April 4, 2000, and the same biases that were explained earlier apply here as well.
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Figure 3.11: Term vector drift One way to visualize changing document content is to imagine the term
vector representation as a dynamic entity. For a simple language of only three words, “a”, “b”, and “c”,
this figure denotes a sequence of changes to that document over a period of time. The lines from the origin
are the term vectors vi, and the arrows between these are the successive change vectors, vii — vik—1. The
length of these change vectors can indicate the degree of a shift in a document’s main focus. The same
information can be inferred from the angle between successive term vectors. It can also be interesting to
consider the limiting behavior of vk — v1, or the sequence of vector differences between an observation and

all observations that follow it; this shows how change accumulates over time.
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3.2.2 Gauging change magnitude using term vectors

Term vectors can be used to measure textual change in (at least) two ways. First, the angle between
successive term vector representations can be used to show the magnitude of a change. Second,
the component-wise vector difference, when suitably normalized, conveys similar information. Using
these two measurements, we will demonstrate that large textual changes are relatively rare, and
large relative changes are much more common for very small documents. The implications for a
search engine are that many changes are small and can probably be ignored. The prevalence of
small changes further reinforces the idea of storing a document’s history using delta compression?,
as was investigated with application to caching in [MDFK97].

The differences discussed in this section are understood to be between two instances of the same
URL. We represent these two observations as term vectors vy and va, where the subscript denotes
their relative positions in a time sequence. We adopt the convention of not normalizing the term

vectors, so that each component represents the (integer) number of occurrences of that word in the

document. Large magnitude vectors therefore correspond to long documents.

Cosine of the angle between term vectors

The first technique of comparing two documents is to measure the angle 615 between the two term
vectors. For the convenience of having a measurement on [0, 1], the cosine of this angle is often used
instead. It is calculated as

Vi -V

COS (012) = m (31)

In this interpretation, when cos (f12) = 1, the vectors have identical relative term frequencies (al-
though they may have different magnitudes), and cos (f12) = 0 indicates that the documents have
no terms in common. We can use cos (f12) to study the amount of change that has taken place
between two instances vi and vg of the same document. To make this a more intuitive measure of

change magnitude (rather than a similarity measure) we will work with 1 — cos(612) instead.

"Delta compression is the practice of serving differences with previous versions of a resource rather than providing

the entire resource again. This is the idea behind UNIX patch distributions for source code version updates.
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For the subset of our collection under scrutiny, we have plotted the joint distribution of 1—cos(6;2)
and ||vy|| in Figure 3.12. This figure (as well as Figures 3.13 and 3.14) has three parts: a scatter
plot indicating the joint distribution of the two variables in question, and a marginal CDF for each
variable in the joint distribution. The CDF on the left only includes observations on which a change
occurred, while the CDF on the bottom includes all observations.

Notice from Figure 3.12 that most large-angle differences occur in smaller term vectors. The
larger this angle between two observations, the more likely it becomes that the document is miscat-
egorized after a change goes unobserved. From the marginal CDF at the left, it is apparent that
90% of differences have (1 — cosf12) < 0.05. The curvilinear features near the origin correspond to

document changes of only one or two words.

Vector difference

The second measure of change size is the magnitude ||vy — va|| of the vector difference between
pairs of observations. We show the joint distribution of this statistic and [|v1|| in Figure 3.13. The
diagonal feature in this graph represents documents that went from some “normal” status to either
an error state (such as not found, server error, document moved) or some other very short document,
since the magnitudes of these changes are roughly equal to the magnitudes of the original documents.
Conversely, the vertical feature on the far left represents the opposite type of change, where very
short documents became much longer.

The strong feature along ||vi|| & |[ve — v1]| suggests that a normalization by ||v1|| might be
helpful, especially for getting a picture of what the population looks like along that diagonal. Sim-
ilarly, when vq is larger, normalizing both vectors in the difference by ||vz|| would scale the dense
section along the left side of Figure 3.13 into a smaller range. This is desirable in order to map
all of the large changes into a single, small region. To draw out these characteristics, the vector
difference is scaled: both v; and vg are normalized by the larger of their two magnitudes, before
taking their vector difference®. This guarantees that the magnitude of the vector difference will be

bounded by [0,2], since both vectors will be within an n-dimensional sphere of unit radius (for a

8This is equivalent to scaling the difference, but doing the normalization first makes the bound [0,2] more intuitive.
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Figure 3.12: Magnitude ||vy|| of original vector vs. 1 — cos(f12). At the upper right, we show a
scatter plot that illustrates how the magnitude of the vector in question is related to the angle between two

instances of a document’s term vector. Each dot is a single observed change, thus the marginal distribution

on the left only includes observed changes.
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Figure 3.13: Magnitude ||vk_1]|| of original vector vs. magnitude ||[vk — vi_1]|| of change vector.
At the upper right, the scatter plot shows how the magnitude of the original term vector is related to the

magnitude of the the change vector. The linear features in the plot are explained in the main text.
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term space having n possible words), inside of which the maximum distance between vectors is 2.
The statistic so obtained is a relative change magnitude. A scatter plot of this statistic, shown in
Figure 3.14, shows how the diagonal feature in Figure 3.13 has been mapped onto a horizontal line
at unit magnitude. Additionally, much of the vertical stripe on the left hand side of Figure 3.13 is
re-mapped into a tight region also at unit magnitude. The dense horizontal feature at unit relative
difference represents “disappearance” or “appearance” events. These are wholesale changes, where
the document went from being very short to very long, or vice versa. Notice from the density of
points at unit relative difference and ||v1|| & 10 that this type of change is most common for very
short documents. The marginal CDF at left shows that “wholesale” changes are not more than
about 5% of all changes. Last, the curves near the origin represent very small changes, where just

a few words differ.

3.2.3 Mapping document changes onto user interests

The only truly relevant changes in a document are the ones that users of the index care about.
That is, a document’s content is user-specific, so it is always necessary to assess what portion of a
page’s content is of interest. Applied to a single user who only runs queries on “Bayesian belief
networks”, a term vector-based retrieval system need not be so careful about tracking changes in
the usage of other words in the language. Of course, even single users have needs that are far more
complex than the particular words chosen for the query—of equal importance are the words the user
might have chosen instead. Just as tests are applied to determine if documents are of interest, tests
are needed to determine if a document’s changing is of interest as well.

For this reason, the term vector representation of a document should be skewed to reflect the
relative importance of terms that are used in queries, just as was originally suggested by [EW61] for
rescaling document terms by their frequency. Query keywords are the most direct representation of
user interest that exists, aside from perhaps actually knowing the pages that most interest users.
Certainly query term frequency could be used to build much smaller indices. The small set of search
keywords entered by Informant users contains only around 19,000 unique words (from about 57,000

queries), as compared to the more than 1 million unique words occurring in our web document test
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Figure 3.14: Magnitude ||vi|| vs. change magnitude for normalized vz and vi. Here, ||[Vmax|| is
the larger of ||vi|| and ||vz||. In this representation, the linear feature boundaries have all been collapsed
into the region at unit relative change magnitude. The CDF on the left thus shows that “wholesale” changes
are not more than about 5% of all changes. Moreover, this type of change is most common for the smallest
documents; in this case the wholesale change generally means the document is changing from some error

state back to a normal one.
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set. While it is certainly true that a larger sample of queries would yield a larger set of words, many
words that appear in documents will never be used in queries. For example, verbs are comparatively
rare in queries as compared to nouns (or noun phrases) and adjectives. It is reported in [Nic97] that
the Lycos? search engine uses a “reduced” index image of the top 100 words to represent a page,
although it is quite possible that has changed in the three years since. User query terms suggest a

different way of forming such a reduced index.

Query terms vs. web document terms

The term vectors used earlier in this section were not rescaled in any way to account for the im-
portance of terms within a document. So, occurrences of common words like “the” counted exactly
the same as occurrences of rare words like “actinophage”. Additionally, all word changes were
noted, not just the words that were used in queries. Fortunately, our work with the Informant has
allowed us to gather not only a list of common query terms, but also a list of common terms within
documents in general.

Since terms used in queries define in some way what terms are most relevant in documents, it is
important to understand the difference between query vocabulary and general web document terms.
As mentioned earlier, the words in each set are certainly different: the query word list is nothing like
average text. The words in queries almost form a language unto themselves, which has statistics that
reflect the fact. For example, many languages exhibit power-law scaling in word frequency; figure
3.15 shows three probability densities that illustrate this point. The z-axis represents the number
of occurrences of a term in a corpus (each of the three lines plotted is such a corpus), and the y-axis
is the probability density corresponding to that particular count. First, we plot the probability
density for all words appearing in our short-duration (45-day) collection of term vectors. Notice
the strong power law relation, very much evocative of a Zipf-type distribution of word rankings
[Zip49]'°. Second, we show the same type of distribution, except for words appearing in Informant
queries. This is a much smaller sample (30,000 users with roughly 1.9 queries each), hence the

plot does not extend to occurrence counts higher than around the 1,000 range. The words used in

%http://www.lycos.com/
10This is not the same method used in generating Zipf’s Law distributions; we revisit this topic again in an Appendix.
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queries do not appear with the same frequency in queries as they do in the general population, as is
shown by the third line in the Figure, which is the probability density of occurrences of query terms
within the general population. It is clearly not a power-law type relation; the bump-like feature
in Figure 3.15 is suggestive of ideal curves for “resolution power” [vR79] of query terms. Just as
extremely common words are not helpful in finding information, extremely rare words are not as
helpful either. Common words are contained in far too many documents, while rare words may not
be in the index at all. Thus users tend to select words having intermediate frequency instead of
words at the endpoints. Perhaps this is the “principle of least effort” [Zip49] in action, as query term
selection is being pulled towards an optimal curve through human learning of the language of search
engines. The point of this exercise is to assert that rescaling by term frequency is not the same as
rescaling by term frequency in queries. If optimizing an index to accurately rank the importance of
changes, this difference must be taken into account.

Interestingly, the Zipf-type power law distribution appears not only for query terms and words
in web documents, but also for unique hyperlinks (HREF’s) and hostnames (like cnn.com) in our
observed document set. Though not directly relevant to the topic of dynamics, these plots are
included for the interested reader in the Appendix.

Just as we suggest rescaling term frequency with respect to usage in queries as a means for
improving the performance of retrieval algorithms, this also helps in defining what is a “meaningful”
change to a web page. Terms with greater resolution power, or those that appear to be used more
often in queries, should be scaled so that a change in their frequency is deemed more worthy of
requiring that a document be re-indexed. Text-based change filtering and classification is a large
topic and is a subject left for future work. We mention it merely to note that the whole subject
of change detection for web pages is only part of the larger problem of satisfying user requests
for information. Other observation domains will exhibit similar challenges in state definition and

determining what changes are important in proper context.
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Figure 3.15: Probability densities of query and document term frequencies. In this graph we
show three probability densities on a log-log scale. The presentation takes a moment to grasp. The horizontal
axis is the count (or number of occurrences) for words in each list, and the vertical axis is the probability
density corresponding to each count. So for each corpus of text, the most likely count (by far) is a single
occurrence, hence the maximum at 1. The similar power-law scaling of the set of query terms and the set
of normal web document terms suggests that query terms are something of a language unto themselves.
The dashed line, formed by taking the frequency of query terms in web documents, shows that query terms
are chosen for better indexing power and are not representative of ordinary language. We present this to

emphasize that change detection for web pages must be sensitized to user requests.
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3.3 Estimating the change rate distribution for the web

We expect it will be difficult to choose a representation that is sufficiently sensitive to catch important
changes, while being restrained enough not to over-react to minor ones. Still, to move forward in
our characterization of the rate of change of web pages, a baseline characterization is needed. For
this we will use the simplest definition of change, namely, any alteration is considered a change.
This has the advantage that it overestimates the rate at which important changes happen, however
importance is defined. To this end, we will rely on server-provided Last-Modified timestamps for
these change statistics. From these timestamps we can make both age and lifetime observations.

We consider the estimation problem using each kind of observation in turn.

3.3.1 Age-based estimation

It is clear from the empirical page age distribution shown in Figure 3.8 that the majority of web
pages are young. The origins of this trend are less clear. Different explanations can give rise to
the same observed age distribution. If we propose to associate age with dynamics, as is done when
setting cached documents’ time-to-live (TTL) values to a percentage of the most recently observed
age ([Cat92], [BDH*"94], [CDN196]), it is necessary to understand the nature of an age distribution
in a growing population. On the one hand, a fixed population of pages whose change times are
governed by identical exponential PDF’s will produce an exponential age distribution when sampled
collectively, as in (2.18). At the other extreme, an exponentially growing population of web pages
in which changes are rare or even nonexistent will be skewed towards youth as well—there will
be exponentially more pages in one generation relative to the previous generation. These kinds of
dynamic and growing populations can be visualized very nicely using models like (2.14); we consider
a very simple case here.

Consider two very different models for the web. First, an exponentially-growing population of
completely static web pages will produce an exponential distribution of observed page ages. To see
this, note that the population at time ¢ is given by an expression of the form Pyet* where P, is the

initial population and £ is the exponential growth rate parameter. An age distribution at time 7
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can be formed by reversing the sense of time, and normalizing by the population size:

e~ ¢t

ggrowing(ta T) = { (1]_6_51- (32)

This distribution will approach an exponential density with parameter £ as 7 gets large.

But an exponential distribution of page ages can arise for completely different reasons. Consider a
fixed-size group of identical pages, each of which changes at time intervals governed by an exponential
distribution. Each page undergoes many changes, with each change returning that page to age
zero. Such a population also gives rise to essentially an exponential age distribution (see 2.18). In

particular, the age distribution for such a population is

e A te (0,7)
Gdynamic (6, T) =< (e ) d(t—-71) t=1 . (3.3)
0 t¢[0,7]

As the time since the population’s birth, 7, becomes large, the distribution of observed page ages
will also approach an exponential distribution and will be hard to distinguish from that of a growing
population of unchanging web pages. The hybrid model we present next represents the middle
ground—the web is growing and pages change according to exponential time distributions.

We now combine the effects of web growth and page change dynamics. The web has been
growing for several years so that the time since creation of web pages is distributed approximately

exponentially:

h(t.) = Ee~8te. (3.4)

where ¢ is the growth rate and t. is the time since creation of a page. We emphasize that ¢. is
not to be confused with our definition of the page’s age, since age refers to the time since the last
modification.

For an exponentially-growing population of dynamic pages, each of which has an exponential age
distribution as described by (3.3), the aggregate age distribution g(¢, A) will be a weighted average

over time since creation, weighted by the number of pages created at the same time. Specifically,
o0
ot N = [t tontdt. (35)
0
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This means that the age distribution of an exponentially growing population of objects with (iden-
tical) exponential age distributions remains exponential, with parameter given by the sum of the
population growth and page change rate constants.

The age distribution for the entire population (namely the whole web) is yet another mixture, in
which we take expectation of (3.7) with respect to a joint distribution of growth rate £ and change
rate A. For simplicity we use the same growth rate for all change rates. Using a distribution w(x)

over the inverse rate A = 1/z, with a uniform growth rate £, we express the mixture as

g(t) = /0 h (5 + %) (&)t (2) dar. (3.8)

The only factor remaining before this distribution can be matched to the data is the shape of the
distribution w(x) of inverse change rates. In our initial development, we use a generalized exponential

(Weibull) distribution over the inverse change rate (which is also the mean change time), such that

wit) =5 (%)H e=(t/0)" (3.9)

where ¢ is a scale parameter and o is a shape parameter. See [MR94] for a discussion of Weibull
distributions, or [Fel71] for a more general discussion of this family of exponential distributions.
The shape parameter can be varied to change the shape from a very sharply-peaked distribution
(for o < 1) to an exponential (for o = 1), to a unimodal distribution with maximum at some positive
t (for 0 > 1). The scale parameter § adjusts the mean of the distribution.

To determine what values of £, o, and § best model our age observations, we numerically evaluate

(3.8) at a number of ages ¢t. This is used to estimate the cumulative age distribution G(t) at N
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Figure 3.16: Best-fit age CDF. These plots show the distribution which results from a numerical
optimization of (3.10), yielding the values £ = 0.00176 (growth rate), ¢ = 0.78 (shape parameter), and
d = 651.1 (scale parameter). The top plot uses a log scale to show the deviations in the fit for small age.

The minimization was carried out using linearly-spaced points.

points ¢;. These estimates, G (t), are compared with samples from the empirical distribution G(t)
(as diagrammed in Figure 3.8) at points ¢;. A sum of the squared error over all sample times ¢;

provides a scalar error function of the vector (¢, 0,d). This error function

N
Bupe (6:0:0) = 3y (660, = G0 (3.10)

can be minimized numerically, whereupon the optimal values are found to be & = 0.00176, ¢ =
0.78, and § = 651.1. The idea in this fit is to minimize the variance of the residuals. The fitted
age distribution is shown in Figure 3.16. These parameters imply a steeper-than-exponential age
distribution (since o = 0.78) and a growth rate that implies a doubling time of around 390 days.

This is not unreasonable, as [LG98] estimated a lower bound size of 320 million pages in December
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1997, which increased in [LG99] to 800 million pages by February 1999. This would imply a growth
constant over the 14 months of £ = 0.0022, or a doubling time of 318 days. However, the difference
in these estimates tells us to proceed with caution, understanding that estimates based on these
results are somewhat uncertain. Moreover, the assumption of exponential growth in the number of
documents is based on assertions of exponential growth in the number of web hosts (as in [Gra97a]
and [ISC99], for example). Growth rates have slowed appreciably, especially in the last year; lifetime-

based estimation methods will prove more reliable.

3.3.2 Lifetime-based estimation

As mentioned previously, inferring change rates from observed lifetimes is somewhat tricky, since
an observed change may only be the most recent of many changes that took place since the last
observation. Moreover, changes that take a long time to happen are inherently more difficult to
catch. For example, if one were to watch a calendar for three consecutive days, waiting for the
month to change, there is a good chance that this event will not be observed. However, as the
timespan gets longer it becomes more probable that a change will be seen. In the same way, it is
necessary to account for the probability of observing a change, given the timespan of observation.
For a page that changes exponentially at rate A, the probability that at least one change will be

observed within a timespan 7 is
Pr(change observed|r,\) = 1 —e 7. (3.11)

The pages in our collection are observed over many different timespans 7. Therefore, to determine
the probability of observing changes for pages having change rate A, we assume that change rate
and timespan are independent, and weight (3.11) with respect to the probability of all possible

observation timespans 7; (discretized):
=N
Pr(change observed|\) = Zpias(1/A) = Z Pr()(1 — e=2™). (3.12)
i=1

Possible timespans 7; are distributed as shown in Figure 3.17. Combining this data with (3.12)

allows us to compute Zp;qs, which in turn allows us to weight each mean lifetime’s probability of
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Figure 3.17: Observation time distribution and induced finite time span bias. The top plot
shows the distribution of observation time spans, or the time difference between the first and last observation
timestamps for individual pages. The spikes appear in this graph because we only run our checks at night,
so timespans tend to cluster around 24-hour intervals. Using (3.12), these timespans translate into the

probability of any mean change time being represented among our observed web page changes.
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Figure 3.18: PDF and CDF of observed lifetimes. On the left, a rescaled histogram approximates
the PDF of observed lifetimes, or differences in successive modification timestamps. On the right, we show

the corresponding CDF.

being among the observed data. Put another way, the distribution of change rates sampled in our
experiment is not the true rate distribution, but rather one that is weighted by (3.12). If the actual

density of mean lifetimes is fi,eqn(t), then the observed density of mean lifetimes is

— fmean(t)mes (t) ‘
fooo Fmean(t) Zpias (t)dt

mean (t) (3.13)

These mean lifetimes are only seen through a mixture of exponential distributions, so the observed

lifetimes should approximate the probability density

Fvsrsea(®) = [ AN (170011, (3.14)

As with the age-based estimates, we can form a mean squared-error function like (3.10) and fit the

CDF corresponding to (3.14) to the observed lifetime distribution. We show the distribution of

observed lifetimes in Figure 3.18. Using F(t) as the cumulative lifetime distribution, and F'(c,§, t)
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as the estimator, the error function is
1 X
SEjifetime (0,0) NZ (0,6,1;) — F(t;))? (3.15)

As before, we use a Weibull density (3.9) for the distribution of inverse rates (mean times) ¢. This
results in an error surface having a minimum at (¢ = 1.4, = 152.2). An intensity plot of (3.15) is
shown in Figure 3.19. The CDF and its optimal estimator are overlaid in Figure 3.20, and the error
in this fit is magnified in Figure 3.21. Using our estimates, the mean lifetime PDF and CDF are
shown in Figure 3.22. Our mean change time of 138 is much higher than those previously published.
Kahle [Kah97] claims 75 days, and has a very large sample size. Few details are given in the article
regarding sampling techniques, popularity bias, and so forth. In particular, it is unclear whether the
75 day estimate is an average of all observed lifetimes (where single pages contribute one term to the
average corresponding to each instance of the page), or only one contribution per page. Prior to this,
as stated in [Pit98], estimates had been as low as 45 days. It is not unreasonable to expect that the
aging of the web’s older documents raise the average lifetime by their very existence. We do expect,
however, that we have underestimated web pages’ rates of change by virtue of the fact that these
estimates are derived from a less volatile subpopulation (namely those which provide timestamps).

Regardless of the veracity of these estimates for the entire web, they certainly do an excellent
job of describing this population. The quality of the lifetime-based estimates differs substantially
from that of the age-based estimates, as can been seen by comparing the fit in Figures 3.20 and 3.16.
There are two reasons for the difference. First, the assumption of exponential growth used for the
age-based estimation is probably a poor one, as true growth is much slower. Forcing exponential
growth on a more slowly growing population causes the dynamics to be under-represented, driving
our estimates away from their true value. The lifetime-based estimation is not perfect either, as
change rates may not be independent of observation timespan. A change in a page might very well
push it into or out of a user’s set of search results. We count on the fact that in observing faster than
the search engines, we can observe changes before those changes force a result from the top of the

list. It is difficult to justify an assumption of any particular dependence, since this relationship is
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Figure 3.19: Intensity plot of mean squared-error. The minimum of (3.15) in the space of shape
parameters o and scale parameters § is marked by a white “x” in the center of the dark patch, at (o =

1.4,6 = 152.2). The error function appears to be unimodal.
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Figure 3.20: Overlay of model lifetime CDF and observed CDF. The minimum error distribution
(marked “Trial” above) found by minimizing (3.15) is shown along with the observed lifetime distribution
(marked “Reference”). Errors in the fit below around 8 days are due to aliasing, where multiple changes are
masked and treated as a single, larger lifetime. Our estimates are only extrapolations in this region and may
be inaccurate. The region above 8 days is an extremely precise fit; the two curves are nearly identical. For

an even better fit, points below the aliasing bound should not be considered in evaluating the error function.
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Figure 3.21: Absolute error F' — F vs. lifetime. These are the errors in the fit shown in Figure 3.20;
we have used a linear scale and just show the leftmost region. Note the large errors below around 8 days
due to aliasing. The effect of diurnal and weekly trends, as plotted in Figure 3.1, is clearly visible in the
long and short period ripples. As mentioned in Figure 3.20, slight improvements in our estimates could be

had if we restricted the fit to samples above 8 days.
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Figure 3.22: Mean lifetime (1/)) estimated PDF and CDF. Qur lifetime-based population parameter

estimation implies these distributions of mean lifetimes for the documents observed by the Informant. Note

that these mean values are to be distinguished from the distribution of observed lifetimes. The average is

around 138 days, the most likely value is 62 days, and the median is 117 days.
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controlled by many unknown factors (re-indexing time and result ranking strategy for search engines,

for example).

3.4 (o, f)-currency for web search engines

3.4.1 Probability of S-currency for a theoretical collection

Next, we apply these estimates to the problem of assessing the (a, ) currency of a search engine’s
index when that engine re-indexes its collection on a fixed-period schedule. Choosing a random
object to which we apply (2.40) is equivalent to selecting a value for A. In our collections, as
discussed earlier, we have observed that the mean time ¢ between changes roughly follows a Weibull

distribution, (3.9), which is given by

I\ o—1
w(t) = % (%) e~ (/07 (3.16)

The change rate A is the inverse of the mean time between changes, so we can replace A in the
integral with the change rate 1/1%.

Using (3.16), along with the parameter values that resulted from our numerical optimization,
we can determine the expected value of (2.40) over A for our collection. This calculation for other
collections or other demand distributions depends only on finding the distribution w(f) of mean
change times for those collections. This initial analysis uses a simple periodic, round-robin re-
indexing schedule, where the revisitation time 7T is the same for all sources. We propose visiting
each page every T time units, though an accurate model for a real index would need to account
for the growth of the collection over time by allowing 7' to vary. It would also be necessary to
include the natural statistical variation in retrieval period, but doing so depends upon a number of
implementation details.

For this preliminary analysis, we assume a constant web size to avoid this difficulty. In this case,
the integration of (2.33) with respect to T' is just integration over a delta function at the chosen
period and simply filters out the desired period Ty. Using the Weibull distribution for inverse change

rates, the expected probability a that a uniformly randomly selected page will be B-current in the

73



search engine index is

o 5 e\t
— I —(t/0)°
“ / lé (6) ‘

The integral (3.17) can only be evaluated in closed form when the Weibull shape parameter o is

B 1—e WD(T-B)

[ﬁ +—aen | (3.17)

1; otherwise, numerical evaluation is required. The integral gives an « for every pair (Tp, 3), defining
a search engine “performance surface.” This surface can be interpreted in a number of ways. For
example, we can choose a probability o and determine all pairs (Tp, 8) that give that probability.
Using our parameter choices from the lifetime-based optimization of (3.15), we have evaluated the
integral and plotted it in Figures 3.23 and 3.24, which show the level set for o = 95%. We note
again that the revisitation times that result from this analysis are upper bounds since our analysis
is based on less volatile pages (those that provide timestamps).

From that plot, we can see that in order to maintain (0.95, 1-day)-current search engine, a re-
indexing period of 8.5 days is necessary. For (0.95, 1-week)-currency, a re-indexing period of 18
days is necessary. Notice that these figures do not depend upon the number of documents in an
index, so a re-indexing period defines a set of pairs (a, ), regardless of changes in the size of the
index. Alternatively, we can estimate effective bandwidth requirements to maintain a given level
of currency for a uniform index of a given size. By “uniform” we mean that no documents are
given any sort of preference; all are re-indexed at the same rate. The effective bandwidth is not
to be confused with the link bandwidth, it simply describes the overall processing rate, including
download and analysis. For a single incoming link, though, it is the necessary link bandwidth. It is
possible that the download and analysis might be done from multiple distributed machines, thus all
machines need not be supplied by a single link having that bandwidth.

For example, an (0.95, 1-day) index of the entire web, using the estimate of 800 million pages

from [LG99], would require a total effective bandwidth of (approximately)

800 x 10° pages 8 12 kilobytes 104 Mbits

for (0.95, 1-d t. 3.18
8.5 days 1 page sec or ( ) ay) curren ( )

A more modest index, closer to those actually in use, might have 150 million documents at (0.95,
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1-week) currency, requiring an effective bandwidth of around

1 108 12 kilobyt .4 Mbit
50 > 107 pages X ilobytes _ 9 % for (0.95, 1-week)-current; 20% cover. (3.19)
18 days 1 page sec

Clearly, other re-indexing schemes exist where 7' is not constant but is a function of A; see
[CLW9T] for some good discussion on possible schemes. In comparison to our work, [CLW97] assumes
B = 0 and scales the cost function in a particular way. When T is a function of A, the integral (3.17)
is modified by substituting in the function 7'(1/%) and evaluating along the appropriate line in the
(T, t)-plane. Additional modifications to this development might include the addition of a noise term
to the observation period and choosing the grace period § as a function of the change rate A. We
consider how it is possible to choose T' to maximize « in Chapter 4.

Figures are scant regarding the actual number of pages indexed per day by commercial search
engines, but vary between 3.5 million per day [Nic97] and 10 million per day [CvdBD99]. For (3.18),
we would require 94 million per day, while (3.19) corresponds to 8.3 million per day and is probably
achievable. Note, however, that (3.19) assumes a uniform sample of 20% of the web as represented
by our data. It is likely that the collections of major search engines may not fit this description, but
rather contain a subsample of a more interesting fraction of the web (namely one containing more
useful and dynamic sites). Moreover, many of the pages downloaded and indexed are being seen for
the first time. The figures on number of downloads per day include the process of exploration in
addition to re-indexing; therefore only some fraction of the effort goes into maintaining a current

image.

3.4.2 Empirical determination of (¢, 3)-currency

Web searchers have an intuitive feel for how up-to-date they expect an engine to be. For current
events, a search engine is almost out of the question, while for more esoteric (and less volatile)
information, search engines are ideal. Where exactly a search engine could be expected to lie within
this spectrum is not as well established. Using the theory we have developed, this section details

our estimation of the (o, 8) currency of four commercial search engines with respect to a one-time
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Figure 3.23: Probability a as a function of v and T;. Here, we plot the probability surface a as a
function of the grace period fraction v = /Ty and fixed re-indexing period Tp. This surface results from
using the (more accurate) lifetime-based population parameters, although this surface could be constructed
for any population. The plane at a = 0.95 intersects the surface in a level set, which is plotted in Figure

3.24 (with B values used instead of percentages v).
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Figure 3.24: Relating 8 and To: a=95% level set. Here we have plotted two level sets of pairs (7o, 8)
which yield a probability o = 0.95 of being B-current. The two curves are derived from two different
estimation methods, minimizing (3.10) or (3.15). The lifetime-based estimates are much more accurate.
Regardless of the size of the collection, this data can be used to estimate how current an engine is when the
indexing period To takes on a value (in days) along the horizontal axis. As Ty becomes large, the relative
check rate is too slow, and 3 approaches 0.95 X To—namely, the only path to 95% correctness is to ignore

the all-too-frequent changes 95% of the time.
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experiment.

Any search engine that asserts a timestamp along with each search result provides a verifiable
means of measuring how (a, 8)-current its index is with respect to an imposed demand distribution.
Specifically, timestamps claimed by the engine can be compared to those returned by the pages
themselves, telling whether or not the index entry is truly up-to-date. If an engine does not return a
timestamp, it is not possible to measure its (a, 3)-currency in this fashion. In order for the currency
to be measurable, there must be a way to ascertain (externally) whether the engine has a current
image of the document in question or not.

Fortunately, some engines do provide this information. AltaVista'!, Northern Light'2, and In-
foseek!? assert timestamps along with each search result. The Hotbot!* engine returned timestamps
with results as well, but a bug in their software at experiment time caused erroneous timestamps for
many documents. Specifically, results for which timestamps were not available were listed with the
time “Dec 31 1899”, or even more confusing, “12/31/99” This unreliability may indicate that other
timestamps from this source would also be unreliable, so this engine was not tested. The Google!'®
search engine provides links to cached copies of many result documents from which a modification
time can be inferred. It is likely (although uncertain) that any document observed by their crawler
has a corresponding cache entry; result references without cached copies are probably derived from
links found (but not followed) on indexed pages [HN99]. This is part of how Google works—pages are
ranked according to incoming links and need not actually be downloaded in order to be considered
possibly relevant. At the time of our experiment (early February, 2000), each cached document was
returned by the Google engine along with the header given by that page’s server when it was orig-
inally returned to the Google crawler. Presumably the cached copy is the most recent observation
made.

To test the engines, we performed the following steps:

1. Run a randomly-selected query from a list of query terms taken from the Informant.

Uhttp://www.altavista.com/
12http:/ /www.northernlight.com/
13http:/ /infoseek.go.com/
4http://hotbot.lycos.com/
Shttp://www.google.com/
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2. Within the results list, parse the page to extract the URLs and the corresponding modification

times asserted by the engine, which we will call tgg (for “S”earch “E”ngine).

3. Fetch each URL in the list, and note the actual Last-Modified time for each one (if provided

by their respective servers). These times will be referred to as twp (for “W”eb “P”age).
4. For each URL, record the two timestamps, along with the time of the query, tps.
5. When both timestamps are available for a document, determine the difference between them.

6. Test for (a, 3)-currency over all URLs having both timestamps by noting when the page was
last altered, and whether or not this happened during a grace period. Repeat this step for

many values of f.

If the timestamps (asserted and observed) differ by more than can be explained by roundoff error
or clock skew (we used Fone day), then the index entry is considered out of date. Formally, given
our assumption, such an index entry is not 1-day current. Whether or not this error is to be forgiven
is decided according to whether the observed timestamp on the page was within 8 time units of the
query time. This can be done for all possible values of 5 over some reasonable range for all the test
queries in the set. The percentage of pages for which the most recent change lies within the grace
period are counted as up-to-date, while the remainder are not. The fraction of all such pages that
are up-to-date is an estimate of the probability « that the index is S-current.

Errors in this estimate of « can arise from inaccurate timestamps asserted by the search engine.
On more than one occasion, engines were even observed to have “post-dated” assertions. It is
possible that nefarious content providers set their clocks far in the future to make their information
appear more current. When a user would sort by date, these documents would magically bubble
to the top. Of course, the true explanation could be less insidious. For example, an engine might
try to guess the date if it could not be determined, or use the observation time as an estimate of
the modification time. Incorrectly set server clocks could also cause inaccurate timestamps if the
server’s time is not validated or adjusted in some way.

Estimation errors can also arise from forms of aliasing. When the most recent change in a long
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Figure 3.25: Aliasing in test for engine -currency. There is a possibility that unobserved changes may
lie outside the grace period. When determining an engine’s probability of being f-current, the probability

of this event must be taken into account.

sequence falls within the grace period, any changes which occurred prior to that change are never
seen. Any of these changes that lie outside the grace period might therefore be incorrectly forgiven,
if we fail to account for the probability of their occurrence. Without this correction, fast-changing
pages will have a tendency to incorrectly appear S-current since they have a higher probability
of unobserved changes lying outside the grace period. Moreover, engines which give greater rank
preference to such faster-changing content will appear more [-current.

The situation is shown in Figure 3.25. This timeline shows how aliasing can arise in our test for
the probability a of a search engine being 8 current. First, we note that the times claimed by the
search engine and that returned by the document are different. Next, note that the modification
time lies within the grace period, 3, preceding the observation time. Now if this is the first change
since the search engine last observed the document, then it should be forgiven in accordance with
our definition. But if changes did go unobserved outside the grace period, this should not count as
B-current. Therefore we must estimate the probability of a change between the claimed time and
the start of the grace period, and weight the observations accordingly.

To determine the probability of aliasing, we use (3.11) again, except now we have a fixed time
interval and an estimate for the change rate A, instead of the other way around. We repeat the

equation here, with some new terminology:
Pr (aliasing) = 1 — e~ A{fors =8 —tsE) (3.20)

Again, we have used t,;5 for the time of observation, tgg for the modification time claimed by the

search engine. Thus (3.20) is the probability of a change during the time period between tsg and
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and the start of the grace period in question, at t,ps — 3.

The complement of this probability then weights how much an observed document age inside the
grace period counts towards the S-currency of an engine for a particular value of 8. For example, if
we find that there is a probability 98% that a modification occurred outside the grace period, but
after the search engine’s claimed time, then we should only forgive 2% of such instances as actually
being [-current.

Evaluating (3.20) requires that we have a value for A. Using the age-based estimation method,
the change rate is estimated by the inverse of the document’s age. At the time of observation we
obtain a single age sample. Obviously the variance when using this single sample as an estimator
is quite large (the square of the mean), but since this experiment is making estimates of aggregate
search engine behavior, this problem is not serious. The effect of using such a poor estimator is
mitigated by the large number of observations of similar documents. Provided the creation time of
the web page is far enough in the past, (3.3) tells us that the age distribution is very close to the
lifetime distribution. Since these estimates are only applied to documents which have gone through

at least one change, we have some assurance that the document is not “brand new”.

3.4.3 Experimental results for four search engines

The test data show the accuracy of the perception that search engines do return more than the
occasional inaccurate or incorrect link. Bear in mind that this experiment has used an extremely
unforgiving model of what is meant by a “change”, including far more than large changes like the
complete absence of a document. Even minor changes that have little impact on a user’s perception of
index performance were counted. From a user’s perspective, much larger changes could be tolerable
if the reference returned was still an accurate response to their query.

At the outset, it should be emphasized that our results represent the state of the engines at
experiment time and may not reflect their general character. Of the four engines tested, the most
current for small § was AltaVista, and the least current was Northern Light. However, the data
further show that even though the Google engine had relatively poor performance for low values of

B (< 10 days), it came out ahead when 8 was larger than about one month. Continuing in this
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Figure 3.26: Empirical probability of being 3-current. This graph shows an experimental determi-
nation of the probability of an index being S-current. The horizontal axis shows the grace period time, and
the vertical axis shows the probability of being S-current for that grace period. This figure was generated

using the aliasing correction described by (3.20).
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trend, Google reaches the a = 0.95 mark at around § = 73 days, while AltaVista reaches that
plateau at 8 = 104 days. The odd shape of their performance curve may reflect a design decision on
Google’s part of how current their users expected the information to be. Alternatively, there might
be a significant lag between the time an observation is made by their crawler, and when it is posted
as having been cached (recall that timestamps for Google were obtained from their cached copy of
each web page).

It appears likely that Google does short-duration, high-volume index refresh operations, such
that observation times tend to be clustered rather strangely. This is as opposed to AltaVista, which
has claimed in the past [Nic97] to have a more continuous (nightly) index building procedure. It
is also possible that AltaVista had only just recently done an index build and therefore appeared
much more current than Google. It could be that Google believes their users are expecting things to
be current to within a few months (rather than a few days) and that they have therefore allocated
resources accordingly, affording themselves a greater breadth of coverage. The tradeoff between
having a large index versus a current one is discussed in [LG98]. Furthermore, given the discussion
about ranking and crawling algorithms presented in [BP98] and also in [JCP98], it is quite likely
that Google preferentially crawls and prioritizes documents expected to have a high ranking within
their results.

From the region where each engine reached the 95% mark, we can take a rough guess as to the
re-indexing period Ty used with these documents. By comparing the value of 8 for each engine with
those shown in the a = 95% curve in Figure 3.24, we can estimate that Ty is between around 75 and
120 days for these collections. We return to this point in Chapter 4 when presenting continuous-time
optimization methods as a basis for comparison of our work with engines currently in use.

Another feature of the graph is that there is little change in probability of S-currency for small
values of 3. This is largely due to the correction applied to remove the effects of aliasing. The kinds
of web pages that might be incorrectly forgiven for small 8 (as shown in Figure 3.25) are precisely
those which change the most, so applying the correction for aliasing tends to flatten the curve in
that region.

This kind of evaluation is by no means limited to search engines—similar data could be determined
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for any kind of index, whether it be a list of stock quotes (free, web-based indices often lag by 20
minutes or more), a local weather report, military intelligence, or any index of dynamic information
sources. The only requirements are that one be able to obtain an estimated timestamp as well as

an actual one.
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Chapter 4

Optimizing observation of dynamic
sources

From the search engine tests presented at the conclusion of Chapter 3, it is clear that different search
engines have different technologies and strategies for keeping their indices up to date. It is clear that
the different search engines have made these design choices, either explicitly or implicitly. Indeed,
any index of changing information sources must include a strategy for re-indexing objects in the
collection. This chapter is concerned with the different ways to make decisions about choosing a
sequence of objects to be observed so as to best maintain an index. We apply the theory from earlier
chapters to develop algorithms for optimizing observation strategies, and evaluate these algorithms
for their effectiveness.

To state the problem more precisely, in what order should objects in a collection be observed
s0 as to maximize the probability a that a randomly-selected (according to a known distribution)
index entry is f-current? We answer this question under two very different sets of assumptions,
corresponding to the models presented in Chapter 2. First, we assume a discrete time change
process governed by Markovian transition probabilities between ages. In this case, we use 8 = 0
and consider only finite-horizon versions of the problem. Solutions take the form of choosing the N,
objects to be observed on the next time step, so as to achieve the greatest expected finite-horizon
cost reduction. In this framework, we maximize o by maximizing the expected number of objects up-
to-date (with 8 = 0) within the index, summed over a finite number of time steps. The expectation

in this case is uniform over the objects. By taking the expected number of objects out-of-date
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as the cost, and maximizing the cost reduction summed over many time steps, a is maximized.
These concepts were presented in Chapter 2. We show how this optimization can be expressed as
a parametric network flow problem. While useful as an analytical tool, the discrete time method
does not scale well, and may not be practical for large monitoring systems. The second half of the
chapter adds some assumptions to make the optimization more practical—continuous time Poisson
processes are used instead of the more general Markov models. Thus each object is characterized
by a single number, namely the change rate. This reduces the problem from selection the next
set of objects to be observed to assignment of a desired observation rate for each object. For an
object having a known change rate, this means that only one decision is necessary, as opposed to
the continual reassessment required within the discrete-time framework. The continuous algorithm
seeks to partition the objects under observation according to their popularity and rate of change,
and then observe uniformly within each bin of the partition. The rate assignment is constrained such
that the sum of the rates cannot exceed some fixed value. We demonstrate a simulated annealing
approach to this process of division and rate assignment. In this approach, a solution consists of
a partition of the monitored object space, by change rate and importance of each index entry, and
an allocation of rate into the corresponding bins. The fitness of such solutions are calculated by
directly evaluating numerical integrals for « within the partitions and then combining these via a
weighted sum. We conclude the chapter with a discussion of the practical issues surrounding the

implementation of our algorithms.

4.1 Optimizing observation for discrete-time systems

Recall for a moment the goals that were spelled out in Chapter 2: on page 23, we defined two ways
to measure the performance of an indexing system using the discrete-time Markov chain model.
These were the expected number of objects out-of-date and the expected number of time units out

of date. This section concerns the minimization of these functions.
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4.1.1 Greedy cost minimization

The simplest possible strategy for both discrete and continuous time cases is to immediately re-index
the objects having the highest probability of going stale in the near future. For the discrete time
domain, this translates into sorting objects in the index by their contribution to the total cost, and
scheduling those objects for observation for which the greatest cost reduction is taken immediately.

Specifically, applying (2.20)

d
C(l) = Z (]- - [Mfr]ir(ir+kr))’ (4].)
r=1
or (2.22),
d
Cey =Y Z (i, ky), (4.2)
r=1

to calculate costs, one can find the best way to reduce the costs that will be incurred in the coming
single time unit, and thereby maximize the expected « over a finite time horizon. Please refer back
to Chapter 2 for the full definition of the expected number of time units out of date, Z (i, k), and
the age transition probability matrix, M.

Proceeding with the optimization, assume that the system can check N, objects per time interval.
The smallest possible cost for the coming time unit can be obtained if we fetch and re-index the N,
objects corresponding to the largest terms in the cost summation. These terms correspond to those
objects with the largest probability of being out of date (2.20), or those that we expect to have been
out-of-date the longest (2.22). For all of the N, objects we fetch, the probability of being incorrectly
indexed, at the end of that time interval, is zero. If there is no single best choice for the N, objects,
as is possible when applying (2.20), then we can select N, at random from the pool of best choices.
This situation would occur, for example, when applying (2.20) if more than N, objects have unit
probability.

These are the greedy versions of cost minimization, inasmuch as the greatest immediate cost
reduction is chosen. Refinements of these methods operate along the same lines, observing those N,

objects which afford the greatest reduction in cost. More complex methods can find the expected
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cost for more than a single time unit, and the actions corresponding to the lowest long-term expected
cost can be used. These methods, which will be discussed in a later section, give more assurance of

long-term optimal performance.

4.1.2 “Liveness” conditions

While having the advantage of being relatively simple, greedy algorithms often force suboptimal
long-term performance. For example, in the re-indexing system, there is the possibility of never
checking some subset of the objects. It may be desirable to avoid this, especially if all items to be
indexed are equally important. In queueing models for computer operating systems, the analogous
constraint that all processes be served is termed a “liveness” condition, which would not be met
if there were a subset of objects that changed so quickly that its members always contributed the
largest terms in the cost function. Fortunately, the two discrete-time algorithms presented both can
be shown to eventually check all objects, under the key assumption that we select the N, objects
without any preference for particular pages (when there are more than N, valid candidates).

We first consider liveness with respect to the expected objects out-of-date described by (2.20).
Since each term in the summation is a probability, no term can be larger than 1. Moreover, once a
term becomes unity, it remains so until the object to which it corresponds is checked. If all terms
eventually become 1, then all objects will be checked. Examining the form of each probability term
(as given in (2.19)), it is clear that this probability becomes unity for object r for any time that forces
the sum to include an entire row of the matrix M,.. As mentioned above, if there are more than N,
objects corresponding to terms having probability 1, then some subsidiary selection process must
be used. If no preference is given to any object, then even a random selection will guarantee that
all objects having the maximum probability (in this case, 1) will be checked eventually. Therefore,
the liveness condition is satisfied by the one-step greedy minimization of the expected number of
non-current objects.

Liveness follows in similar fashion for the expected number of time units out-of-date in (2.31).
If the objects with the N, largest values of Z(i,, k) are selected for observation, as in the greedy

algorithm, then any object will eventually be included in the observed set. This stems from the
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fact that Z(i,, kr) will increase without bound if object r is unchecked, thereby guaranteeing that
object r will have a large enough cost to guarantee its inclusion in the observed set (if we wait long
enough).

To show this, we define the smallest member of the inspected set of N, inspected objects at
time step ¢ to have expected time out-of-date Cpin(t). For the collection, there will be some time
Cmaz that is greater than or equal to Cpin(t) for all ¢. That is, there is a largest member of the
set of smallest costs. In order for an object to be included in the inspected set of N, objects, it is
sufficient to guarantee that its expected total time out-of-date be greater than Cy,q;. From (2.31),
as k, grows without bound, we are eventually just adding unity to the cost with each passing time
unit. Therefore, the expected time units out-of-date Z (i, k,) will eventually become greater than
any finite value C),q,. By analogy, imagine we have a lawn in which each blade of grass will grow
forever (becoming more out-of-date) if we never cut (observe) it. Although grass in the lawn grows
at different rates, no matter how high we set the wheels of the mower, we can always be assured

that any blade will eventually grow high enough to be cut.

4.1.3 Extending the horizon: two-step cost functions

Having an assurance of liveness is not enough to be satisfied with the long-term performance of
the system. The one-step algorithm does not take into account anything other than the current
probability of change for various objects. Indeed, no one-step method will make proper use of the
difference in change rates among objects. By using the behavior expected to be seen beyond the
first time step, we can improve expected performance in future phases of observation. This can be

seen by considering cost functions evaluated over two (or more) time units.

A simple two-step example

Consider the following simple system that demonstrates how to take advantage of object change
rates. There are two objects, A and B, only one of which can be observed per time step. Object A
changes quickly: it has a probability of 85% of having been changed in the first time interval, and

if unobserved, it will have a 95% chance during the next interval. If, however, we observe it in the
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| Sequence | Cost | Comment |

AB 0.8+ 0.25 =1.05 | lower first time unit cost; one-time unit algorithm would pick this one
BA 0.85+0.05 =0.90 lower total cost; two-time unit algorithm would pick this one

AA 0.84+0.81 =1.61 object B ignored

BB 0.85+0.95 =1.80 object A ignored

Table 4.1: Possible costs in example two-object, one-check system. For this simple system, we
have listed each strategy and its cost. The lesson is clear; it is quite possible to have lower long term cost

by extending the planning horizon.

first time interval, there will be a 25% chance of it having been changed by the end of the second
time unit. Object B changes more slowly. It has an 80% chance of being altered on the first time
step, which increases to 81% on the second step if B is unchecked on the first step. If it is checked
on the first time step, then the probability of it changing on the next step will be 5%. Assume we
can only choose one of these objects to observe per time step, and that we wish to minimize the

total expected number of objects out-of-date over a period of two time units:

1
Z k! [Prob(A changed at t) + Prob(B changed at t)] (4.3)

t=0
Here, k € [0,1] is a “discount factor” with which we account for the relative value of cost avoided in
this time unit versus that on subsequent units. This is a reflection of the possibility that immediate
benefit may be more valuable than deferred benefit. For this illustration, we assume k = 1.

There are four possible strategies for the two time units. These can be written as sequences of
observations, namely AA, AB, BA, and BB. If we observe an object, then it contributes zero cost
on that time unit, since we consider it “up-to-date” if indexed within the last time unit. Therefore,
the cost for observing A on both time units is exactly the cost of not observing B on those time
units, namely, 0.8 + 0.81 = 1.61. Likewise, we can find the two time unit cost for each possible
sequence of observations, as shown in Table 4.1. As can be seen, the greedy algorithm would select

a suboptimal strategy.
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General two-step costs In the general case, we have d objects and N, observations. Each of the
four possible strategies chosen for object r will have a single cost associated with it: (i) the cost of
not observing on the first time unit but then observing on the second; (ii) the cost of not observing
on either time unit; (iii) the cost of observing on the first time unit but not on the second; and (iv)
the cost of observing on both time units. The current cost calculations have the appealing feature
that choosing to observe one object does not affect the cost that might be contributed by other
objects. That is, the cost of not observing an object on any given time unit depends only on its age,
dynamics, and how recently it was observed. For longer horizon planning, note that the number of
possible possible strategies for a single object is 2™, for n time steps.

For the two-step problem, consider these cost possibilities in order. First, the cost of not observing

on the first time step is the same as was given in (2.19):

Cxo, = Z [Mfr]irj =1- [Mfr]ir(ir+kr) <1 (44)
JE[0,ir+kr—1]

Here, we introduce some new notation; we write two-step strategies for object r as sequences of X'’s
(do not observe) and O’s (observe). The first letter is the action on the first time unit, and the
second letter is the action on the second time unit. Thus the two-time unit cost of not observing
object r on the first time unit and then observing it on the second time unit is written Cxo, .

Alternatively, if we choose not to observe on the second time unit, we will add additional cost
to Cxo, to obtain Cxx,. The probability that the object has gone out-of-date by the second time
unit is exactly like (4.4), except that the object has aged by one time unit. This is accounted for by
incrementing the value of k,; if we choose not to observe on the second step, the cost for that time
unit only is:

> My, =1- [M£T+1]ir(ir+kr+1) <1 (4.5)
JE[0,in+knr]

We note that this second step cost is greater than or equal to the first step’s cost: by waiting an
additional time unit, we can only add to the probability of the object having gone out of date.

Specifically, we add the probability that the object went out of date on the additional time unit,
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which we calculated in (2.26). Adding (4.5) to the first-time unit cost (4.4), we obtain Cxx, : the

two-time unit cost of not observing on either time unit (denoted Cxx, ):

9 — [MkH

Cxx, T ]ir(ir+kr+1) - [Mfr]i,(z’ﬁkr)

(4.6)
2Cxo, + Pk, + iy +1,i,) < 2

This cost is the entire cost for both the AA and BB options in Table 4.1, since both required that
one of the objects not be observed for both time units. In general, this will be the largest possible
cost for a single object over the two-time unit period, and it cannot be greater than 2. Moreover,

from the second line of (4.6) we know that
Cxx. > 2Cx0, > 0 (4.7)

Next, we consider the cost Cox,, incurred if we observe object r on the first time unit but not
on the second time unit. Zero cost is contributed on the first time unit, and the second time unit
contribution depends on the new value of & = 1 (time units since the most recent observation), and
the newly-observed age ¢;'. Since only a distribution of possible values of i;" is known, the second-
time unit cost will be a weighted sum of probabilities from the matrix M, of one-time unit state
transition probabilities (2.1). If the object was observed to be in state j, on the first time unit, then
the probability of it being out-of-date at the end of the second time unit is just preset(jr), as defined
n (2.2). These probabilities are also the first column of the matrix M,.. In our cost function, the
values in this column vector will contribute in proportion to their probability of occurrence. These
probabilities are obtained from the row over which we sum in (4.4), or the distribution of possible
ages on the previous time unit. Therefore, the probability that the object is out-of-date at the end

of the second time unit, given that the object was observed on the first time unit, is

N
Cox, = [M¥F], . My <1 (4.8)
Jr=0

Note that this cost, like Cxo,, can be no greater than 1. If we expect that object r has changed

with some large probability, then we would rather observe it on the first time unit rather than
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the second: Cxo, > Cox,. Alternatively, if we expect that no change has occurred yet, then we
would rather wait to make an observation. For example, if an object will change on the second unit
with probability 1, but definitely will not have changed by the end of the first time unit, then it is
beneficial to wait until the next time unit to observe it: 0 = Cxo, < Cox, = 1. Most cases are less
extreme than this, but we emphasize that the sign of the difference Cxp, — Cox, can be positive
or negative.

Finally, for completeness, two observations of object r will force it to contribute zero cost:
Coo, =0 (4.9)

This may be the best option when object r is changing very rapidly, or when Cxp, ~ 1 and
Cxx, = 2. Clearly, this implies that the object changes essentially every time unit, making it an
almost guaranteed success for cost reduction. However, too many such objects in a collection might
cause much of the collection to be ignored on a regular basis, and performance will suffer.

Now that we can determine a cost for all possible strategies, we are able to add these costs for an
entire collection. Any observation plan for n time units will partition the d objects into 2™ groups

corresponding to the possible n-time unit strategies. In the case of n = 2, the groups are:

00 = [001,00s,...0000|],
XO = [X0:,XO0s,...X0 0],
(4.10)
OX = [0X1,0Xs,...0X|0x|], and
XX = [XX,XXs,...XXxx]-

The sizes of the groups are constrained so that no more than N, observations can be made in a

single time unit, and all objects are accounted for:

00| + |0OX| + |XO| + |XX| = d
00| +|0X| = N, (4.11)
00|+ |XO| = N,

The first relation is a constraint that each object is assigned exactly one strategy, and the next two

are constraints on the number of observations per time unit. Notice that these imply |OX| = |XO|.
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Since there are three equations and four unknowns, the system reduces to a single parameter choice.
Once any one of the sizes is fixed, then the others are fixed as well—we could, for example, freely
choose the number of objects that would be observed on both time units at some 0 < k < N,.

The “observe-n-times” group (e.g., group OQO) will always contribute zero cost; other groups
may have nonzero cost. The cost for the collection is the sum of the cost over all members of all

nonzero cost groups:

Coy = Z Cxx. + Z Cox, + Z Cxo.,n (4.12)

keXX leOX meXO

In a collection of d objects, in which we can check N, per time unit, there are dCfvo possible
combinations of two-time unit strategies. A brute-force approach, in which we evaluate a cost for
each option, is entirely infeasible for the collection sizes under consideration.

Fortunately, the two-time unit problem can be stated as a simple minimum-cost network flow
problem, as diagrammed in Figure 4.1. In this context, we think of objects “flowing” to particular
two-time unit strategies, building the sets (4.10). Each graph of this type has d unit sources cor-
responding to the objects in the collection, and variable-size sinks corresponding to each allowable
strategy. The sink sizes enforce the constraints on the number of observations and the number of
strategies to be assigned. All sources are connected to all sinks by unit capacity links. Costs on
these links correspond to those presented above as Cxo, (4.4), Cxx, (4.6), Cox, (4.8), and Coo,
(4.9). Only a few costs are (generically) labeled in Figure 4.1 to avoid clutter.

Turning attention again to the sinks, we recall from (4.11) that the set sizes for the two-step
problem can be fixed by making one free parameter choice, say |O0O| = k,0 < k¥ < N,. This
determines the sizes of the other strategy groups, which is also the size of the corresponding sinks.
For each allowable value of k, there is a single lowest cost “strategy flow”. As an example, in
Figure 4.2 we show the networks corresponding to the two subproblems which correspond to paired
strategies shown in Table 4.1. Since no object can be assigned to more than one strategy, this is
an integer flow problem. Since the sources and sinks are all of integer size, integer flows can be
found using standard algorithms without additional constraints [Ber98]. It is also possible to allow

real-valued flows, where a mixed strategy is selected first, and then actual strategies are selected
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Each object

iSaunit source. m d-2a+k

. Each observation strategy
isavariable-size sink.
Figure 4.1: Two time unit strategy assignment (capacity,cost) network. This figure shows the
network representation of the two step problem, having k observations in class OQ. Unit size strategy
sources on the left feed into variable size strategy sinks on the right hand side, and each link has an

associated cost.
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Subproblem 1: Subproblem 2:
k=1, min cost=1.61 k=0, min cost=0.90
(global optimum)

******* (Dashed lines are connections
to sinks of size 0)
(Thick lines are connections
in optimal subproblem solution)

Figure 4.2: Two-step strategy assignment network corresponding to Table 4.1. This figure shows
the possible networks for each subproblem, as described for Figure 4.1. There are only two possible sizes

|O0O|, each corresponding to one network representation.

probabilistically according to the proportion of flow from an object to each strategy. Once the sink
sizes are set, the solution of the subproblem proceeds according to the standard methodology (see
[Ber98] for more) for finding minimum-cost flows.

The two-step problem is thus (at worst) a series of N, minimum-cost flow problems. Addition
of more time steps to the problem adds one constraint per time step, corresponding to limiting the
observations per step to N,, but the number of possible strategies grows exponentially. The number
of nodes (and therefore edges) grows as 2™ for n steps, so the problem size can become unmanageable
if planning covers many time periods. Therefore, there are 2" — n — 1 free parameters for the n
step problem, so solving all the flow subproblems does not scale well in the number of time steps.
Regardless of the number of time steps, each subproblem is a capacitated transportation problem
from d unit sources to 2" sinks (for n time units).

As an alternative to the problem of solving multiple network flows (for each subproblem), the
free parameter k and the associated constraint equations (4.11) could be combined to form a single

linear program [Lue84]. For the two-step problem, this can be written as the combined system of
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the three size constraint equations and a set of constraints that allow only one strategy to be chosen

for each of the objects in the collection. Thus we are trying to solve
min ¢Tx subject to Ax =b,x >0 (4.13)

where ¢, x, A, and b are given by the equations

¢’ = [Coo, Cox. Cxo. Cxx, Coon Coxs Cxon Cxxs -], (4.14)

xT = [ vector of (1,0) flow assignments ], (4.15)
1 1 1 1 11111111 T
1 01 010101010
110011001100

A - |111100000000 and (4.16)
0000111 10O0O00O0
00 00O0OO0OO0OO0OT1IT1T11

bT = [d N, N, 1 1 1 ---]. (4.17)

The first three rows of the matrix A correspond to the observation set size constraints; these require
the sum of all assignments to be d, the number of objects, and that the number of observations made
during each time unit be N,. Note that additional time steps will add one more row (constraint)
per time step and will increase the number of columns in proportion to 2™ for n time steps. The
remainder of the rows of A constrain the solution such that there is only one strategy chosen per
node.

This linear program representation still represents a network flow, but established means for
minimum cost flow cannot be applied here, since the size of the sink nodes is allowed to vary as part
of the problem. Since this is not a traditional network flow problem, let us state it more formally

for the benefit of future investigators who might wish to classify it and investigate its complexity:
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The n-step binary strategy minimum cost flow problem

Consider a network having d source nodes, each of unit size, and 2™ sink nodes of size as
described below. All source nodes are connected to all sink nodes by edges having unit
capacity and real-valued, nonnegative cost proportional to the flow along the edge. A
flow is represented by a vector x of flows along all edges; the proportional costs along
these edges form a vector c of the same dimension. The ith gink is labeled by the n-bit

th

binary representation of i, L;. The j*! component (bit) of this vector is [L;];. The sink

sizes S; must obey the n constraints

2" —1
N, = Z [Li]; Si V integers j € [1,7]
=0

where N, < d is an positive integer. We further require flow conservation, so that
2" 1

d= Y S
=0

The cost of a flow x is the product

C =xTe.

We seek the conservative flow x and corresponding sink sizes S; that minimize C.

The bits within the labels L; in this statement correspond to “observe/don’t observe” decisions at
each time step.

Regarding the expected problem size, as well as the problem’s complexity, it is sufficient to note
two things: first, for the method to accurately represent the change probabilities, the time step size
must be small enough that change probabilities remain relatively constant over that period. Second,
once a time step size is chosen, planning must be over a large enough number of time steps to account
for the long-term behavior of the more slowly changing objects. These two factors can easily create
a sitution in which a large number of time steps are necessary for good long-term performance. The
resulting network may be very large, since the sink (strategy) nodes grow exponentially, as do the
edges that connect them to the source nodes. Moreover, the cost calculation along each edge must be
repeated with every time step. As a result, more practical means of solving the problem are needed
if the method is to be applied on a large scale. Such specialized algorithms might make the problem
less intimidating for large numbers of objects, observations, and planning steps (time units).

Since the graphs involved may have a large number of nodes, approximation methods for ob-

taining near-optimal flows are important. Approximation will be indispensable in a system where
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global optimality is less of a concern than execution speed. The next section concerns optimization
in the continuous time domain, using two key assumptions: first, that documents change memory-
lessly, and second, that many documents having similar properties can be assigned a single periodic

observation strategy.

4.2 Optimization with assumptions

In this section, we will explore the optimization of an observation strategy in the presence of two
approximations. First, we will assume that objects change memorylessly, according to exponential
lifetime distributions. For such an object collection, the scheduling problem is reduced to determining
an optimal observation period rather than a sequence of observations to be made on successive time
steps. This scheme presents a tremendous advantage, since an object can simply be assigned a
single observation period that remains valid as long as the object stays in the index and has a stable
change rate and popularity. As estimates of change rate and popularity are updated or improved,
the object is simply recategorized and assigned to a new fixed period schedule.

When this reduction in complexity is available, we can afford to include the importance of
monitored objects in forming an observation strategy, expanding our view of information sources in
general. The information landscape can be mapped nicely onto three factors, each of which can be
properly taken into account when building an observation schedule. First, there is the underlying
change rate of a resource. By some definition of change, however complex, one can construct a
statistical model of how often an object is expected to change, just as has been done throughout
this work. Second, there is the demand for that resource. How interested are users in knowing what
the resource has to offer, and consequently, how much would they like to know about changes to
that resource? Third, there is the expected magnitude of the changes that take place. The effect of
this is that some changes will cause more error in the index than others. A large change will make
the index entry for an object completely wrong, while a small (cosmetic) change will not have a
large effect on the accuracy of an index entry. This distinction was addressed in Chapter 3, where
we considered the types of changes that happen to web pages. Similar analysis is possible in other

domains as well; it is probably best to normalize change in such a way that all changes can be
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thought of as having the same magnitude. This removes the effect of the third factor, leaving us
with (effectively) a two-dimensional space of information sources.

We seek to optimize observation by partitioning the space of objects to be observed into groups
of similar documents, and then treating all objects within a single group in the same way. A group of
objects will have similar change rates, change magnitudes, and demand. The reasoning for treating
all objects within a group in the same way is simple. When objects in a group change at the same
rate, and there is no attempt to arrange the observations in a particular order, there is no reason to
sample any of them any faster or slower than any other. This is only true for objects that change
memorylessly, since the probability of having changed is simply a function of the time since the
last observation, as given in (2.35). The idea behind uniform sampling is to keep the probability of
change the same for all objects within a group. A much more formal discussion of this is given in
[CLW9T].

The observation system consisting of a single queue that uses all the bandwidth available is
the best solution when all objects under observation change memorylessly and at the same rate.
Naturally, this system might manifest as a large number of parallel but identical queues which are
used to pipeline requests like instructions in a computer. Of course, in a system for which change
rates and values differ between objects, the collection can be subdivided into classes that require
the same observation strategy.

The idea of dividing the collection and applying a uniform treatment within each bin is analogous
to non-uniform quantization of binary signals[Cou93] to maximize information. One example of this
is u—law encoding of sounds'. In this case, the objective is to maximize the information transmitted
by a given number of bits by making every symbol equally probable. This partition is known to
maximize the entropy, Y, [—P; log, P;], which is an aggregate function of the bin size boundaries
and the sound for which they are encoded. A comparison of uniform and nonuniform partitions is
shown in Figure 4.3, where two possible 4-bit quantizations of a speech signal are compared. The
optimization method presented in this section is quite similar in spirit: we seek an optimal selection

of bins for the monitored object space, as well as a rate allocation into each bin, such that the overall

« «

1 As is found in files having a “.au” extension, as opposed to “.wav” files, which are uniformly quantized.
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Figure 4.3: Sound encoding: example of nonuniform quantization for optimizing an aggregate
function For the sound signal on the far right (which is a sample of human speech), we show two quan-
tizations on the left. At far left is a 4-bit uniform quantization, for which this signal yields an entropy of
2.39. The center plot shows a non-uniform quantization in which all bins are close to equiprobable, thus
making the entropy almost maximum (3.99 bits per symbol being very close to 4). This quantization was
found by selecting the bin boundaries to maximize entropy; we will quantize monitored objects to optimize

the probability of their being correctly indexed.
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probability a of being B-current is maximized for this system. Obviously, the probability weighted
sum of —log, P; is much easier to work with than our complex objective functions, as we will see.
We first discuss the division of rates, then the bin sizing, and last present the optimization routine

along with some test results.

4.2.1 Rate-equivalent partitioned systems

The main constraint to be applied in subdividing a single-queue system is the conservation of band-
width. The overall processing rate is to be held fixed in making any partition. Specifically, any
system composed of a single queue @)y operating at processing rate Ag can be subdivided into NV

smaller queues @); each having rate \;, such that the sum of the rates matches the single-queue rate.
N

Amaz 2> Ao = Z Ai (418)
i=1

Here A;q0 is the maximum available bandwidth which will generally exceed the A\ actually devoted
to downloading. Practically speaking, when N becomes large, it may be difficult to achieve this
balance due to the overhead involved in splitting the workload. A realistic observation system will
eventually suffer from over-parallelizing a single queue. Where this balance point lies is largely a
matter of the application under consideration and the performance of the observers in question.

Consider a queueing system in which M objects are being observed in round-robin fashion. That
is, an object is observed, then is moved to the back of the queue. This object then moves forward as
objects are observed and rotate in behind it. When placed in a single queue, each object is observed
on average once every Ty time units (where by definition, the observation rate Ag = M/T;). Now,
assume these M objects are then distributed amongst N round-robin queues, each of which contains
M; objects. Objects in queue 7 are processed once every T; time units, so that A; = M;/T;. Rewriting
the rate conservation expression (4.18) using the sizes of each of the queues,

M;
T' b

M N
Ty = 2T,

i=1

(4.19)
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or in terms of the probabilities

P, = ~ (4.20)
>, M;
i=1

we can write (4.19) as

N

1 P

— = —. 4.21

T e

A simple example of such a rate-equivalent partition, and one that finds application in many
actual systems, is to turn a single queue into a number of equal size, equal rate queues, each of
which runs at a fraction of the single-queue rate. This is like choosing between one supermarket
line at rate nu, versus n lines each running at rate p. These kind of rate-equivalent systems are
discussed in standard texts on queueing theory [Coo72] and will be the foundation of the division of

rate among partitions in an observation system.

4.2.2 Subdividing an observed population

The first method we apply to split the observed objects into classes is to group them by change rate.
This division takes the form of a N-way partition [0, P;, P; + P,,...1] of the population’s CDF of
change rates, F'(t). For the moment, assume that the population is sampled uniformly by the users
of an index, so that the distribution of accesses is the same as the population’s distribution. Each
value of P; defines the fraction of the population in bin ¢. One such division of a population into four
bins is diagrammed in Figure 4.4. The partition is visible along the vertical axis of this figure. Each
value P; is the fraction of the population contained in bin i. Note that the partition can also be
expressed in terms of mean change times, so that a partition is a set of times [0, t1,t2,- .., t;,. .. 00].
This equivalence is shown in Figure 4.4 as intersections along the horizontal axis.

After subdividing the population by mean change time, a processing rate can be assigned to each
bin in such a way as to satisfy (4.21). Once the bin boundaries and the processing rate are set, the
probability «; of that bin being S-current can be determined. For all NT bins, the probability «

that a randomly selected object’s index entry is B-current is just a weighted sum of the probabilities
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Figure 4.4: A partition of the mean change time CDF. To subdivide a population of observed
objects, the mean change time CDF can be partitioned into bins of similar change rate. Along the vertical
axis, the CDF is partitioned such that the height of each bin is the fraction of the population that would be
included in that bin. These intersect the horizontal axis at a corresponding set of mean change times. This

illustration uses four bins of arbitrary sizes, but in principle, any number or size of bins could be used.

a;, so that
NT
a = Z Piai (4.22)
i=1

Keep in mind that the probabilities P; are both access probabilities and population probabilities.
Later in this discussion the two probabilities will be different.

Finding each of the «; is almost exactly like finding a for the single-queue system, as was
calculated in (3.17). The only difference is the range of integration and the access distribution used.
Given a PDF f(¢) of the mean time between changes for an imposed demand, and the corresponding
CDF F(t), the integral to find «; for each bin is

(" f@ 51— e-(/OT-B)
m_LAEEF7@3HE+__EF__ﬁ (4.23)

The first half of the integrand is the probability distribution of mean change times within the bin.

The second half is the familiar relation giving the probability of S-currency for a particular mean
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change time, t. For web pages, if we use the Weibull distribution of mean change times that was
developed earlier, this integral can be evaluated numerically for any partition and set of observation
rates Tj.

The function f(t) can also be thought of as a marginal distribution of mean lifetimes, where
the dependence on resource value has been integrated out. Clearly, it is entirely possible to have a
class of objects that change at the same rate but have widely varying value. When there is a wide
variation in access probability across pages at a single change rate, it can be advantageous to add a
dependence of the access distribution on resource value.

How one should represent value is another matter; we provide three possibilities. One inter-
pretation of an object’s value within an index is in terms of the number of references returned by
the index to that particular object. Obviously it is more important to be correct with respect to
the objects that are always returned to users. A second possibility for a value representation is a
measure of how frequently users follow a reference provided. For a web search engine, this would
translate into the a user selecting and following a link to a result. Many of the major engines either
have used or are using tracking methods for gathering this data, by capturing and redirecting user
selections (this is true for Excite, Lycos/Hotbot, Direct Hit? and others). This is a convenient means
for engines to obtain simple relevance feedback.

The third approach to defining the value axis, which can be applied in the absence of direct
user feedback, is some external measure of the value of the page within the index. Presumably this
value would be positively correlated with popularity and would therefore be a good discriminant for
dividing the population. Nonetheless, this kind of normalized measure of value may have no direct
correlation with the frequency of access or usage—the Google search engine, for example, utilizes
a measure called PageRank [BP98] that indicates how many documents link to a given document.
Additionally, their algorithm weights links from high-rank pages such that they have a greater
contribution to the rank of a given page. That is, a link from Yahoo counts much more than a link
from a personal homepage. In some sense, having a high rank indicates that it is more important

to keep track of that document, user references aside. This feature has helped elevate Google to

2http://www.directhit.com/
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the top of user satisfaction surveys [Goo99]. Being what appears to be a good indicator of resource
importance, it would make a natural measure of normalized value as well.

When the population was partitioned only by mean change time, it was implicitly assumed
that the population of documents was uniformly sampled by the users of the index. That is, all
objects were equally likely to be demanded at any time. Obviously, when the notion of value used
is the access frequency (or the mean time between accesses), there is a clear relation between the
distribution of this factor within the population as opposed to its distribution among accesses, and
the distribution of accesses is not necessarily the same as the distribution of the population.

Let us explore this further. We will discuss a direct method where an object is described by
two parameters: a mean time between changes, and a mean time between accesses (inverse demand,
if you like). One can estimate the shape of this population distribution from index usage and
observed changes. How the population is sampled to determine the probability of B-currency is
another matter. This is where the mean time between accesses becomes important. The sampling
distribution, or how many accesses are made relative to other resources, follows directly from the
definition of “mean time between accesses”. For example, we know that the number of accesses
made for any object having a mean time 7 between accesses should be twice that (on average) of an
object having mean time between accesses of 27. Thus we have that the sampling distribution must
obey

(1) = k v(kT), (4.24)
for any positive k, from which it follows that

() = Cor™" (4.25)

is a valid scaling function. Here Cy can be chosen for normalization. The access PDF that follows is
the product of the scaling function and the population PDF, suitably renormalized so as to remain a
PDF. As such, the population density must fall off faster than 1/7 as 7 — 0. Otherwise, the access
PDF would be infinite at mean access time 0, which is unacceptable. Summarizing, the access PDF
h(t,T) is related to the population PDF f(¢,7) by

COf (t7 T)

h(t,7) =v(t,7)f(t,7) = = (4.26)
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with Cp chosen for normalization. Using a population constructed such that the marginal density
with respect to mean time between changes is the same as that determined for the web in an earlier
section (see Figure 3.22), Figure 4.5 shows how the population and access densities are related.
With this notion of value, the access density f(¢) can be expanded to be a joint distribution f (¢, 7)
that includes a dependence on the mean time between accesses. In this way, the integral (4.23) is
altered to account for the possibility of having monitored objects that have the same change rate
but differ in terms of access frequency. The integral then becomes a double integral over mean time
between accesses, 7, and mean change time, t. For a rectangular area in this space, the probability

of a random access being fS-current is

T=T;  t=t; 1 — e—1/)(Ti;—B)
Qi = / [h G T):| [ﬁ + © dtdr. (4.27)
T=Tj_1 J1

—tii L P T; T/t

To find all the ayj, the 7 axis is sectioned like the mean change time axis was above, so that the
partition [Tmin, 71,72, -+, Tj, - - - Tmaz), 0 conjunction with a partition of the ¢ axis, defines blocks in
which to evaluate (4.27). Finally, to normalize the contribution of each «;; to the total sum «, we

divide by the probability P;; of a given access falling within bin ¢j. This probability is defined as

T=Tj t=t;
P,'j = / h(t, T)dtd‘T. (428)
T=Tj—-1

t=t;—1

Note that this differs from the probability of a given population member lying within this region.
We also point out that (4.27) could be factored differently to account for the fact that there is no
dependence of the inner probability term on 7, but only on the mean change time ¢. This might speed
the calculation slightly. Additional weighting functions that skew the probability result according
to 7 may also be added, but this does not change the fundamental form of the problem, only the
inner term of the integrand.

Additionally, the value chosen for 8 could reflect a greater or lesser tolerance for error. A function
B(t, 7) might have larger values of 8 for low-access or slowly-changing objects, but very low values
of B for fast-changing, popular objects. The choice of this function will be directed by examining

objects within each bin, and making a determination of how much error is tolerable. One reasonable
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Figure 4.5: Progression from the population PDF to the access PDF In the top plot, we have a
hypothetical population PDF f(¢,7) that depends jointly upon the mean time between changes (MTBC) ¢
and the mean time between accesses (MTBA) 7. The function was chosen such that the access times and
change times have the same shape (all conditionals are just scaled versions of the corresponding marginal
distribution). The center plot shows the scaling function 7~ !. Last, the lower plot is the PDF h(t,7) that
results from multiplying the top two plots and renormalizing. Note how the peak in this plot has been
shifted to a lower mean time between accesses, and the contour lines have been flattened and compressed

near the MTBC axis.
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choice in the absence of better information would be the plane 8 = kit + k-7, where the constants
are chosen to give a value of 8 = vT for the slowest changing, least popular object (the upper right
corner of our plots). For this object, some large fraction of changes would be forgiven. The plane is
the simplest choice; any desired function could be used. The idea is to reflect a decreased concern
for instantaneously correct indexing of more slowly changing or less popular objects.

Finally, the expected probability of being fB-current with respect to a demand distribution is
found as in (4.22), by summing the contributions from all bins ij, over NV access times and NT

mean change times:

NT NV

o = Z z R-J-aij. (429)

i=1 j=1

4.2.3 Population partitioning for ¢ maximization

Optimal observation within this scheme translates into creating a partition and bandwidth allocation
for a given number of time and value bins that maximizes (4.29). Let us summarize the problem we

are solving:

Rate allocation and population partition to maximize Pr(3 — current)
Consider a collection of objects that change according to independent Poisson processes.
The objects are described by a probability density f(¢,7) over the mean time ¢ between
object changes, and the mean time 7 between user accesses to an object’s index entry.
The total observation rate available is Ay objects indexed per unit time. The objects are
divided into regions R;, each of which is allocated a portion A; of the total rate. The sum
of the rates is constrained by
A= Ai
2

The probability « that the index is S-current is given by a sum

o= Z P; Pr(R; is B-current)

(3

where Pr(R; is S-current) is as stated in equation (4.27), and P; is the probability of an
index access in region R;. We seek the rate allocations A; and the associated regions R;
that maximize a.

In general, this is a very high-dimensional problem space, having many locally optimal solutions.
Additionally, the solution set is constrained by rate conservation (4.21) and cardinality constraints

such as having non-overlapping bins that completely cover the object space. Obviously, since the
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terms of (4.22) and (4.29) result from integrals like (4.27), the problem is nonlinear as well.
Solutions S to this problem take the form of a partition of (¢,7) space (which are mean time
between changes and mean time between accesses, respectively), and a rate allocation among the
bins. We implement the partition as a rectangular grid over the space of mean change times and
object values, although any partition of the space would suffice. Partition schemes having finer
quantization in regions where the solution is sensitive to quantization errors should perform better,

for example. In our simple rectangular case, a solution consists of:
e S.change times : a set of N7 + 1 time grid lines; the first and last boundary lines are fixed.
e S.access_times : a set of NV + 1 value grid lines

e S.rate_ matrix : a matrix of NT x NV rates, corresponding to the bins formed by the grid

lines

We show an example partition of the population in Figure 4.6, which uses the same population and
access density that is used in our examples on the web, shown in Figure 4.5.

Any optimization method used in this problem must be robust enough to work with the con-
straints laid out above, and also be able to search for a globally optimal value (rather than a locally
optimal value). For its simplicity and ability to search for global optima, we describe a simulated
annealing ([Hay94] for example) approach to maximizing « for a given value of 8 (or a function
B(t,v)).

The idea in a simulated annealing approach is to have a means for moving from one solution to
another candidate solution that is within some local neighborhood, then to swap solutions under
certain conditions. Specifically, the new solution’s fitness is evaluated and compared with the present
solution. With an ever-decreasing probability, a worse solution will be accepted, while a better
solution is always accepted. In this way, the method may descend into a local performance valley
in order to ascend a performance hill on the other side, although the probability of taking downhill
steps is reduced as time advances to force convergence on an optimal value. For high-dimensional
spaces like this problem presents, it is necessary to have a schedule that enables the method to

explore a large part of the space before settling into a neighborhood of the global optimum.
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Figure 4.6: Partition of an access PDF This figure shows an example partition of a population, derived
by splitting the marginal distributions (the left and bottom plots) into equiprobable bins. The resulting
partition of access space has bins which are close to equiprobable. It is not possible in general to choose
NT + NV gridlines that result in NT X NV equiprobable bins. For that matter, bins with equal probability
are not necessarily the optimal partition of the space, either. This is, however, a good initial partition for

most problems.
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Three things are necessary for implementing a simulated annealing algorithm:
e A function for evaluating the fitness of a solution S

e A function choosing an additional solution within a local neighborhood of solution S, chosen
such that all solutions are reachable from all other solutions by a connected series of neighbor-

hoods

e A schedule for decreasing the probability of choosing a less optimal solution to replace the

present one, or a cooling schedule

We have already described the function for evaluating the fitness of a solution S; the various
manifestations of (4.22) and (4.29) accomplish this. For our neighborhood function, we will use a
function which either “nudges” a randomly-chosen boundary line, or swaps a bit of check rate be-
tween two randomly chosen bins. A connected series of such neighborhoods will be able to reach any
solution in the space. The function for choosing new candidate solutions from a local neighborhood
is best expressed as pseudo-code:

if (rand(1)< (1/NT=NV) ),
# -- nudge a boundary value, somewhat infrequently

if (rand(1)>0.5),
# -- nudge a mean change time boundary
time_boundary=select_random_time_boundary() ;
nudge_time (time_boundary) ;

else,
# -- nudge a value boundary
value_boundary=select_random_value_boundary() ;
nudge_value(value_boundary) ;

end

else,
# —-- swap some check rate from one bin to another

binl=select_random_bin();
bin2=select_different_random_bin(binl);

swap_some_rate(binl, bin2);
end

When nudging a boundary, the check rate is kept constant for all bins that change in size (namely

the bins on either side of the boundary that moved). This is done by balancing pairs of terms in (4.21)
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such that any change in P; is offset by a proportional change in T;. Likewise, when exchanging the
check rate between two bins, the boundaries of the bin are not adjusted. For both nudging boundary
lines and moving rate from one bin to another, we use a maximum percentage change. That is, the
maximum rate exchanged from one bin into the other is some percentage of the smaller of the two
values. The choice of this “damping factor” is discretionary. Values around 25% were good for coarse
exploration of the solution space, while smaller values were good for fine-tuning in the neighborhood
of a solution thought to be globally optimal.

Of course, any partition of the object space is acceptable; we will only discuss the problem
for a rectangular grid. The problem becomes more difficult with irregularly shaped partitions, since
integrating (4.28) and (4.27) over these regions may be challenging. Many possible partition schemes
consist entirely of rectangular pieces though not necessarily defined by grid lines. Such schemes would

be equally easy to integrate, but would require slightly greater algorithmic complexity.

4.3 Optimizing web observation

This subsection will outline the use of the above optimization scheme for a hypothetical search engine.
Throughout this discussion, it is assumed that it will be possible to determine the distributions
f(t,7) and h(t,7) by experiment. Once these functions are available, running the above algorithm
is straightforward; the integrals are evaluated numerically. The examples to come are computed
using a hypothetical population PDF and CDF in which the mean time between accesses is a scaled

version of the mean time between changes.

4.3.1 Effect of varying total bandwidth

A number of experiments were run using different amounts of total bandwidth. As in (4.21), the
total time Ty to re-index the entire collection gives the rate budget \g = 1/Tp. In summary, our
experiments demonstrate that the optimization yields only modest gains for observers that have a
large amount of bandwidth (meaning, T} is only a fraction of the average t for the access distribution).
Conversely, when observers are overworked and Tp is much larger than the average value of ¢ for

the access distribution, the optimization can improve performance significantly. Recall from the
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Figure 4.7: 6 x 6 grid, T = 10 days With so much bandwidth available, the gains resulting from the

optimization are minimal, yielding a performance increase of only about 2% from the single-queue case, ag.

parameter estimation shown in Figure 3.22 that the average mean time between changes for this
population is 138 days. Generally the performance increase for the overworked observer comes at
the expense of fast-changing, relatively unpopular resources that are all but ignored, so that the rate
that might have been allocated there can be spent elsewhere.

For a 6 x 6 grid, and a value of § = 1 day, Figures 4.7 through 4.11 show the best solutions
discovered in 2 x 10° steps, which took about 8 hours per solution on our machine® Each figure
in the sequence shows the effect of a reduction in bandwidth, spanning the total re-indexing times
To = 10 days to Ty = 300 days.

These figures contain a number of pieces of information. First, all the plots show the contours
of the access PDF (as was used earlier to generate Figure 4.5) superimposed on two images. The
left-hand image shows the relative allocation of rates amongst the bins, where light color denotes
a high rate allocation and dark indicates a low rate allocation. The right-hand image shows the

relative contribution of each bin’s a;; to the total sum «, as in (4.29). Again, light color indicates

3The machine in question is an Intel Pentium IIT 600 MHz running Windows NT 4.0, having 512 MB of RAM and

a 9.1 GB ULTRA SCSI II disk. Our implementation uses MATLAB 5.3R11.
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Figure 4.8: 6 x 6 grid, T, = 30 days The rate allocation in this solution is somewhat curious in that it
appears the upper left-hand bin could have its share reduced. As above in Figure 4.7, the percentage gain

from the optimization is fairly small, only around 3%.
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Figure 4.9: 6 x 6 grid, To = 100 days Here, where bandwidth is only a tenth of that available in Figure
4.7, the optimization begins to pay off somewhat more. Note also that the fast changing, low-popularity

portion of the collection is beginning to be ignored.
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Figure 4.10: 6 x 6 grid, To = 200 days Comparison of this figure with Figure 4.10 shows how the ignored

set grows as bandwidth is reduced. Optimization yields around a 15% (relative) improvement.
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Figure 4.11: 6 x 6 grid, To = 300 days When bandwidth is reduced even further, the optimization
continues to be more worthwhile, at the expense of the low-popularity, fast-changing document set. The

performance increase is around 20% (relative).
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Figure 4.12: 10 x 10 grid, To = 200 days This figure shows that a slight improvement can result from the
addition of more grid lines, but it is very much a case of diminishing returns. The only benefit of having a
10 x 10 grid is a few tenths of a percent performance improvement. From the numerical side, this simulation
is valuable in that it shows how the optimal rate allocation is very similar to that in Figure 4.10. Both
appear to be discretized versions of the same surface. This fact could be useful in refining the optimization

technique used since a finer quantization could be used along this line.

117



a large contribution and a dark color is a small contribution. Both plots show the strategy from
different perspectives. On the left-hand side, we get a feel for the amount of “effort” expended to
receive the benefits shown on the right hand side. For each plot, at the top of the figure between
the two images, we state the probability ag that results from using a scheme with one large bin that
uses all the bandwidth, or a single observation queue that runs at a set rate. This simple solution
is the baseline against which other solutions are compared. It is calculated using a suitably altered
version of (2.39) in which the access distribution h(t,7) has replaced the population distribution
f(t). Each solution’s value of «, as determined by (4.29), is listed just below the baseline value «g.

In most of these examples, high rate allocation is correlated with a low contribution to the total
sum ¢, up to a point. When the contribution to « is very near zero, the rate expended is near zero
as well. Curiously, this indicates that most of the bandwidth is spent watching objects that lie along
a certain boundary line, beyond which almost no effort is expended. The situation is especially
pronounced when Ty is large, as in Figures 4.9 through 4.12. This is exactly the situation described
in the introduction, where we presented the choice between observing 30 different monthly-changing
sources and a single daily-changing source. The best solution was to watch the 30 monthly-changing
sources and ignore the daily changing source, although we admitted the possibility that a very
popular daily-changing source might not be safe to ignore. In all these example plots, the higher Tg

becomes, the sharper the boundary is between the observed and ignored sets.

4.3.2 Estimation of possible search engine benefits

There are two ways to estimate the possible benefits available to search engines if this optimization
is applied. Both involve finding an estimate of Ty for the engines. One possibility is to assume
that search engines use a periodic re-indexing schedule, and use our experimental values of a (from
Figure 3.26) to estimate Ty from the values of aqg in Figures 4.7 through 4.12. Each of these gives a
value for ag; by interpolation we can estimate what T will be for an intermediate value of «. This
is equivalent to just reading the figure off of the point on the surface in Figure 3.23 where a = ag
and # = 1 day. When this is done, we find that the search engines would have values of Ty roughly

between 100 and 150 days. The second method for guessing 7Ty is similar. We can note where each
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engine crosses the a = 0.95 boundary in Figure 3.26, and use the data presented in Figure 3.24 to
find a Ty corresponding to that value of 5. This is the method employed in Chapter 3, where it was
estimated that typical engines have a value of Tj between around 75 and 120 days.

Using an estimate of Ty, we can estimate the amount of improvement that could be expected
were the algorithm applied for each search engine. On the faster side, for Ty ~ 100 days, we have
that @ —ag = 0.04, so that the fast search engine in this spectrum might expect a (0.04/0.62) = 6.4%
improvement. For a slower engine, closer to Ty &~ 150 days, @ — ag =~ 0.055, which would represent
a (0.055/0.47) = 11% relative improvement.

Applying these percent improvements to the experimental § = 1 day performance figures, we
estimate that the faster engines could have a = 64% for 8 = 1 day (versus the experimental
a = 60%), and the slower engines could attain a = 56% for 8 = 1 day (versus 50% by experiment).
By experiment, between 40 and 50% of pages had changed at least once since last visited. If our
algorithm is applied this range could be 36 and 44% instead. Again, this assumes that the search
engines tested currently use some form of periodic re-indexing.

Our examples have taught some valuable lessons. First, when bandwidth is plentiful, it may not
be worth the trouble to attempt to divide a collection in this way in order to increase a. When we
used Ty = 10 days, about 1/14 of the expected mean time between changes for web pages, there
was only a 2% performance improvement in « for § = 1 day, from about 94 to 96%. Optimal
solutions in the high-bandwidth case are only slightly better than extremely simple ones, and it
is surprisingly easy to construct sub-optimal solutions. However, when the optimization is run for
Ty = 600 days, the value of « increases from the round-robin value of around 0.2 to a value closer to
0.3. In situations like this where bandwidth is relatively scarce, the optimization becomes more and
more worthwhile, and generally succeeds based upon ignoring the portion of the population that is
low-popularity but fast-changing. Examples of such low-bandwidth scenarios include observations
made by single users on wireless links—remember that the idea of («, 3)-current can be applied to
any observer, not just search engines.

Additionally, it can be seen that a very effective way to increase the probability of an engine

being S-current is to shrink the collection by eliminating redundancy. This is a huge area of research
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unto itself. As has been mentioned in [LG99], there is a definite tradeoff between index size and
how up to date the index is. Since most queries can be answered with a much smaller set of
documents, reduction of collection size can pay great dividends without too much adverse impact
on user satisfaction. The portion of the collection that remains will have a much greater probability

of being f-current.

4.3.3 Further considerations for observing the web

The algorithm’s performance depends upon the ability to accurately lump documents into bins of
similar change rate and similar value. To the extent that this can be done, the algorithm will
perform as advertised. However, as addressed earlier in the thesis, it can be quite difficult to obtain
accurate estimates for the rate of change when perhaps only one or two changes may have ever been
observed for an object. Conversely, fast-changing object will present plenty of data on change rate.
Likewise, it is simple to make an accurate determination of mean time between accesses for very
popular resources, but it can be very difficult to do so for infrequently accessed ones.

It would seem logical that a search engine would have many more samples from which to estimate
the access distribution than it would for changes in those resources, since access rates are generally
faster than change rates. Search engines record millions of hits per day, each of which involves many
accesses (whether “access” means following a link or just returning a reference). This is probably
larger than the number of pages re-indexed per day, many of which will not have changed since
the last observation. As mentioned in the discussion of age and lifetime distributions, the only
reliable means of estimating change rates in the absence of a growth model is to average sampled
lifetime lengths. As such, it may take many observations before even one sample of a lifetime length
is available. This disparity in the number of independent samples will generally mean that the
variance in the estimate of a page’s mean lifetime will be larger than the variance in the estimate of
its mean time between accesses.

Let us consider the form of the variance to see how variance depends upon sample size. Assume
the mean time between accesses 7 is exponential, like the mean time between changes. In this case,

the maximum likelihood estimator 7 for 7 is just the average of the observed time intervals. Since
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each sample time 7; between two accesses is exponential, their sum is Erlang distributed. Dividing
by the number of samples (to average) simply re-scales the distribution, such that the distribution
of averages = for N samples is Erlang-N with mean 7, or

N
7=En(z) = 1 (T—]\;) gN-1e=Na/mo (4.30)
Unfortunately for our estimation problem, the standard deviation for this distribution only falls off
as 1o/ VN, so it can take a large number of samples to obtain reasonably accurate estimates. We
show the distribution for some values of N and mean value 79 = 1 in Figure 4.13.

The distribution (4.30) of means only uses observed lifetimes or ages, but using other data can
give estimates that have lower variance. For example, the content of a document often suggests
in some way that the author does not intend to change it. This is often true of news articles or
discussion group postings. It might be possible to identify such content stylistically or by some
other means. In addition, the dynamics of documents at the same site can be related. Obviously
if many documents have the same maintainer, they may also change with comprable rate. Use of
these additional properties to guess change rates in the absence of a large number of lifetime or age
samples will be necessary to bring the variance in estimated lifetime down to a more reasonable
level.

When the estimates of mean change time and mean access time are poor, it may do more harm
than good to place an object in a bin that might be incorrect. When these parameters are uncertain,
ideal divisions of the access/change rate space along crisp grid lines are blurred by the estimation
errors that may have occurred. The net result is a partition in which many objects are in the wrong
bin and are not sampled correctly.

One lesson to be learned is that the local density of partitions of the object space should coincide
with the quality of the estimates used to place objects in those bins. That is, if it will generally
be the case that only two or three samples are available, there is no sense in dividing the collection
along twenty grid lines. There is no assurance that it will be possible to accurately place objects
in those bins; the variance in the estimator might cause an object to land two or three bins away

from where it should be. Alternatively, if it is relatively easy to obtain an accurate estimate for 7
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Figure 4.13: Average of N exponential random variables The average of N exponential random
variables having mean value 79 = 1 is shown here for different values of V. Since the standard deviation
(listed in the legend as o) only falls off as 79/v/N, it can take a large number of samples to be confident
in the estimate of 7. If only a few samples are available, it may be unwise to “over-partition”, since an

inaccurate estimate will land an object in the wrong bin and it will thus be sampled incorrectly.
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or t, there is no problem with carving up the space very finely since most bin placements will be
accurate.

For search engines, the variance of the estimators for 7 and ¢ should translate into a more fine-
grained partition (larger NV') of the mean time between access, and a comparatively coarse partition
(smaller NT') of the mean time between changes. For both axes the density of partition lines can
be much larger near the origin, where more samples will be available to make estimates for bin

placement.

4.3.4 Interleaving observations

In this subsection we address two issues. First, how can observations be successfully interleaved
in the presence of variable latency? Second, can an observation system attain near periodic time
between observations? Towards answering these questions, we propose a two-tiered architecture in
which the observation bins described in the optimization sections are logically distinct from the
observation process. The key idea is that a one-to-one mapping between partitions and observation
queues will not permit periodic observations, but a two-tiered system will.

For the discrete case, we have seen that the precise interleaving of many observations makes
solutions complex, perhaps unnecessarily so. This has been partially alleviated by partitioning the
object space and creating a fixed ordering of those observations within a bin. This is augmented by
a randomized interleaving of the observations taken from those bins.

A real-world web monitoring system generally has fairly consistent total input bandwidth, but
highly variable latency in how fast a single observation can be made. To permit an observation
system to process at a fixed total (average) rate, as hypothesized in our discussion on optimization,
it is necessary to address the variation in download rate. This is especially important if we claim
that a periodic observation schedule is possible, as is assumed in much of our development of theory.
Clearly, when observation time is exponentially distributed, observing one object after another in
sequence will behave much like (4.30) and will not be periodic, but more Gaussian.

Intuitively, a downloading system must adapt such that when links are clogged and latency is

high, more downloads are run in parallel. Likewise, when latency is low, fewer downloads are run in
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parallel. In this way, overhead is kept at a minimum while maintaining a more constant throughput.
The schematic for such a system is shown in Figure 4.14. The key to understanding this system
is the same as that used earlier in (4.18). Namely, the sum of the rates of the downloaders (each
marked DL#n in Figure 4.14) must be greater than or equal to the aggregate request rate. Equality
of the rates causes problems in real observation systems, since this will cause the queue length for
any downloader to exceed any finite value. Rather than explicitly measuring the processing rate and
determining the number of downloaders from the observed rate, we propose an adaptive scheme that
routes observations to downloaders. This also allows the system to ensure that the processing rate is
kept higher than the download rate. In a computerized setting, think of each downloader as a single
process or thread, although not necessarily resident on the same machine. In fact, the downloaders
might not even on the same local network. This is the basis for a whole branch of future work, in
which download sites are selected for their proximity on the network to pages of interest. For either
the single-site case or the distributed case, the multiplexer unit in the center of the figure routes

observations to downloaders such that:

e If all downloaders DL#n are not finished with their previously allocated download and pro-
cessing task, the multiplexer will create a new downloader and route an incoming observation

to it.

e The multiplexer will route an incoming observation to a downloader that is done with its

previous task.

e When a downloader has been idle for some predetermined waiting time, it can be taken off-line.
Strictly speaking, this is not necessary-the system would function if all downloaders were up
and running whether idle or not. Taking idle ones off-line will reduce overhead during the

times when latency is smaller.

In this way, downloaders are created and destroyed in response to variable download time under a
fixed request load. So long as the overhead of managing many concurrent downloads is tolerable,
this method will allow a fixed processing throughput. We emphasize that this is not the only means

for achieving near-periodic observations and tolerating variable latency, other systems could address
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Figure 4.14: Multiplexing fixed-period observation requests To operate an observation module
with a fixed number of variable-speed queues having fixed bandwidth and variable latency, a system like
the one above can be employed. Download or observation modules, marked DL #n above, are created
and destroyed as necessary in response to observation requests. A central control unit assigns observation
requests to observers as they become available. These requests are pulled in from observation queues, marked
Q@ #m. If all observers are busy when a request is issued, another observer is started. Likewise, when there
are idle observers that do not receive a request within a short time span after completing an observation,
they are taken off-line. Think of each downloader as a process or thread, not necessarily all resident on a
single machine. By starting downloads in response to requests, the processing rate is kept just above the
request rate such that average throughput to the database is maintained. We emphasize that this strategy
for maintaining a fixed observation period will eventually be made impossible by the overhead of managing

so many download processes.
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these issues as well.

4.4 Summary of optimizing observation

This chapter has dealt with a wide variety of topics. We began with discrete-time methods for
optimizing the total number of expected objects out of date in an index. This metric could also be
viewed as a probability that a randomly selected object was up to date. Applying the concept of
(a, B)-currency, we then assumed memoryless page changes and sought a different kind of solution.
Namely, we devised a means for finding a partition of the monitored object space and a corresponding
rate allocation that optimized the probability a that an index was current to within § time units.
Our examples demonstrate that such an optimization is much more helpful to the observer that is
short on available bandwidth, as opposed to the one having an ample supply. As expected, the
performance increase always came at the expense of less frequent monitoring of fast-changing but

unpopular objects.
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Chapter 5

Conclusion and future work

This thesis has focused on many aspects of the problem of monitoring a set of changing information
sources. To begin, we developed discrete and continuous time models for finding the probability of
a change to an information source, based upon the time since that source last changed. We then
introduced the idea of (a, 8)-currency to allow for a probabilistic and temporal relaxation of the
meaning of “up-to-date”. In addition, we presented a variety of information on the frequency and
nature of changes to web pages, estimating that the expected mean time between changes for a web
page within our collection is 138 days. The associated distribution of these change rates was then
applied to the problem of a search engine monitoring those web pages. We presented discrete and
continuous time algorithms for scheduling observations. Even from our simplified models, it is clear
that search engines can increase their probability of returning 1-day current information by between
5 and 10%, and to a much greater extent when bandwidth is limited. Furthermore, the methods
we applied are not necessarily limited to search engines; other application domains can implement
these routines as well.

While much has been studied, it is easy to be overwhelmed by the number of possibilities con-
sidered but left undone. As might be expected, each subproblem has turned up many avenues for
future work, which we categorize into three areas. First, our theory should be expanded. Second,
as we apply this theory to the search engine’s problem of observing the web, we find that there are
many subtleties within that domain. We expect that these same subtleties will also arise in the third

area, the application and further development of the theory for use in other domains.
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5.1 Additional theory needed

Our method for determining («, 3)-currency rests upon the assumption that we can determine a rate
of change and an importance measure for any object under observation. It may be that determining
these is much more difficult than actually using that information. As mentioned in Chapter 4,
there are errors in this determination as in any estimation process. It is possible to account for
this inaccuracy, but we have not yet done so. A second theoretical issue, one which is quite easy to
appreciate, is that we have assumed independence of change probability between monitored objects.
Many environments will definitely have such correlations, whether this means that all web pages
within a site change at or near the same time, or that a change in one stock’s value will preclude
a similar change in another’s. A proper accounting for such correlations will dramatically increase
the complexity of the observation problem, but the benefits may scale as well.

With the additional complexity, it is tempting to ask whether distributed processing and control
can be of use. For observable objects that can self-monitor (having some programmability or built-
in capability), there may be a means for notifying a central index of relevant changes rather than
waiting to be observed. In many cases, objects “know” when they need to be observed again by a
central index that is kept current. Since interaction effects are limited, a central server’s workload is
greatly reduced by giving objects the task of requesting their own re-observation. This is very much
a push vs. pull technology contrast; a formal look into the relative efficiency of and methodology

behind the two methods would make an interesting study.

5.2 'Web observation and change assessment

Objects on the web are relatively near the goal of enabling remote observation. Each web server’s
filesystem, for example, already monitors each page for changes at the byte level; servers differ in
the degree to which they are willing to divulge this information. The diverse efforts towards making
caches more effective also permit some of the re-indexing effort to rest with web site administrators.
Short of having remote processing power, perhaps a few extra cache control fields within HTTP is

all the sophistication that can be expected.
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Remote observation with a sensitivity to change metrics like the term vector model described in
Chapter 3 might be implemented by mobile agents [Gra97b]. Like a waiter filling water glasses in a
restaurant, it may be more effective for a “mobile” observer to examine many pages at a site while
in their proximity, rather than waiting for them to change and then viewing them at higher cost
from a more distant location. Just as the waiter buys time before having to revisit the table, an
observation agent buys time before having to make more observations of a set of monitored objects
at a server. Provided that web servers might allow their processor to be shared by an indexing
agent (or agents), this might provide a means of encapsulating distributed processing and control.
Obviously such a system could have much greater efficiency than a centralized system, and web
server administrators could track or exclude the agents much more easily than if they use the same
path as an ordinary user. A simple agent server might even be built in to the web server. Obvious
security issues aside, these possibilities could solidify the oft-abused system of adding URLSs to be
indexed by search engines, which some sites exploit as a means to self-promote.

In the case of centralized change modeling and observation control, our continuous time models
now operate on the assumption that web pages change according to exponential lifetime distributions.
An analysis of how good (or bad) an assumption this may be would greatly contribute to a more
definite understanding of the potential impact of this kind of scheduling for the web. Other models
of change probability such as periodic (or near periodic) models would be useful additions to the
theory of («, 8)-currency. We have demonstrated that there is at least some periodic component
to change probability, as the probability of any given web page changing will rise and fall over the
course of a day and on a weekly time scale as well. Generating such models will certainly require
more complex mathematics but this is often the price of more useful modeling.

It is also not known whether a desired processing throughput can be maintained even when there
is wide variation in observation time between documents (slow servers are intuitively less attractive
for observation than fast servers) and over time. A further challenge is the probable correlation
between how popular a resource is and how quickly it can be observed, so that the two-dimensional
view of resources (popularity and change rate) must be expanded to include the added dimension of

download time. There is a wide range of possibilities for maintaining processing throughput even in
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the context of highly variable latency. It is not clear how big an obstacle the control overhead will
be.

Time between downloads is not necessarily periodic, as was assumed in the development of
relations for finding S-currency with respect to a collection of memoryless sources. More realistic
inter-sample time distributions are needed in order to estimate observer performance under these
circumstances. Unlike the two-tiered architecture we proposed in Chapter 4, some observation
systems that cycle through a large set of monitored objects, not starting a new observation until
the previous one has finished, have near-Gaussian distributed time between observations (if the
individual observations are independent random variables).

Experience with running the optimization routine seems to indicate it could be made more
efficient. The relative sloppiness of the simulated annealing approach was chosen intentionally,
trading slower convergence for a broader search of the solution space. Improvements could certainly
be made in the manner by which the grid lines are placed, or even in whether grid lines are used at
all—the low-bandwidth examples showed that the best bin choices would be irregularly shaped
polygons that followed the edge beyond which objects were ignored. That entire region could
probably be made into one oddly shaped bin. A method that permitted odd bin shapes would
be helpful.

Additional modeling is also needed to determine user change tolerance in terms of a joint distri-
bution of grace period times 8 over change rate and access rate. At most, one might speculate that
users have an expectation of currency that scales along with the change rate of the topic of a web
page or other object. It is not known how this grace period scales with change rate, or why.

Regardless of the statistics of change, actually detecting which changes are important (and which
are not) presents a wide variety of challenges. A change to a web page is best defined not just by
alteration in content or style alone, but by changes in content defined within the context of users’
interest. This forces an attempt to divide page content into “content-related” and “non-content-
related” subspaces. The ideas presented in Chapter 3 for such a division, regarding use of query
keywords as a means of characterizing the user interest space, suggest just one possibility. Accurate

projections of change onto user needs will probably only become more important as the content of
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web pages becomes more dynamic. It is quite likely that in the future no two documents obtained
from the same URL will be entirely “alike.” That is, content will be customized to such a degree
that many documents will not remain the same for more than one viewing. This is already true for
most of the popular sites on the web, epitomized by search engine and portal sites such as Excite,
AltaVista, Yahoo, Go.com, and others.

Indeed, how does an index (or any list of links) deteriorate over time if not maintained? “Link
rot”, as it is called, could be formally studied using our data; prediction of which links are no longer
usable could be used by search engines such that links that are likely to be non-functional are not
followed. We have a year’s worth of information on how the words in web pages change; the time
series of observations and their difference from the first in the sequence should give an idea about
how well a single index entry approximates those that follow. This would be useful in estimating the

“damage” done to an index entry by an unobserved change, especially with respect to user needs.

5.3 Studying observation in other contexts

Some application domains will be much simpler than the web, having many objects of equal value
and an easily determined change rate. One example of this would be a large signal processing system
that pulls in sensor data on a variety of channels through a multiplexer. Other domains will have
an easily determined access distribution and a more complicated rate of change determination. For
example, how often should computers on a network be inspected for intrusion or compromise by
system crackers? The many computers in an organization may have a very well-defined importance,
but guessing a probability of attack is somewhat harder. The web and mail servers are clearly of great
importance, but what is the probability of attack there? The operating system is probably more
up-to-date, but an attacker might stand to gain more by successfully breaking in. Other computers
on the network may be of very low-importance but much more open to attack (such as obsolete,
all-but-decommissioned machines that just sit idle). The same principles we have developed for the
web may apply there.

The theory we have developed can be applied to domains other than computerized observation.

Just as an automated observer can be optimized for the detection of important changes, so can
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human observers. This may seem far-fetched, but one can imagine designing an instrument panel
in an aircraft, or a display of vital signs for a surgeon, in which central visual placement is given
to items of greater importance or having greater change rate. In this case we are not modifying
the observation so much as we are placing things within a pre-existing observation strategy. The
human observer already “knows” how to observe, it is simply a matter of placing an observable in
the right place. There is a fascinating interplay between planning for easier observation and gaining
an understanding of the filters that surround human sensory input. The human application domain
may be the most challenging, but even a human observer can be measured for determining his or
her (a, 8)-currency with respect to an instrument.

Whether inspections are automated or done by humans, a determination must be made as to
how often this should be done. Clearly, any such determination regardless of environment rests
upon the same basic methodology as does our optimization of web observation: characterize the
population by access rate or importance and change rate (even if on a time-varying basis), and then
observe rapidly enough to catch the important changes. And regardless of the strategy employed,
the measure of («a, §)-currency provides a meaningful measure of how up to date an observer is with

respect to a set of changing information sources.
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Appendix: Power-law distributions
on the web

Zipf’s law [Zip49], or the observation that rank-ordered lists of words tend to follow power-law
distributions (a line on log-log scale plots), occurs frequently in our data on web pages. This is not
the only part of the web characterized by power law scaling. This relationship has appeared in traffic
analysis of page popularity within single domains [Nie97b], rank ordered external page references
[Nie97a], and many other areas detailed in two summaries, [Pit98] and [Li00].

For a list of words ordered by their frequency within a corpus, Zipf’s law states that
focr (1)

where f is frequency, r is the rank within the list, and p > 0. For Zipf’s law it is generally supposed
that p & 1; some debate surrounds just how “magical” this constant is. On a log-log plot, the slope
of (1) is just the exponent —p, as

log f =logk — plogr. (2)

As might be expected, our data shows that words used within web pages as well as words used by
users running queries on search engines (for the Informant service) tend to follow these distributions.
We performed the same analysis for the links within the documents in the same corpus, as well as
the hostnames appearing within these links. It was a bit surprising to see power law behavior in the
list of hostnames. The list of hyperlinks did not show a nice linear trend, though this may be due
to the “small” sample size—with nearly a billion web pages, two million links is perhaps too small a
sample to see this behavior. Graphs showing all these relations appear in Figures 1 through 3.

Inasmuch as hostnames and links represent something of a language unto themselves, one might
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expect that they exhibit the same sort of properties found in lists of words. Unlike lists of words,
though, hostnames and links are references to large bodies of possibly dynamic text, images, and
formatting, rather than to small, simple concepts. As observed by Mandelbrot [Man82], generalized
power-law distributions (of which Zipf’s is a special case) can be explained as a side effect of efficient
communication, or more importantly, as a fractal phenomenon. Perhaps the deviations from linearity
in the HREF data are indications of inefficient communication rather than an effect of sample size.
This is very much open to discussion; a study of the web as a quickly-evolving communication
mechanism would be quite fascinating.

We also see power law distributions as a result of slightly different derivation. When we examine
a collection of items and frequencies, it is possible to estimate a probability density of frequencies.
This too appears to follow a power-law scaling, analogous to Figure 3.15. Examples of this are shown
in Figures 4 and 5. These differ from the first set of figures in that the lowest probability events
(such as the event of having the highest frequency within a collection of words) are to the far right
on the abscissa, while in relations like (1), the rank corresponding to this low-probability event is on
the left end of the abscissa (having the highest rank). As above, much more could be done with this
data: why do these plots have the slope that they do? What is their relation to the rank-ordered
lists, and why? It will be interesting to see how the study of the web’s self-similarity develops in the

coming years as the web emerges from its youth.
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Scaling law differences for query terms vs. natural occurrence
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Figure 1: Rank-ordered document words and query terms (N = 18,458) As explained in (1), we
plot the rank-ordered frequency of words from two different sets. First, we show the plot of the rank-ordered
frequencies for terms appearing in user queries. Second, we plot the rank-ordered frequency of the same
words within web documents. We emphasize that the ordering of the two lists is different, since each list
is sorted by frequency. Thus the same word will correspond to a different horizontal position (rank) within
each list. Notice that both plots are near linear for the higher ranks and have a similar slope, but this slope is
between —0.7 and —0.9, not —1 as suggested by Zipf. This suggests that query vocabularies follow different
rules than standard language. The central portion of each, where the slope estimates are more reliable, seem

to have different slopes.
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Traditional Zipf-like scaling for unique hostnames
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Figure 2: Rank-ordered unique web hosts As with the rank-ordered query terms, the linear behavior
is strongest in the middle ranks of this curve. The slope is approximately —0.85. We counted the 360, 398

unique hostnames occurring within 3, 314, 876 hyperlinks.
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Traditional Zipf-like scaling for unique URLs
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Figure 3: Rank-ordered unique HREFs (hyperlinks) This is not an especially linear fit, even by very
loose standards. This is either due to too small a sample (of perhaps one billion possible HREFs we have
sampled 3.3 million), or a governing law other than (1). The slope of a line through the data is roughly

—0.69.
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HREF Links
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Figure 4: PDF of frequency of unique HREFs (hyperlinks) This figure shows much more linear
behavior than Figure 3; as discussed in the text this is a somewhat different statistic. In this plot (and in
Figure 5), the z-coordinate is the number of occurrences of a hyperlink, and the y-coordinate is the estimated
probability density for each such count. Obviously this distribution scales with the sample size; as before

this involves 3.2 million links. The slope of the line is approximately —2.6.
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Hosthnames

102 o T o T oo T oo T oo T

Probability density

12 N | N | sl M| N |

10

10" 10° 10°

Number of occurrences

4

10 10 10 10

Figure 5: PDF of frequency of unique web hosts The hostname data shows an extremely good linear
fit for the PDF of frequency. The slope, which is approximately —1.9, is very close to the slope for the same

plot for unique words (which is plotted in the main text as Figure 3.15).
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