Agent Tcl: Alpha Release 1.1

Robert S. Gray*
Department of Computer Science
Dartmouth College

Hanover, NH 03755
E-mail: robert.s.gray@dartmouth.edu

December 1, 1995

Abstract

Agent Tcl is a transportable agent system. The agents are written in an extended version of the
Tool Command Lanuage (Tcl). Each agent can suspend its execution at an arbitrary point, transport
to another machine and resume execution on the new machine. This migration is accomplished with
the agent_jump command. agenijump captures the current state of the Tcl script and transfers this
state to the destination machine. The state is restored on the new machine and the Tcl script continues
its execution from the command immediately after the agentjump. In addition to migration, agents
can send messages to each other and can establish direct connections. A direct connection is more
efficient than message passing for bulk data transfer. Finally, agents can use the Tk toolkit to create
graphical user interfaces on their current machine. Agent Tcl is implemented as two components. The
first component is an extended Tcl interpreter. The second component is a server which runs on each
machine. The server accepts incoming agents, messages and connection requests and keeps track of the
agents that are running on its machine. An alpha release of Agent Tcl is available for public use. This
documentation describes how to obtain and compile the source code, how to run the server and how to
write transportable agents.

*Supported by AFOSR contract F49620-93-1-0266 and ONR contract N00014-95-1-1204

Contents

1 Introduction

2 Installation

3 Running the server

4 Utilities

5 Interpreter directories

6 Tcl and Tk

7 Agent Tcl
7.1 Agent identification L
7.2 Registering an agent L L
7.3 Messages
T4 Events L
7.5 Migration L
7.6 Limitations of jump and forko
T.7 Meetings
7.8 Timing. L
7.9 Masks . . .
7.10 Undocumented commandso
TA1 Summary

8 Agent Tk
8.1 Creating amain window L L
8.2 Destroying a main window oL L
8.3 Waiting for the user L
8.4 Tk handlers for incoming messages, events and meetings
8.0 Summary

9 Advanced topics
10 Future directions

A Changes from previous releases
A.1 Changesfrom 0.5to 1.0 L
A.2 Changesfrom 1.0to 1.1 o

B Known bugs
B.1 Missing masks and ttmeouts

B.2 Sticky event handlers

11

12

12

14
14
16
22
24
24
34
35
49
52
58
59

59
59
64
64
64
68

68

69

71
71
71

B.3 Lost upvarreference 73

B.4 gets, putsand read 74
Command summaries 75
C.1 Registration L 75
C.2 Migration 75
C.3 Basic communication Lo 75
Cd Meetings 0 76
C.h Masks 76
C.6 Timingand retries L e 7
C.7 Information 77
C.8 Advanced 78
C.9 Miscellaneous 78

1 Introduction

An information agent is charged with the task of searching a collection of electronic resources for information
that is relevant to the user’s current needs. These resources are often distributed across a network and can
contain tremendous quantities of data. One of the paradigms that has been suggested for allowing efficient
access to such resources is transportable agents. A transportable agent is a named program that can migrate
from machine to machine in a heterogeneous network. The program chooses when and where to migrate.
It can suspend its execution at an arbitrary point, transport to another machine and resume execution
on the new machine. Although the idea of a program that can move from machine to machine under its
own control is not new [WVF89], it is only in the last two years that production-quality systems have
been implemented. The two most notable transportable agent systems are Telescript from General Magic
[Whi94, Whi95b, Whi95a] and TACOMA from Cornell University [JvRS95]. Telescript is a dynamic object-
oriented language that i1s centered around network communication. An agent written in Telescript uses the
go instruction to migrate to a new machine. The agent continues execution on the new machine from the
instruction after the go. A Telescript engine at each site accepts, authenticates and executes incoming agents,
enforces security constraints, and backs up the internal state of agents to nonvolatile store in case of site
failure. TACOMA takes a more general view of agents. The single abstraction is the meet instruction which
one agent uses to invoke another agent. All services except for meet are provided directly by other agents.
For example an agent meets with the ag_tcl agent in order to migrate to a new machine. Important features
of TACOMA are rear guard agents which restart a remote agent if the remote site fails, broker agents that
provide scheduling and directory services, and electronic cash that is used to pay for services and prevent
runaway agents. TACOMA agents are written in Tcl.

The recent development of transportable agent systems has been fueled by the growing inadequacy of the
traditional client/server model for modern distributed applications. The traditional client/server model
assigns fixed roles to programs. A program is either a server which provides some service such as file transfer
or a client which makes requests of the server. Transportable agents replace this artificial division with a
peer-to-peer model in which agents communicate as peers and act as both clients and servers depending on
their current needs and capabilities. Such a model provides far more flexibility when developing distributed
applications [Lew95]. In addition traditional servers provide a fixed set of operations. All operations that
are not provided in this fixed set must be performed at the client. If the server does not provide an
operation that matches the client task exactly, the client must make a series of server requests, bringing
intermediate data across the network on each request. If the intermediate data is not useful beyond the
end of the task, a significant amount of network bandwidth has been wasted. To avoid this inefficiency,
server developers tend to provide a collection of specialized operations — one operation for each client task —
rather than a collection of simple primitives that can be combined into more complex operations. Providing
these specialized operations violates software engineering principles and becomes intractable as the number
of clients increases. Transportable agents avoid both the inefficiency and the need for specialized operations
since the agents migrate to the remote resources. An agent executes local to the resource and returns only
its final result to the client. No network resources are wasted on intermediate data. The performance gain
is greatest in low bandwidth or high latency networks [Whi94].

Modern client/server techniques such as remote evaluation and SUPRA-RPC allow a program to migrate to
the resource as well. However these techniques maintain the fixed client/server division since the programs
are anonymous entities that can not communicate easily with each other. At best the programs are limited
to exchanging partial results with their invoker. Transportable agents are named entities that communicate
at will and support the peer-to-peer model. In addition remote evaluation and SUPRA-RPC require a
connection between communicating machines. Transportable agents do not require a continuous connection
and do not require the maintenance of state information at both the local and remote machine. This makes
transportable agents more fault tolerant [WVF89] and — in combination with their low use of network
resources — makes them ideally suited to mobile computing [Whi94]. Mobile computing is characterized by
high latency, low bandwidth and periods of disconnection from the network.

Transportable agents are a convenient paradigm for distributed computing. They make efficient use of
network resources, support the peer-to-peer model and tolerate network disconnection. In addition they

hide the communication channels but not the location of the computation [JvRS95]. The agent specifies
when and where to migrate but the system handles the transmission details. This makes transportable
agents easier to use than low-level facilities in which the programmer must explicitly handle communication
but more flexible and powerful than schemes such as process migration in which the system decides when to
move a program based on a small set of fixed criteria. Transportable agents allow the implicit transfer of
information since a migrating agent carries all of its internal state along with it. This eliminates the need
for a separate communication step. Many tasks — especially network management, information retrieval
and workflow — fit naturally into the jump, do and jump again model of transportable agents. The agent
migrates to a site, performs a task, migrates to a new site, performs a task that depends on the outcome
of the first task and so on. Finally transportable agents are a useful extension to traditional clients and
servers. Clients and servers can program each other which greatly extends the functionality that application
and server developers can provide to their customers. In addition an application can dynamically distribute
its server components when it starts executing.

Applications that have been suggested for transportable agents include distributed information retrieval,
network management, active e-mail, active documents, control of remote devices and electronic shopping
[Whi94, Ous95]. Our research group at Dartmouth began exploring transportable agents in the context
of distributed information retrieval and attempted to find an existing system that would meet our needs.
Telescript appeared to be a suitable choice but unfortunately it does not run on general platforms and the
source code is not available to the research community. TACOMA was unavailable at the time and places
the burden of migration squarely on the agent programmer. The agent must explicitly specify every piece of
information that needs to move to the remote machine. In contrast, the go instruction of Telescript transpar-
ently migrates the complete internal state of an agent. The agent continues from the point of interruption.
Programming such behavior into TACOMA must be done at the agent level and is nearly intractable. Other
systems such as Safe-Tcl/MIME and HotJava provide only certain aspects of transportable agent behavior
and only in certain contexts. Safe-Tcl/MIME allows programs to be included in mail messages (active mail)
while HotJava allows programs to be included in World Wide Web documents (active documents).

Due to the limitations and unavailability of existing systems, we are developing a transportable agent system
called Agent Tcl. Agent Tcl runs on generic UNIX workstations, communicates over the Internet using the
standard TCP/IP protocol and reduces migration to a single instruction as in Telescript. Agent Tecl is
far from complete but has progressed to the point where it is flexible and robust enough to be used in a
range of applications. The transportable agents are written in an extended version of the Tool Command
Language (Tcl). Each agent can suspend its execution at an arbitrary point, transport to another machine
and resume execution on the new machine. This migration is accomplished with the ageni_jump command.
ageni_jump captures the internal state of the Tcl script and transfers this state to the destination machine.
The state is restored on the new machine and the Tcl script continues from the command immediately after
the agent_jump. In addition to migration, agents can send messages to each other and can establish direct
connections or meetings with each other. A direct connection is more efficient than message passing for bulk
data transfer. Finally, agents can use the Tk toolkit to create graphical user interfaces on their current
machine.

Agent Tcl is implemented as two components. The first component is a modified Tcl interpreter. The
second component is a server which runs on each machine. The server accepts incoming agents, messages
and meeting requests and keeps track of the agents that are running on its machine. All agents run with
the permissions of the server so the server should run under its own account rather than as root. The server
provides limited security by refusing all agents and requests that do not come from an “approved” machine.
A list of approved machines is passed to the server at startup. This level of security should be sufficient for
initial development work and for applications in a controlled, localized environment.

An alpha release of Agent Tcl is available for public use. This documentation describes how to obtain and
compile the source code, how to run the server and how to write transportable agents. The final section
discusses planned extensions to the current release. One notable extension is improved security.

Questions, comments, suggestions, critiques and bug reports should be directed to robert.gray@dartmouth.edu.
Source code is welcome as well if you modify Agent Tcl and wish to submit your modification for potential
inclusion in the official release.

2

Installation

The alpha release of Agent Tecl is packaged as a tar file

agent.1.1.tar.gz

which can be obtained via our World Wide Web page

http://wuw.cs.dartmouth.edu/ rgray/transportable.html

or via anonymous ftp

ftp:

://bald.cs.dartmouth.edu/pub/agents/

Note that the tar file contains all necessary code. You do not need the source code for standard Tcl or Tk
and you do not need to install standard Tcl or Tk on your system.

The alpha release is known to compile with gee 2.6 on an Intel 486 running Linux 1.2.8, an IBM RISC 6000
running AIX 3.2.5, an SGI Indy running IRIX System V.4, a DecStation 5000 running ULTRIX V4.3, a DEC
alpha running OSF/1 V3.2 and an Intel Pentium running FreeBsd 2.1. These are the Unix environments
to which the author has access. The alpha release should be easily portable to any Unix environment that
provides TCP/IP and Berkeley sockets. Other environments will require more work.

To install Agent Tcl

. The server provides enough security for experimentation and research, initial development and appli-

cations that run in controlled, localized environments. However the security component of Agent Tcl
is far from complete. One notable deficiency is that the transportable agents run with the authority
of the server. Therefore do not run the server as root or as any userid that has the authority to access
or damage sensitive data. It is highly recommended that you create a new account for the Agent Tcl
system and run the server from this account. This account should have only as much authority as is
needed for the desired application(s). In this document T will assume that you create an account with
userid agent.

Log onto the agent account, download agent.1.1.tar.gz, uncompress and untar. This process will create
a directory called agent.1.1. The contents of this directory are summarized in Table 1.

Edit Makefile. Change SERVER_TCP_PORT if desired. SERVER_TCP_PORT specifies the TCP/IP
port that the server uses. Change the installation directories if desired. Pay special attention to
TCL_.LIBRARY and TK_LIBRARY which specify the directories where the interpreters expect to find
the initialization scripts. TCL.LIBRARY and TK_LIBRARY should resolve to the same directories as
TCLINSTALL and TK_INSTALL respectively. Table 2 summarizes the files that are installed during
installation. Note that some of the file names are the same as for standard Tcl. Do not overwrite the
standard Tecl files if standard Tcl is on your system! Once you have chosen the port and the installation
directories, uncomment the appropriate set of switches (there is a BUILTIN_LIBS, CC, RANLIB and
CFLAGS switch defined for each architecture).

Compile the system by typing
make
Install the system by typing

make install

File or subdirectory |

Contents

Makefile the top-level makefile

install-sh an installation script

agent.terms the licensing terms

INSTALL instructions for quick installation
README a brief overview of the system
TO-DO a to-do list

NOTE a note about porting the system

tcl7.4stack

the modified Tcl 7.4 core

tk4.0

the Tk 4.0 core

agent-tcl the agent interpreter (Tcl)

agent-tk the agent interpreter (Tcl/Tk)

server the server that runs on each machine

utility routines that are used in the interpreters and the server

tepip-tel a Tcl extension that provides simple socket management

restrict a simple timeout facility

scripts initialization scripts for the interpreters

examples example agents

doc the document that you are reading

Table 1: The contents of agent.1.1.tar.gz
| File | Description | Source directory | Install directory

init.tcl initialization of the Tcl core scripts/agent TCLINSTALL
agent.tcl initialization of the agent interpreter | scripts/agent TCLINSTALL
parray.tcl array utility scripts/agent TCL.INSTALL
tkerror.tcl a background error handler scripts/agent TCLINSTALL
retry.tcl the retry command scripts/agent TCL.INSTALL
file.tcl the gei_remote_file command scripts/agent TCLINSTALL
tellndex Tecl index file scripts/agent TCLINSTALL
* tel initialization of the Tk core scripts/tk TK_INSTALL
tellndex Tecl index file scripts/tk TK_INSTALL
agent the agent interpreter (Tcl) agent-tcl EXEC.INSTALL
agent-tk the agent interpreter (Tcl/Tk) agent-tk EXEC.INSTALL
agentd the agent server server EXEC.INSTALL
machine.tcl | utility to check server status examples EXEC_INSTALL
libtcl.a modified Tecl 7.4 library tel7.4stack LIB_INSTALL
libtk.a Tk 4.0 library tk4.0 LIBAINSTALL
libagent.a agent library agent-tcl LIBAINSTALL
libtcpip.a TCP/IP library tepip-tel LIB_.INSTALL
libutility.a utility library utility LIB_INSTALL
librestrict.a | timeout library restrict LIB_INSTALL
tel.h header file for Tecl library tel7.4stack INCLUDE_INSTALL
tk.h header file for Tk library tk4.0 INCLUDE_INSTALL
tclAgent.h header file for agent library agent-tcl INCLUDEINSTALL
telTepip.h header file for TCP/IP library tepip-tel INCLUDE_INSTALL
tclRestrict.h | header file for timeout library restrict INCLUDE_INSTALL
my.sizes.h typedefs that are used in headers utility INCLUDE_INSTALL
* tel examples examples EXAMPLE_INSTALL

Table 2: Where the files are installed

6. Add the directory that contains the agent and agent-itk interpreters to the PATH environment variable
on the agent account —i.e. add EXEC_INSTALL to the PATH variable. If you want to be able to invoke
the interpreters from other accounts, add EXEC_.INSTALL to the PATH variable on those accounts
and change the interpreter permissions to publically executable.

7. Finally, change the first line of machine.tcl and each of the example scripts so that it specifies the correct
location of the agent or agent-tk interpreter. In addition, change the list of machines in machine.tcl to
the machines on which you want to run the transportable agent system.

The entire installation process must be repeated for every distinct architecture on which you want to run
the agent system. If these architectures share a filespace, you will have to use a different EXEC_.INSTALL
directory for each architecture. On duplicate architectures, simply create the agent account and make
sure that the agent and ageni-tk interpreters are accessible and that the directory of initialization scripts
is accessible. As in standard Tcl and Tk, you can set the environment variables TCL_.LIBRARY and
TK_-LIBRARY to override the directories that have been compiled into the agent executables. This will
allow you to avoid recompilation on duplicate architectures that do not share a filespace. You will however
have to replace agent with a script that first sets the TCL_LIBRARY environment variable and then calls
the actual agent (and similarly for agent-tk and agentd except that you should set TK_.LIBRARY as well).

3 Running the server
The server must run on every machine to which transportable agents can be sent. For each machine

1. Log onto the agent account. Remember that we want the server to run with the minimal permissions
of the agent account since transportable agents inherit the permissions of the server.

2. Edit the file agent.access which is found in the subdirectory scripts/start. The current agent.access is

Agent Tcl

Bob Gray

23 August 1995

#

agent.access

#

This file lists the machines that are allowed to use the server.
localhost # localhost
felix.cs.dartmouth.edu # Agent 007
gogol.cs.dartmouth.edu # Agent 007
jaws.cs.dartmouth.edu # Agent 007
m.cs.dartmouth.edu # Agent 007
oddjob.cs.dartmouth.edu # Agent 007
gq.cs.dartmouth.edn # Agent 007
spectre.cs.dartmouth.edu # Agent 007
muir.cs.dartmouth. edu # DEC Alpha
sable.cs.dartmouth.edu # DEC Alpha
tenaya.cs.dartmouth.edu # DEC Alpha
tioga.cs.dartmouth.edu # DEC Alpha
earhart.cs.dartmouth.edu # DEC Alpha
tuolomne.cs.dartmouth.edu # DEC Alpha
bald.cs.dartmouth.edn # Linux

plum.cs.dartmouth. edu # SGI
gainsboro.cs.dartmouth. edu # SGI
orchid.cs.dartmouth.edu # SGI
peach.cs.dartmouth.edu # SGI
coral.cs.dartmouth.edu # SGI
salmon.cs.dartmouth.edu # SGI
cosmo.dartmouth.edu # Thayer
lost-ark.dartmouth.edu # Thayer
temple-doom.dartmouth.edu # Thayer

You should replace these machines with the machines on which you are running the transportable
agent system. The server will only accept agents that come from one of the machines on the list. Thus
the server is only vulnerable to (1) masquerade attacks in which a malicious machine masquerades as
a machine that has crashed and (2) attacks that originate from within your own set of machines. The
latter means that the server is as secure as any individual account on your machines. If the security
of one of these accounts is breached, however, a malicious user can submit an arbitrary Tcl script
that will run with the permissions of the server. This is why the agent account should have minimal
permissions.

3. Edit the file agent.languages which is found in the subdirectory scripts/start. The current agent.languages
1S

Agent Tcl
Bob Gray
23 August 1995

agent.languages

This file defines the set of interpreters that are available through the
server. Each interpreter definition consists of:

Symbolic name

. Executable name

argv[0]

Socket directory
STATE or NORMAL

H O HHHHHHEHHHE R R TR
as W=

The five items must appear one per line and in the order specified.

STATE-TCL is the Tcl interpreter that allows the capture and restoration
of the internal state of an executing Tcl script.

STATE-TCL

/usr/contrib/bin/agent # FILE

agent # ARGVO

/tmp # SOCKET DIRECTORY
STATE

STATE-TK is the Tk interpreter that allows the capture and restoration of
the internal state of an executing Tk script.

STATE-TK
/usr/contrib/bin/agent-tk # FILE

agent-tk # ARGVO
/tmp # SOCKET DIRECTORY
STATE

This file specifies the location of the available interpreters. You should change the lines marked “FILE”
so that they specify the location of the interpreters on your system. If you have installed the interpreters
under different names,; you should change the lines marked “ARGV0” so that they specify the new
names. Finally, if you do not want the server to create temporary files in /tmp, you should change the
lines marked “SOCKET DIRECTORY?” so that they specify the desired directory.

. Change into the subdirectory scripts/start.

. Run the server. On the author’s machine this is done with the command

agentd —host bald.cs.dartmouth.edu \
-log /tmp/agent.log \
-lock /tmp/agent.lock \
-access agent.access \
-lang agent.languages

The -host parameter specifies the full Internet name of the host on which the server is being started.
This parameter is necessary since gethostbyname() does not return the full Internet name on every
machine. agentd will verify that the IP address of the specified host matches the TP address of the
host returned by gethostbyname(). This eliminates the possibility of accidentally specifying the wrong
machine. The -log parameter specifies the name of a file into which error messages are written during
server execution. The -lock parameter specifies the name of a file that is used to synchronize access
to the internal data structures of the server. The -access parameter specifies the name of the access
file from step 2. The -lang parameter specifies the name of the language file from step 3. Note that
the -log and -lock filenames must be fully qualified. Executing this command produces the following
output on the author’s machine.

Processing interpreter list

Adding "STATE-TCL" to interpreter list
Adding "STATE-TK" to interpreter list

Processing access list

Adding 127.0.0.1 (localhost) to access list

Adding 129.170.202.124 (felix.cs.dartmouth.edu) to access list
Adding 129.170.202.127 (gogol.cs.dartmouth.edu) to access list
Adding 129.170.202.123 (jaws.cs.dartmouth.edu) to access list
Adding 129.170.202.121 (m.cs.dartmouth.edu) to access list
Adding 129.170.202.128 (oddjob.cs.dartmouth.edu) to access list
Adding 129.170.202.122 (q.cs.dartmouth.edu) to access list
Adding 129.170.202.126 (spectre.cs.dartmouth.edu) to access list
Adding 129.170.192.42 (muir.cs.dartmouth.edu) to access list
Adding 129.170.192.72 (sable.cs.dartmouth.edu) to access list
Adding 129.170.200.32 (tenaya.cs.dartmouth.edu) to access list
Adding 129.170.192.21 (tioga.cs.dartmouth.edu) to access list
Adding 129.170.194.33 (earhart.cs.dartmouth.edu) to access list
Adding 129.170.192.41 (tuolomne.cs.dartmouth.edu) to access list
Adding 129.170.192.98 (bald.cs.dartmouth.edu) to access list
Adding 129.170.192.65 (plum.cs.dartmouth.edu) to access list

10

4

Adding 129.170.192.67 (gainsboro.cs.dartmouth.edu) to access list
Adding 129.170.192.66 (orchid.cs.dartmouth.edu) to access list
Adding 129.170.192.68 (peach.cs.dartmouth.edu) to access list
Adding 129.170.192.60 (coral.cs.dartmouth.edu) to access list
Adding 129.170.192.59 (salmon.cs.dartmouth.edu) to access list
Adding 129.170.24.57 (cosmo.dartmouth.edu) to access list

Adding 129.170.24.47 (lost-ark.dartmouth.edu) to access list
Adding 129.170.24.48 (temple-doom.dartmouth.edu) to access list

Verifying server IP address ...
OK!

Tracking status ...

The tracker agent is OFF.

The server should now be running in the background as a daemon. This can be verified with the ps
command. On the author’s machine

% ps ax | grep agentd

32080 pp4 S 0:00 agentd -host bald.cs.dartmouth.edu ...
32081 pp4 S 0:00 agentd -host bald.cs.dartmouth.edu ...
0

/A

The first agentd maintains the internal tables. The second agentd watches for incoming agents on the
TCP/IP port. Both processes must be running for the server to function correctly. Check the error log
if one or both of the processes are missing. In the error log the first agentd is referred to as “agentd”
and the second agentd is referred to as “socketd” since it 1s the socket watcher. The server can be run
in the foreground by specifying the “-nodaemon” flag when starting agentd. All error and informational
messages will be displayed on the terminal rather than written to the log file. The foreground mode is
useful for server development and intense debugging.

. To bring down the server, you need to kill all running agentd processes (there will be more than two

if there are agents executing on the system). There is a utility called kill.tcl which will help with this
task. kull.tclis discussed in the next section.

. If you change agent.access or agent.languages, you will have to bring down and restart the server. The

server can not read its configuration files while it is running. This will be fixed soon.

Utilities

There are two useful utilities included with the system. The first is kill.tcl which is found in scripts/start
subdirectory. kil tcl forcibly terminates all of the agents that are running under the control of the local
server. Note that kill.tcl can only kill those processes that are running under userid agent. This means that
you might have to kill some agent and agent-tk processes by hand. kil {cl will always break all connections
to the server’s TCP/IP socket, however, which will allow you to bring down and restart the server.

The second utility is machine.tcl which is found in ezamples subdirectory and was installed the EXEC_INSTALL
directory during installation. First, if you did not do so during installation, change the first line of machine.tcl
to the correct location of the agent interpreter and change the machines to the machines on which you are
running the agent system. Now if you just type

machine.tcl

11

you will see a list of the machines on which the server should be running. If you type
machine.tcl all

machine.tcl will confirm that the server is running on each machine by sending out agents and waiting for
responses. You will see informational messages as it submits the agents and receives the responses. Once
machine.tcl has received all the responses or timed out, it will display a list of errors. Errors almost always
indicate that the server is not running on the specified machine. Finally, rather than typing “all”, you can
list one or more machines on the command line. For example,

machine.tcl m q

confirms that the server is running on machines m and g¢.

5 Interpreter directories

The following sections assume that the standard Tcl/Tk interpreters, tclsh and wish, are in
/usr/local/bin

and that the corresponding agent interpreters, agent and agent-tk, are in
/usr/contrib/bin

These are the directories that are used at Dartmouth. You will need to replace all occurrences of these
directories with the directories that you specified during installation.

6 Tcl and Tk

Transportable agents are written in the Tool Command Language (Tcl). Tcl was created by Dr. John
Ousterhout at the University of Berkeley in 1987 and has enjoyed enormous popularity since then. Tel is
a general-purpose scripting language that has two components. The first component is a stand-alone shell
similar to the C and Korn shells. The shell allows the user to interactively execute Tcl commands and
scripts. The second component is a library of C functions. The library provides functions to “create” a Tcl
interpreter, define new Tcl commands and submit Tecl scripts to the interpreter for evaluation. This library
allows Tcl to be embedded inside a larger application. Any application that needs a scripting language can
link in the library and let the user write Tcl scripts.

A tutorial on Tecl is beyond the scope of this documentation. Tecl is relatively easy to learn, however, and 1is
similar to other scripting languages such as Perl and C shell. For example the following Tcl script computes
factorials.

#!/usr/local/bin/tclsh

#

fac.tcl

#

This Tcl script computes factorials.

proc factorial x {

if {$x <= 1} {

12

return 1;

}

expr $x * [factorial [expr $x - 1]]

set number 0
while {$number '= -1} {

puts "Enter a nonnegative integer (-1 to quit): "
gets stdin number

if {$number !'= -1} {
puts "$number! is equal to [factorial $number]”
}
}

The two most important aspects of this script are the command and vartable subsitutions. For example in
the command

expr $x * [factorial [expr $x - 1]]

$z is a variable substitution and [factorial [expr $z - 1]]is a command substitution. $z will be replaced by
the value of variable z when the command is evaluated. [factorial [ezpr $z - 1]] will be replaced by the result
of the command factorial [expr $z - 1].

There are three ways to execute the script. If the Tcl shell is called #clsh and the script is in the file fact.tcl,
you can type tclsh to start the shell and then source fac.tcl to load and execute the script. Alternatively you
can type fclsh fac.tcl. alternatively you can turn on the execution permissions for file fac.icl and just type
fac.tel. This works because the first line in the script is

#!/usr/local/bin/tclsh

which tells Unix to run the script using the tclsh shell. In other words Unix starts up tclsh which then runs
factorial. tclsh will terminate when factorial terminates.

Tk is an extension to Tcl that allows the rapid prototyping of graphical user interfaces (GUI). A tutorial
on Tk is beyond the scope of this documentation. Tk is relatively easy to learn, however, since 1t provides
high-level commands for creating Motif-like interfaces. For example, the following Tk script creates a button
that says ”Hello, World!”. Clicking on the button terminates the script. This example was taken from
[Ous94].

#!/usr/contrib/bin/wish

#

hello.tk

#

This is the "Hello, World!" example from [Ous94].

make the "Hello, World!" button

button .button -text "Hello, World!" —-command exit
pack .button

13

Again there are three ways to execute the script. Type wish and then source hello.tk; type wish hello.tk; or
turn on the execution permissions for file hello.tk and just type hello.tk.

There are numerous sources of information on Tcl and Tk. T recommend the book by Ousterhout [Ous94],
the book by Welch [Wel95] and the Tcl news group comp.lang.tcl.

7 Agent Tcl

Standard Tcl has no notion of transportability so we have developed an extended version of Tcl called Agent
Tecl that provides a special set of commands. These commands allow Tcl scripts to migrate from machine
to machine and allow distributed Tecl scripts to communicate with each other. The shell that interprets this
extended version of Tcl is called agent. agent is fully compatible with Tcl 7.4 except for the presence of the
agent commands. To run the factorial script using the agent shell, start the agent shell by typing agent and
then type source fac.tcl; type agent fac.icl; or change the first line of the script to

#!/usr/contrib/bin/agent

and just type factorial.tcl. All transportable agents must run under the agent shell agent rather than the
standard Tecl shell telsh.

7.1 Agent identification

Each transportable agent has a controlling server which can be thought of as the agent’s current home. The
agent acquires a controlling server when it first starts up and acquires a new controlling server whenever it
migrates. Whenever the agent acquires a controlling server, it is assigned a unique numeric id. Once the
agent has a numeric id, it can choose a unique symbolic name if desired. Agents that want to communicate
with the given agent specify its address as the network location of its controlling server plus either its numeric
id or its symbolic name. This address changes whenever the agent migrates to a new machine and acquires
a new controlling server.

More formally, each transportable agent has a 4-element identification
machine_name machine_IP symbolic_name numeric_id

where machine_name is the full Internet name of the machine on which the controlling server is executing;
machine_IP is the IP address of the machine; symbolic_name is the symbolic name of the agent; and numeric_id
is the numeric id of the agent. For example, the agent with controlling server bald, symbolic name search_agent
and numeric id 10 would have the identification

bald.cs.dartmouth.edu 129.170.192.98 search_agent 10

Note that there is substantial redundancy in this identification. Any of the following are enough to uniquely
identify the sample agent:

bald.cs.dartmouth.edu search_agent
bald.cs.dartmouth.edu 10
129.170.192.98 search_agent
129.170.192.98 10

Two agents with the same controlling server will never have the same name or the same numeric 1D.

In addition to its own identification, each agent has a root identification. Agents can create other agents.
This leads to hierarchies of agents, each with a single agent at the top. The top-level agent is the root agent

14

Array element | Contents

registered 1 if the agent has a controlling server and 0 otherwise
toplevel 1 if the agent is a root agent and 0 otherwise

server 1 is the agent arrived via the server and 0 otherwise
actual-server Name of the machine on which the agent is executing
actual-ip IP address of the machine on which the agent is executing
local 4-element identification of the agent

local-server Name of the controlling server’s machine

local-ip IP address of the controlling server’s machine
local-name Symbolic name of the agent

local-id Numeric id of the agent

root 4-element identification of the root agent

root-server Name of the root server’s machine

root-ip IP address of the root server’s machine

root-name Symbolic name of the root agent

root-id Numeric 1d of the root agent

Table 3: Elements of the agent array — All elements of the array except for actual-server, actual-ip, registered,
server and toplevel are the empty string if the agent does not have a controlling server. local-name is the
empty string if the agent does not have a symbolic name. root-name is the empty string if the root agent
does not have a symbolic name. Note that local-server, local-ip, local-name and local-id are the four pieces
of local while root-server, root-ip, root-name and root-id are the four pieces of root. In addition note that the
root information in the array will not change when the root agent moves or changes its name (aside from in
the root agent itself). The system does not keep track of all agents with a given root.

for all of the agents in its hierarchy. The root server is the controlling server of the root agent. The root
tdentification is the 4-element identification of the root agent.

Finally, each agent has an actual location. An agent does not have to execute on the same machine as its
controlling server so its actual location is the name and IP address of the machine on which it is actually
running.

All of this information is stored in a global array called agent. Table 3 summarizes the elements of the agent
array. The array is always available inside a transportable agent. For example, to display the name of its
controlling server, an agent would issue the Tcl command

puts $agent(local-server)

If you want to access the agent array from inside a Tcl procedure, you will have to use the global or upvar
command to create a local reference to the array. This is true for all global variables in Tcl. For example,

proc display args {
global agent

the following statement will cause an "undefined variable'" error
if the '"global" statement is removed

puts $agent(local-server)

}

The agent array is read-only and updates automatically as the agent moves through the network.

15

7.2 Registering an agent

Registering is the process of acquiring a controlling server and selecting a symbolic name. There are five
relevant commands.

e agent_begin [machine] [-time seconds]

A root agent uses the agent_begin command to acquire a controlling server. machine is the name or
IP address of the machine on which the desired server is running. machine defaults to the agent’s
actual machine if it is not specified. The name and TP address of the agent’s actual machine are in
agent(actual-server) and agent(actual-ip) respectively. seconds is the maximum number of seconds to
wait for a response from the server. seconds can be a fractional number of seconds and defaults to 15
if the -t2me parameter is not specified.

The server on the specified machine assigns a unique numeric ID to the agent and adds the agent to
its internal tables. The server is now the controlling server for the agent. agent_begin returns the new
4-element identification of the agent and fills in the root and local sections of the agent array. The
agent is its own root so the root and local identifications are the same. The agent initially has no
symbolic name so agent(local-name) and agent(root-name) are the empty string.

Note:

Non-root agents do not need to use agent_begin since the controlling server of a child agent is auto-
matically the server to which the child agent was submitted. Root agents must issue agent_begin since
they have no controlling server initially and can not use the other agent commands until a controlling
server has been acquired.

Examples:

Suppose that the root agent is executing on machine moose. Issuing the command
agent_begin

registers the agent with the server on moose. The command returns the new identification of the agent
which in this case might be “moose.cs.dartmouth.edu 129.170.194.28 {} 10”. Note that the agent has
no symbolic name when 1t is first registered. The root and local sections of the agent array are updated
with the new identification.

Issuing either of the commands

agent_begin bald.cs.dartmouth.edu
agent_begin 129.170.192.98

registers the agent with the server on bald. The commands return the new identification of the agent
which in this case might be “bald.cs.dartmouth.edu 129.170.192.98 {} 17”. As before the agent has no
symbolic name when it is first registered and the root and local sections of the array are updated with
the new identification. Note that you do not have to specify the full Internet name of the machine. It
is sufficient to specify any name that the local name server can map to the desired machine.

Error messages:

On error, agent-begin raises a standard Tcl exception that can be caught with the catch command.
agent_begin will return one of the following error messages. The indented text below each error message
describes the possible interpretations of the message.

wrong number of arguments

You specified the wrong number of arguments.

16

agent has been registered
The agent already has a controlling server.
unable to convert name

The system was unable to determine the network address of the specified
machine.

unable to send to server

The system was unable to contact the server within the specified number of
seconds. This means that the specified machine does not exist or has
crashed, the specified machine is temporarily unreachable due to network
failure or overload, or the server is not running on the specified machine.
The standard response to this error is to retry the command at least once.

server unable to comply (no response)

The server failed while handling the agent_begin.
server unable to comply (bad response)

The server failed while handling the agent_begin.
server unable to comply (server error)

The server does not accept requests from the agent’s current machine, i.e.,
the agent’s current machine is NOT in the server’s access list.

e agent_name name [-time seconds]

An agent uses the agent_name command to register name as its symbolic name. seconds is the maximum
number of seconds to wait for a response from the server. seconds can be a fractional number of seconds
and defaults to 15 if the -tzme parameter is not specified.

agent_name returns the new 4-element identification of the agent and updates the local section of the
agent array. It updates the root section as well if the agent is a root agent.
Examples:

Suppose that the agent identification is currently “bald.cs.dartmouth.edu 129.170.192.98 {} 10”. Issu-
ing the command

agent_name search_agent

makes “search_agent” the symbolic name of the agent. The command returns the new agent identifica-
tion “bald.cs.dartmouth.edu 129.170.192.98 search-agent 10”. The local and root sections of the agent
array are updated with the new symbolic name.

Notes:

1. Tt 1s possible in pathological situations for the server to believe that the name is in use even after
the agent has terminated. In such cases the agent_force command can be used to forcibly reclaim
the name. See the section on agent_force below.

2. An agent can changes its symbolic name by calling agent_-name again. The old name is removed
from the server tables and can no longer be used when sending messages to the agent. There is
currently no way for an agent to have multiple symbolic names.

17

Error messages:

On error, agent-name raises a standard Tcl exception that can be caught with the catch command.
agentname returns one of the following error messages. The indented text below each error message
describes the possible interpretations of the message.

wrong number of arguments

You specified the wrong number of arguments.
agent has NOT been registered

The agent does not have a controlling server.
unable to send to server

The agent was unable to contact its controlling server within the
specified number of seconds. This means that the controlling server has
crashed, the controlling server’s machine has crashed, or the controlling
server is temporarily unreachable due to network contention or overload.
The standard response to this error is to retry the command at least once.

server unable to comply (no response)

The server failed while handling the agent_name request.
server unable to comply (bad response)

The server failed while handling the agent_name request.
server unable to comply (server error)

Another agent is using the symbolic name. A simple way for a child agent
to ensure a unique name is to prefix the name with the identification of
the root agent. Any other agent in the same hierarchy will have the

same root agent and thus will know the prefix. An alternative approach is
to prefix the name with the agent’s owner or an application-specific string.
This latter approach works for both root and child agents. The '"server
unable to comply error (server error)" message can also mean that the
controlling server has crashed and been restarted. In this case the agent
is no longer in the server’s internal tables and is effectively dead.

e agent_root

An agent uses the agent_root command to become a root agent. The local section of the agent array
is copied into the root section. The old root identification is overwritten so the agent is effectively
disconnected from its hierarchy unless it chooses to remember the old root identification in a separate
variable. agent_root returns the empty string.

Example:

Suppose that an agent has local identification “bald.cs.dartmouth.edu 129.170.192.98 ftp_remote 10”
and root identification “moose.cs.dartmouth.edu 129.170.194.28 ftp_local 15”. Issuing the command

agent_root

18

makes the root identification the same as the local identification. In other words the root identification
becomes “bald.cs.dartmouth.edu 129.170.192.98 ftp_remote 10”. The agent array is updated with the
new root identification. The agent is now a root agent.

Error messages:

On error, agent_root raises a standard Tcl exception that can be caught with the catch command.
agent_root returns one of the following error messages. The indented text below each error message
describes the possible interpretations of the message.

wrong number of arguments
You specified the wrong number of arguments.
agent has NOT been registered

The agent does not have a controlling server.

agent_end [-time seconds)

An agent uses the agent_end command to notify its controlling server that it is finished with its task.
The controlling server removes the agent from its internal tables. seconds is the maximum number
of seconds to wait for a response from the controlling server. seconds can be a fractional number of
seconds and defaults to 15 if the -{izme parameter is not specified. agent_end returns the empty string.

Only a root agent can call agent_end. Child agents are automatically removed on termination. The
reason for an explicit agent_end in a root agent is that a root agent might have sections where it needs
agent services and sections where it does not. Rather than taking up server resources for its entire
duration, a root agent can contain multiple agent_begin/agent_end pairs, one pair for each section
where it needs agent services.

Note:

It is bad form for a root agent to exit without calling agent_end. Explicitly calling agent_end ensures
the quickest possible reclamation of server resources.

Example:

Issuing the command
agent_end

detaches the agent from its controlling server. The root and local identifications are reset to the empty
string. The agent can not use any of the agent commands until it makes another call to agent_begin.

Error messages:

On error, agent-end raises a standard Tcl exception that can be caught with the catch command.
agent_end returns one of the following error messages. The indented text below each error message
describes the possible interpretations of the message.
wrong number of arguments

You specified the wrong number of arguments.
agent has NOT been registered

The agent does not have a controlling server.

unable to send to server

19

The agent was unable to contact its controlling server within the specified
number of seconds. This means that the controlling server has crashed, the
controlling server’s machine has crashed, or the controlling server is
temporarily unreachable due to network failure or overload.

server unable to comply (no response)

The server failed while handling the agent_end request.
server unable to comply (bad response)

The server failed while handling the agent_end request.
server unable to comply (server error)

The controlling server has crashed and been restarted. In this case the
agent is no longer in the server’s internal tables and is effectively dead.

If the agent is unable to contact its server, the agent’s identifications are reset to the empty string
anyways. The agent does not need to retry the agent_end command again.

agent_force identification [-time seconds]

In pathological situations an agent can terminate in such a way that the server does not remove the
agent from its internal tables. This means that the server will incorrectly report that the agent’s
symbolic name is in use. In other situations you might want to terminate the old version of an agent
when starting up a new version. The agent_force command is used in both cases.

The agent_force command forcibly removes an agent from the server tables (and forcibly terminates the
agent if the agent is running and the server has sufficient authority). identification specifies the agent
that should be forcibly removed. seconds is the maximum number of seconds to wait for a response
from the agent’s server. seconds can be a fractional number of seconds and defaults to 15 if the -time
parameter is not specified. agent_force returns “-1” if the specified agent does not exist. Otherwise
agent_force returns the complete identification of the agent that was forcibly removed.

Notes:

1. For most agents, it is reasonable to have an agentforce command immediately before every
agent_-name command in order to ensure that the desired symbolic name is not in use. This is not
true for every agent since agent_force removes all messages and meeting requests as well as the
agent’s symbolic name. For example, if two agents wish to exchange messages, they would obtain
a controlling server using agent_begin, register their symbolic names using agent_name and then
send messages to each other using agent_send. If one of the agents forcibly removes its desired
symbolic name, it might also forcibly remove one or more of the messages that have been sent
from the other agent.

2. There are no security checks on the agent_force command. An agent can forcibly remove any other
agent from the server tables. Therefore use the agent_force command with care and make sure
that you use unique symbolic names. One way to ensure a unique symbolic name is to prefix the
name with the root identification, the owner’s userid or an application-specific string. agent_force
will be removed or reworked as the fault-tolerance, namespace and security components of Agent
Tecl are implemented and improved.

3. An agent can forcibly remove itself if desired. This, however, is not a good idea.

Example:

20

Most agents would use the following command sequence to obtain a controlling server and register their
symbolic name. The sequence assumes that the desired symbolic name is in the Tcl variable name.

agent_begin
agent_force "$agent(local-ip) $name"

agent_name $name

The agent_begin command registers the agent with the server on the current machine. Then the
agent_force command forcibly removes the desired symbolic name from the server tables (remember
that agent(local-ip) contains the TP address of the controlling server). Finally the agent_name command
registers the desired symbolic name.

Error messages:

On error, agent_force raises a standard Tecl exception that can be caught with the catch command.
agent_force returns one of the following error messages. The indented text below each error message
describes the possible interpretations of the message.

wrong number of arguments

You specified the wrong number of arguments.
agent has NOT been registered

The agent does not have a controlling server.
agent identification must be

The identification was specified incorrectly.
unable to convert name

The system was unable to determine the network address of the specified
machine.

unable to send to server
The system was unable to contact the controlling server of the specified
agent within the given number of seconds. This means that the specified
machine has crashed or does not exist, the server is not running on the
specified machine, or the specified machine is temporarily unreachable
due to network failure or overload. The standard response to this error is
to retry the command at least once.

server unable to comply (no response)
The server failed while handling the agent_force.

server unable to comply (bad response)
The server failed while handling the agent_force.

server unable to comply (server error)

The server does not accept connections from the agent’s current machine, i.e.,
the agent’s current machine is NOT in the server’s access list.

21

7.3 Messages

Agent Tcl provides a message passing facility. A message consists of a numeric code and a string.

o agentsend destination [inleger] siring [-time seconds]

agentsend sends a message to another agent. integer is the numeric code and string is the string.
The numeric code defaults to 0 if it is not specified. destination is the identity of the recipient agent.
destination is either a standard 4-element identification

bald.cs.dartmouth.edu 129.170.192.98 calculator_agent 100
or any 2-element identification that uniquely identifies the recipient

bald.cs.dartmouth.edu calculator_agent
bald.cs.dartmouth.edu 100
129.170.192.98 calculator_agent
129.170.192.98 calculator_agent

Such a 2-element list must include either the machine name or machine IP and either the recipient’s
name or recipient’s ID. It is not necessary to specify the full Internet name of the machine. Any name
that the local name server maps to the desired machine is acceptable. seconds is the maximum number
of seconds to wait for a response from the destination machine. seconds can be a fractional number of
seconds and defaults to 15 if the -t2zme parameter is not specified. agent_send returns the empty string.

Example:

An agent would use the following command to send the message {0, INIT_.CALC} to the calculator
agent on bald.

agent_send "bald calculator_agent'" 0 INIT_CALC

Error messages:

On error, agent_send raises a standard Tcl exception that can be caught with the catch command.
agentsend returns one of the following error messages. The indented text below each error message
describes the possible interpretations of the message.

wrong number of arguments
You specified the wrong number of arguments.
agent has NOT been registered
The sender does not have a controlling server.
agent identification must be
The recipient identification was specified incorrectly.
unable to convert name

The system was unable to determine the network address of the recipient
machine.

22

unable to send to server

The sender was unable to contact the recipient server within the specified
number of seconds. This means that the recipient machine has crashed or
does not exist, the server is not running on the recipient machine, or the
recipient machine is temporarily unreachable due to network failure or
overload. The standard response to this error is to retry the command at
least once.

server unable to comply (no response)

The recipient server failed while processing the message.
server unable to comply (bad response)

The recipient server failed while processing the message.
server unable to comply (server error)

There is no agent at the recipient server with the specified numeric ID.
Note that no error occurs if the sender specifies a symbolic name and there
is no agent with that name. Instead the server buffers the message and
transfers it to the first agent that requests the name with the agent_name
command. This buffering allows a set of agents to request symbolic names
and then send messages to each other without having to worry that the
intended recipient has not executed its agent_name command yet. This of
course assumes that each agent knows what names the other agents will
request. Therefore it is most useful when a parent agent creates several
child agents that must communicate with each other. The '"server unable to
comply (server error)" message can also mean that the server does not accept
connections from the sender’s current machine, i.e., the sender’s current
machine is NOT in the server’s access list.

e agent_receive code_var siring_var <-blocking | -time seconds | -nonblocking>

agent_receive is used to receive a message. The command has blocking, nonblocking and timed forms.
The blocking form waits until a message is available. Then 1t sets the variable code_var to the message
code, sets the variable string_var to the message string, and returns the 4-element identification of the
sender. The nonblocking form returns -1 if there is no message available. Otherwise it sets code_var
and message_var to the message code and string respectively and returns the 4-element identification
of the sender. The timed form returns -1 if no message arrives before the specified number of seconds
has elapsed. Otherwise it sets code_var and message_var to the message code and string respectively
and returns the 4-element identification of the sender.

Examples:

Suppose that agent “moose.cs.dartmouth.edu 129.170.194.28 {} 25” issues the agent-send command
above and that the calculator agent on bald issues the command

agent_receive code string -blocking

The calculator agent sleeps until the message arrives. Then the variable code is set to the message
code “0”. The variable string is set to the message string “INIT_.CALC”. Finally agent_receive returns
the identification of the sender which in this case is “moose.cs.dartmouth.edu 129.170.192.98 {} 25”.
If the calculator agent issues the command

23

agent_receive code string -nonblocking

and the message has not arrived, the command returns -1. Otherwise the command fills in the variables
and returns the sender identification as before. If the calculator agent issues the command

agent_receive code string -time 5.0

and the message does not arrive within 5 seconds, the command returns -1. Otherwise the command
fills in the variables and returns the sender identification as before.

Error messages:

On error, agent_receive raises a standard Tcl exception that can be caught with the cafch command.
agent_receive returns one of the following error messages. The indented text below each error message
describes the possible interpretations of the message.

wrong number of arguments

You specified the wrong number of arguments.
agent has NOT been registered

The agent does not have a controlling server.
broken connection to server

The agent’s controlling server has crashed. The agent is effectively dead.

7.4 Events

An event consists of a tag and a body. Both the tag and the body are arbitrary strings. Events will eventually
be used for asynchronous notification of important occurrences. In the current system, however, events are
exactly the same as messages except for the use of a tag rather than a numeric code. Despite the similarity,
events are often a more convenient communication mechanism since the tag can be a descriptive string.

The agent_event command is used to send an event. The agent_getevent command is used to receive an
event. These commands have the same syntax, semantics and error messages as agent_send and agent_receive
respectively, i.e.,

agent_event tag string [-time seconds)
and

agent_getevent tag_var string-var <-blocking | -time seconds | -nonblocking>

7.5 Migration

An agent migrates when it moves from one machine to another. An agent can migrate to a machine only if
the server is running on that machine. There are three migration-related commands. agent_jump migrates
the agent, agent_fork clones the agent and agent_submit creates a new agent.

Keep two things in mind through this section.

1. A child agent created with the agentsubmit or agent_fork commands executes with the authority of
the agent server.

2. As soon as an agent migrates for the first time, 1t executes with the authority of the agent server. It
will execute with the authority of the server until it terminates.

24

This, of course, will change in future releases of the system. In the meantime you must make sure that the
server has the authority to do whatever your child or migrated agent is trying to do. In other words you
must give userid agent the appropriate access permissions. Recall that agent is the userid that was created
specifically for the agent servers.

e agent_submit machine [-procs name name ...] [-vars name name [-time seconds| . ..] -script script

agent_submit submits the Tcl script script to the server on machine machine. seconds is the maximum
number of seconds to wait for a response from the server. seconds can be a fractional number of seconds
and defaults to 15 if the -tzme parameter is not specified.

agent_submit raises an error if it is unable to contact the server within the specified number of seconds.
Otherwise the specified script becomes an agent under the server’s control and executes on the server’s
machine. The agent that issues the agent_submit command is the parent of the new child agent. If the
child agent needs to access variables or procedures that are defined in the parent, these variables and
procedures should be listed after the -vars and -procs flags respectively. The variables and procedures
are sent to the destination server along with the script. Note that a transmitted variable is a copy of
the parent variable. Changes in one are never seen in the other. In addition each transmitted variable
becomes a global variable in the child agent.

The agentsubmit command returns the 4-element identification of the new child agent. In the child
agent the root section of the agent array is the same as in the parent while the local section is set to
the child’s identification. In other words the child has the same root agent as its parent and its own
unique identification.

Every Tecl script has a result. The result of the script is the result of the last command executed in
that script. When the child agent finishes executing, a message is automatically sent to the root agent.
The message code indicates the way in which the child agent terminated. The two possible codes are

normal

= O
1]

error

On normal termination the message string is the script result. On error the message string is a three-
element list where the first element is the error string, the second element is the contents of the Tcl
variable errorCode and the third element is the contents of the Tcl variable errorinfo. These automatic
messages are received with the agent_receive command just like any message.

Note:
An automatic message is not sent if the child agent explicitly issues the ez:it command.
Example:

The following agent asks for an integer and then computes the factorial of the integer on a different
machine. For clarity the script does not perform any error checking.

#!/usr/contrib/bin/agent

#

fac.remote.tcl

#

This agent asks the user for an integer and then computes the factorial
of that integer on a DIFFERENT machine.

proc factorial x {

if {$x <= 1} {
return 1;

}

25

expr $x * [factorial [expr $x - 1]]

ask the user for a machine

puts "Enter the name of the remote machine:"
gets stdin machine

get a controlling server
agent_begin

compute factorials
set number 0
while {$number != -1} {

puts "Enter a nonnegative integer (-1 to quit): "
gets stdin number

if {$number '= -1} {
compute the factorial on the remote machine. We submit the script
"factorial $number" along with procedure "factorial' and variable

"number" since the script needs these two things

agent_submit $machine -vars number -procs factorial \
-script {factorial $number}

the result of the submitted agent is the result of the last
command executed in that agent -- i.e. the return value of
procedure "factorial". When the submitted agent ends, this

result is automatically sent to the root agent (which is this
agent). We just wait until we receive the message.

H H H R

agent_receive code result -blocking
output the result
puts "$number! is equal to $result\n"
}
done

agent_end

Error messages:

On error, agent_submit raises a standard Tcl exception that can be caught with the catch command.
agent_submit returns one of the following error messages. The indented text below each error message
describes the possible interpretations of the message.

26

wrong number of arguments
You specified the wrong number of arguments.
must specify a script
You did not specify a script.
"—-script" must be followed by a script
You did not specify a script.
procedure ... does not exist
One of the procedures listed after the -procs flag does not exist.
variable ... does not exit
One of the variables listed after the -vars flag does not exist.
is immobile

The indicated variable or procedure is "immobile" and can not be transferred
to a remote machine.

unable to send to server

The destination server did not respond within the specified number of
seconds. This means that the destination machine has crashed or does not
exist, the server is not running on the destination machine, or the
destination machine is temporarily unreachable due to network failure or
overload. The standard response to this error is to retry the command at
least once.

server unable to comply (no response)
The destination server failed while handling the agent_submit.
server unable to comply (bad response)
The destination server failed while handling the agent_submit.
server unable to comply (server error)
The destination server does not accept connections from the agent’s current
machine, i.e., the agent’s current machine is NOT in the server’s access

list.

Note that a child agent is never created if agent_submit fails.

e agent_jump machine [-time seconds]

agentjump migrates the agent to machine machine. The agent server must be running on machine.
seconds i1s the maximum number of seconds to wait for a response from the server. seconds can be a
fractional number of seconds and defaults to 15 if the -ftzme parameter i1s not specified.

27

agentjump suspends the execution of the agent, captures the internal state of the agent, and trans-
mits the internal state to the server. The server restores the state image and assigns a new iden-
tification to the agent. The agent then resumes execution at the statement immediately after the
agentjump. agent_jump returns “SAME” if the destination machine is the same as the current ma-
chine and “JUMPED” if the destination machine is a different machine. The local section of the agent
array 1s updated with the new local identification. The root section remains the same unless the agent
is a root agent. In this case the root section is updated with the new identification as well.

Notes:

1. An agent loses its symbolic name when it jumps since the symbolic name might be in use on the
destination machine. The agent must request the symbolic name after it jumps.

2. An agent loses its connection with the console when it jumps and can not regain this connection
even when it returns to the local machine. An agent application that needs to use the console
must be written as two agents. One agent is stationary and maintains the console connection.
This stationary agent submits a mobile agent using agentsubmit. The mobile agent migrates
through the network as desired and returns its results to the stationary agent. Note that a Agent
Tk agent can regain its screen connection (by contacting the X server when it returns to the
machine). An alternative, therefore, is to write the agent in Tk and use a GUT for all interaction.

3. agentjump can not be used when Tcl is in interactive mode. agentjump makes no sense in

interactive mode since the user can not interactively enter Tcl commands if the agent has migrated
to a remote machine.

Examples:

The following two agents illustrate agent_submit and agent_jump. Both agents execute the who com-
mand on multiple machines and present a list of users to the agent’s owner. The first agent submits
one agent {0 each machine. Each child agent executes the who command on its machine and returns
the list of users to the parent.

#!/usr/contrib/bin/agent
who.tcl
This agent executes the "who" command on multiple machines. It submits one

child agent FOR EACH MACHINE. Each child executes the '"who" command on its

#
#
#
#
#
machine and returns the list of users.

Procedure WHO executes the "who" command
proc who args {
global agent

set users [exec who]
return "$agent(local-server):\n$users\n"

list of machines -- make sure that you replace these with your machines!

set machines "bald.cs.dartmouth.edu \
cosmo.dartmouth.edu \
lost-ark.dartmouth.edu \
temple-doom.dartmouth.edu \
moose.cs.dartmouth.edu \

28

muir.cs.dartmouth.edu \
tenaya.cs.dartmouth.edu \
tioga.cs.dartmouth.edu \
tuolomne.cs.dartmouth.edu"
register the agent
if {[catch {agent_begin}]1} {
return -code error "ERROR: unable to register on $agent(actual-server)"
}
catch any error
if {[catch {
submit the "who' agents
set submitted O
foreach m $machines {
set script "agent_submit $m -procs who -script {whol}"
if {[catch $scriptl} {
puts "ERROR: unable to submit to $m"
} else {

incr submitted

}

wait for each child to automatically send back the list of users
puts "\nWHO’S WHO on our computers\n"
for {set i 1} {$i <= $submitted} {incr i} {
set source_id [agent_receive code message -blocking]
puts $message
}
} error_messagel} then {
make sure that we clean up on error

agent_end

return -code error -errorcode $errorCode —errorinfo $errorInfo $error_message

clean up

agent_end

29

The second agent submits a single child agent that migrates from machine to machine. The child
executes the who command on each machine and appends the users to a growing list. This list is
carried along with the child agent as it migrates and is returned to the parent when the child agent
finishes.

#!/usr/contrib/bin/agent

#
#
#
#
#
#

who. jump.tcl
This agent executes the "who" command on multiple machines. It submits
a SINGLE child agent. The child jumps from machine to machine and

executes the WHO command on each machine.

Procedure WHO is the child agent that does the jumping.

proc who machines {

}

global agent

start with an empty list
set list ""

jump from machine to machine
foreach m $machines {

if we do not jump successfully append an error message
otherwise append the list of users

if {[catch "agent_jump $m"1} {
append list "$m:\nunable to JUMP to this machine\n\n"
} else {
set users [exec whol
append list "$agent(local-server):\n$users\n\n"
¥
}

return $list

list of machines —- make sure that you replace these with your machines!

set machines "bald.cs.dartmouth.edu \

cosmo.dartmouth.edu \
lost-ark.dartmouth.edu \
temple—doom.dartmouth.edu \
moose.cs.dartmouth.edu \
muir.cs.dartmouth.edu \
tenaya.cs.dartmouth.edu \
tioga.cs.dartmouth.edu \
tuolomne.cs.dartmouth.edu"

register the agent

30

if {[catch {agent_begin}]1} {

return -code error "ERROR: unable to register on $agent(actual-server)"
X

catch any error
if {[catch {

submit the agent that does the jumping

agent_submit $agent(local-ip) \
-vars machines -procs who -script {who $machines}

wait for the list of users that is automatically returned from the
child agent

agent_receive code message —blocking
output the list of users
puts "\nWHO’S WHO on our computers\n\n$message"
} error_messagel} then {
make sure that we clean up on error
agent_end

return -code error -errorcode $errorCode —errorinfo $errorInfo $error_message

clean up

agent_end

Both of these agents produced the following output during a test run.
WHO’S WHO on our computers

bald.cs.dartmouth. edu:

rgray ttyé Aug 20 21:30

rgray ttyp1 Aug 20 21:32 (:0.0)

cosmo.dartmouth.edu:

lost-ark.dartmouth.edu:

megumi ttyq0 Aug 21 08:32

gvce ttyq3 Aug 15 14:32

temple-doom.dartmouth.edu:

31

megumi ttyq0 Aug 21 08:33

moose.cs.dartmouth. edu:
rgray ttyp0 Aug 21 08:56 (bald.cs.dartmouth)

muir.cs.dartmouth. edu:

hershey :0 Aug 16 11:06
hershey ttyp2 Aug 16 11:06
hershey ttyp3 Aug 16 11:06

tenaya.cs.dartmouth. edu:

rgray

tioga.cs.dartmouth.edu:

mdengler :0 Aug 11 19:23
olson ttyp3 Aug 11 11:52

tuolomne.cs.dartmouth.edu:
rgray

Error messages:

On error, agent_jump raises a standard Tcl exception that can be caught with the catch command.
agentjump returns one of the following error messages. The indented text below each error message
describes the possible interpretations of the message.

wrong number of arguments
The command takes one argument

agent has NOT been registered
The agent does not have a controlling server.

unable to send to server
The destination server did not respond within the specified number of
seconds. This means that the destination machine has crashed or does not
exist, the server is not running on the destination machine, or the
destination machine is temporarily unreachable due to network failure or
overload. The standard response to this error is to retry the command at
least once.

server unable to comply (no response)
The destination server failed while handing the agent_jump.

server unable to comply (bad response)
The destination server failed while handling the agent_jump.

server unable to comply (server error)

The destination server does not accept connections from the agent’s current

32

machine, i.e., the agent’s current machine is NOT in the server’s access
list.

Note that the agent never changes network location when an error occurs. Instead it continues running
on the current machine.
agent_fork machine

agent_fork is analogous to Unix fork. The command creates a copy of the agent on the specified
machine. The agent server must be running on machine. seconds is the maximum number of seconds
to wait for a response from the server. seconds can be a fractional number of seconds and defaults to
15 if the -tsme parameter is not specified.

The server assigns an identification to the new child. Then the parent and child continue execution
from the point at which the fork occurred. agent_fork returns the string “CHILD” in the child agent
and the 4-element identification of the child in the parent agent. In the child the local section of the
agent array is set to the child’s identification while the root section is the same as in the parent. In
the parent the agent array is unchanged.

Notes:

1. Initially the child has no symbolic name. The child can request a symbolic name with the
agent_name command if desired.

2. agent_fork can not be used when Tcl is in interactive mode. agent_fork makes no sense in interactive
mode since (1) the user can not interactively enter commands to the child if the child is on a remote
machine and (2) the parent and child would compete for user input if the child is on the same
machine.

Examples:

The following Tcl script is a skeleton for any agent that performs a fork.
#!/usr/contrib/bin/agent
change this to the desired machine
set machine tioga.cs.dartmouth.edu
register the agent
agent_begin
fork
if {[agent_fork $machine] == "CHILD"} {
child processing here
} else {

parent processing here
wherever you put the agent_end, make sure that only the parent does it

agent_end

33

Error messages:

On error, agentfork raises a standard Tcl exception that can be caught with the cafch command.
agent_fork returns one of the following error messages. The indented text below each error message
describes the possible interpretations of the message.

wrong number of arguments
The command takes one argument.

agent has NOT been registered
The agent does not have a controlling server.

unable to send to server
The destination server did not respond within the specified number of
seconds. This means that the destination machine has crashed or does not
exist, the server is not running on the destination machine, or the
destination machine is temporarily unreachable due to network overload or
error. The standard response to this error is to retry the command at least
once.

server unable to comply (no response)
The destination server failed while handling the agent_fork.

server unable to comply (bad response)
The destination server failed while handling the agent fork.

server unable to comply (server error)
The destination server does not accept connections from the agent’s current

machine, i.e., the agent’s current machine is NOT in the server’s access
list.

Note that a child agent is never created if agent_fork fails.

7.6 Limitations of jump and fork

agent_fork and agent_jump capture the internal state of a Tcl script and transmit this state to a remote
machine. Currently these commands capture most but not all of the internal state.

1. Masks are not captured. You must recreate any desired masks after a call to agentjjump or agent_fork.
See the “Mask” section below. This problem will be fixed soon.

2. Timeouts are not captured. The restrict command will not work if the enclosed script jumps or forks.
See the “Timing” section below. This problem will be fixed soon.

3. Do not fork or jump inside a variable trace or inside a procedure that the lsor{ command is using to
compare list elements. You will get the error message

script is not interruptable

34

if you try.

4. Do not fork or jump from inside the history commands. You will get the error message
script is not interruptable

if you try.
5. The following portions of the state are simply ignored:

e deletion callbacks,

e open files,

e linked variables,

e variable traces,

e command traces,

e interrupt handlers,

e child processes,

e array searches,

e user-defined math functions,
e history lists

e and the internal state of all Tcl extensions.

Most of these are inherently nontransportable due to their close ties to a particular machine, to un-
derlying C code or to the size of internal Tcl tables. Work on saving and restoring the state of Tcl
extensions is in progress. The expected solution is to allow Tcl extensions to register a state handler
with the Tcl core. The Tcl core will call these handlers during state transfer. Each handler is responsi-
ble for saving and loading the state of its extension. Note that you can use all of the listed constructs;
the limitation is that you can not create or define the construct on one machine and then transmit it
to another machine.

All of these Tcl features are described in [Ous94] and [Wel95]. The most important thing to note is that it
is nearly impossible to use them accidentally. If you do not know what they are or do not think that you
are using them, you are not using them.

7.7 Meetings

A meeting 1s a direct connection between two agents. A direct connection provides more efficient data
transfer than message passing.

e agent_meet recipient

The agent-meet command is used to establish a meeting with a recipient agent. recipient is the
4-element identification of the recipient (or any 2-element shorthand that uniquely identifies the recip-
ient). agent_meet waits until the recipient has accepted or rejected the meeting. There are three ways
for the recipient to accept the meeting.

1. The recipient can wait for the meeting request with the get_meeting command and then accept
the request with the accept_meeting command.

2. The recipient can wait for and automatically accept the request with the agent_accept command.

3. The recipient can issue an agent-meet command at the same time as the source agent (specifying
the source agent as ils recipient).

35

The first two techniques are useful for agents that must accept meetings from unknown sources. The
third technique is useful when a pair of agents wants to establish a meeting. There is only one way for
the recipient to reject the meeting.

1. The recipient must wait for the meeting request with the get_meeting command and then reject
the request with the reject_meeting command.

agent_meet raises a standard Tcl exception if the recipient refuses the meeting and returns a socket
descriptor if the recipient accepts the meeting. A socket descriptor is an integer greater than or equal
to 1 and can be thought of as a meeting identification number in this context. Writing to the socket
descriptor with the tcpip-write command sends a string to the recipient agent. Reading from the socket
descriptor with the tcpip_read command receives a string from the recipient agent.

Examples:

Here are two agents that meet with each other to exchange status information. The agents assume
that they have the same controlling server. The first agent is the email agent.

#!/usr/contrib/bin/agent
email.tcl

connection with the "file_agent'" and exchange status information. It
assumes that the "file_agent' has the same controlling server.

#
#
#
This is the "email_agent'. It uses agent_meet to establish a direct
#
#
register the agent on the current machine
if {[catch agent_beginl} {
return -code error "unable to register the agent on $agent(actual-server)"
X
if {[catch {
this is the '"email_agent"
agent_name email_agent
meet with the "file_agent"
set sockfd [agent_meet "$agent(local-ip) file_agent"]
exchange status information
tcpip_write $sockfd "{NEW_MESSAGES 0} {IN_BOX_MESSAGES 10}"
set status [tcpip_read $sockfd -blocking]
tcpip_close $sockfd
display the status information from the other agent
puts "$agent(local):\nThe file agent says ... $status\n"

} error_messagel]} then {

make sure that we clean up on error

36

agent_end

return -code error -errorcode $errorCode —errorinfo $errorInfo $error_message

clean up

agent_end

The second agent is the file agent.

#!/usr/contrib/bin/agent

file.tcl

This is the "file_agent'". It uses agent_meet to establish a direct

connection with the "email_agent'" and exchange status information. It
assumes that the "email_agent' has the same controlling server.

#
#
#
#
#
#
register the agent on the current machine
if {[catch agent_beginl} {
return -code error "unable to register the agent on $agent(actual-server)"
X
if {[catch {
this is the "file_agent"
agent_name file_agent
meet with the "email_agent"
set sockfd [agent_meet "$agent(local-ip) email_agent']
exchange status information
tcpip_write $sockfd "{FREE_SPACE 65536 KB}"
set status [tcpip_read $sockfd -blocking]
tcpip_close $sockfd
display the status information from the other agent
puts "$agent(local):\nThe email agent says ... $status\n"
} error_messagel} then {

make sure that we clean up on error

agent_end

37

return -code error -errorcode $errorCode —errorinfo $errorInfo $error_message

clean up
agent_end

Running these two scripts in two different terminal windows on the author’s machine produced the
following output.

% email.tcl

bald.cs.dartmouth.edu 129.170.192.98 email_agent 12:
The file agent says ... {FREE_SPACE 65536 KB}

0

/

% file.tcl

bald.cs.dartmouth.edu 129.170.192.98 file_agent 13:

The email agent says ... {NEW_MESSAGES 0} {IN_BOX_MESSAGES 10}
h

A scan though the code should convince you that the agents did indeed exchange their status strings.
Note:

If an agent specifies the meeting recipient by symbolic name and there is no recipient with that name,
the system will buffer the meeting request and transfer the request to the first agent that registers the
name (just like when sending message and events). Thus the two agents above will work even if one
agent issues its agent_meet command before the other has issued its agent-name command.

Error messages:

On error agent_meet raises a standard Tcl exception that can be caught with the catch command.
agent_meet returns one of the following error messages. The text below each error message describes the
possible interpretations of the message (the source agent is the agent issuing the agent-meet command;
the recipient agent is the agent that accepts or rejects the meeting; the source serveris the controlling
server of the source agent; the recipient server is the controlling server of the recipient agent; etc.).

wrong number of arguments
You specified the wrong number of arguments.

agent has NOT been registered
The source agent does not have a controlling server.

unable to send to server
The recipient machine has crashed or does not exist, the server is not
running on the recipient machine, the recipient machine is temporarily
unreachable due to network failure or overload, the source machine has
crashed, the source server has crashed, or the source machine is temporarily
unreachable due to network failure or overload. The standard response to

this error is to retry the command at least once.

server unable to comply (bad response)

38

The source or recipient server failed while attempting to complete the
meeting.

server unable to comply (no response)

The source or recipient server failed while attempting to complete the
meeting.

server unable to comply (server error)
The recipient does not exist or the source server has failed and
been restarted since the call to agent_begin. In the latter case the
source agent is no longer in the server tables and is effectively dead.
Remember that if the recipient is specified by name, the meeting request
will be buffered and transferred to the first agent that requests that name.
The "server unable to comply (server error)" message can also mean that
the destination server does not accept connections from the agent’s current
machine, i.e., the agent’s current machine is NOT in the server’s access
list.

recipient has refused the request for a meeting

The recipient has refused the meeting request. The errorCode variable is
set to REFUSED.

unable to create socket
The system was unable to open a local socket.
unable to connect socket

The system was unable to connect the local socket to a socket on the
recipient machine.

protocol error: expected ... but got
The meeting commands are implemented with lower level primitives and
obey a specific protocol. This error means either that there is a bug
in the meeting commands or that the recipient is using custom meeting
commands that do not obey the protocol. The errorCode variable is set to
PROTOCOL.

an agent can not meet with itself
The agent is attempting to meet with itself.

unable to bind socket

The system was unable to associate a port with the local socket.

unable to listen to socket

39

The system was unable to associate a connection queue with the local
socket.

unable to accept

The other agent is attempting to connect to the local socket. The system
was unable to accept the connection.

agent identification must be
The recipient was specified incorrectly.
unable to convert name

The system was unable to determine the network address of the recipient
machine.

tepipowrite sockfd string

The tcpip-write command is used to send a string along a direct connection. sockfd is the socket
descriptor returned from the agent_meet, accept-meeting or agent_accept commands. string is the
string that should be sent to the agent on the other end of the connection. tcpip-write returns the
empty string.

Examples:

In the file agent above, the command
tcpip_write $sockfd "{FREE_SPACE 65536 KB}"
sends the string

{FREE_SPACE 65536 KB}

along the direct connection to the email agent at the other end.
Error messages:

On error, tcpip-write raises a standard Tcl exception that can be caught with the catch command.
tcpip_write returns one of the following error messages. The indented text below each error message
describes the possible interpretations of the message.

wrong number of arguments
You specified the wrong number of arguments.

unable to write
The socket descriptor is invalid or has become disconnected. A socket
becomes disconnected if the agent on other end closes its end of the

connection, if the agent on the other end terminates, or if the machine on
the other end crashes.

tepipread sockfd <-nonblocking | -time seconds | -blocking>

tcpipread is used to read a string from a direct connection. sockfd is the socket descriptor returned by
the agent_meet, accept_meeting or agent_accept commands. tcpipread has three forms. The blocking

40

form waits until a string i1s available on the connection and then returns the string. The {imed form
raises a Tcl exception if a string does not arrive before the sepcified number of seconds has elapsed.
Otherwise the timed form returns the string. The nonblocking form raises a Tcl exception if no string
is available immediately. Otherwise the nonblocking form returns the string.

Example:

Continuing with the example above, the email agent issues the command

set status [tcpip_read $sockfd -blocking]

in order to receive the status string from the file agent. The status variable is set to
{FREE_SPACE 65536 KB}

which is the string that the file agent sent using the tcpip-write command.
Error messages:

On error, tcpip_read raises a standard Tcl exception that can be caught with the catch command.
tcpipread returns one of the following error messages. The indented text below each error message
describes the possible interpretations of the message.

timeout

The -nonblocking option was specified and no string was available OR the
-time option was specified and no string was available before the specified
number of seconds expired. The errorCode variable is set to TIMEOUT.

wrong # of arguments
You specified the wrong number of arguments.
unable to read

The socket descriptor is invalid or has become disconnected. A socket
becomes disconnected if the agent on other end closes its end of the
connection, if the agent on the other end terminates, or if the machine
on the other end crashes.

tepip-close sockfd

tepip-close 1s used to close a direct connection. sockfd is the socket descriptor returned by the
agent_meet, accept-meeting or agent_accept commands. Once the connection is closed, all tcpipread
and tepip-write commands on that connection will fail.

Note:

tepip_close will close the given descriptor even it does not refer to a meeting. Be sure that you specify
the correct descriptor! This will be fixed soon.

Examples:

As soon as the email agent and the file agent have exchanged status strings, they close the direct
connection with the command

tcpip_close $sockid

41

Issuing this command is actually unnecessary since all of an agent’s direct connections are closed
automatically when the agent terminates. Explicitly issuing the command is good form, however,
and conserves system resources if the agent continues executing after it has finished with the direct
connection.

Error messages:

On error, tcpip-close raises a standard Tcl exception that can be caught with the catch command.
tcpip—close returns one of the following error messages. The indented text below each error message
describes the possible interpretations of the message.

wrong number of arguments

You specified the wrong number of arguments.

get-meeting location-var <-blocking | -nonblocking>

The agent_-meet command is used when one agent wishes to meet with a specific second agent. The
get_meeting, accept_meeting, reject_meeting and agent_accept commands are used when an agent wishes
to meet with any agent that requests a meeting.

The get-meeting command is used to receive a meeting request. The command has both a blocking
and a nonblocking form. The blocking form waits until a meeting request is available. Then it sets
location_var to a 3-element list

machine_name machine_IP port_number

that specifies the actual network location of the requesting agent. This is necessary since an agent
might not be on the same machine as its controlling server. Finally the blocking form returns the 4-
element identification of the requester. The nonblocking form returns -1 if there is no meeting request
available. Otherwise it sets location_var and returns the requester identification as in the blocking case.

Examples:
A long example appears under the accept_-meeting command.
Error messages:

On error, get_meeting raises a standard Tcl exception that can be caught with the catch command.
get_meeting returns one of the following error messages. The indented text below each error message
describes the possible interpretations of the message.

wrong number of arguments
You specified the wrong number of arguments.

agent has NOT been registered
The agent does not have a controlling server.

unable to send to server
The controlling server has crashed, the controlling server’s machine has
crashed, or the controlling server is temporarily unreachable due to network
failure or overload. The standard response to this error is to retry the

command at least once.

server unable to comply (no response)

42

The controlling server failed while handling the get_meeting.

server unable to comply (bad response)
The controlling server failed while handling the get_meeting.

server unable to comply (server error)
The controlling server has failed and been restarted since the call to
agent_begin. In this case the agent is no longer in the server tables and
is effectively dead.

protocol error: expected REQUEST but got
The meeting commands are implemented with lower level primitives and obey
a specific protocol. This error means either that there is a bug in the

meeting commands or that the requester is using customized meeting commands
that do not obey the protocol. The errorCode variable is set to PROTOCOL.

reject_meeting requester_id

The reject_meeting command is used to reject a meeting request. requester_id is the identification
of the requesting agent, i.e., the identification that was returned from the get_meeting command.
reject_meeting returns the empty string.

Examples:
A long example appears under the accept_-meeting command.
Error messages:

On error, reject_meeting raises a standard Tcl exception that can be caught with the catch command.
reject_meeting returns one of the following error messages. The indented text below each error message
describes the possible interpretations of the message.
wrong number of arguments
You specified the wrong number of arguments.
agent has NOT been registered
The agent does not have a controlling server.
unable to send to server
The requester’s machine has crashed or does not exist, the server is not
running on the requester’s machine, or the requester’s machine is
temporarily unreachable due to network failure or overload. The standard
response to this error is to retry the command at least once.
server unable to comply (no response)

The requester’s server failed while handling the rejection.

server unable to comply (bad response)

43

The requester’s server failed while handling the rejection.
server unable to comply (server error)

The specified requester does not exist OR the requester’s server does not
accept connections from the agent’s current machine, i.e., the agent’s
current machine is NOT in the server’s access list.

identification must be ...
The requester’s identification was specified incorrectly
unable to convert name

The system was unable to determine the network address of the requester’s
machine.

accept-meeting requester_id requester_loc sockfd

The accept_meeting command is used to accept a meeting request. requester_id is the identification
of the requesting agent, i.e., the identification that was returned from the get_meeting command.
request_loc is the 3-element list

machine_name machine_IP port_number

that identifies the actual network location of the requesting agent, i.e. the 3-element list that the
get_meeting command put into locaton_var. sockfd is a socket descriptor to use for the meeting. If
sockfd is 0 or ANY, accept_meeting will choose an arbitrary TCP/IP port. Otheriwse accept-meeting
will use the TCP/IP port that has already been bound to sockfd, i.e., sockfd must refer to a valid,
bound socket. In nearly all instances it is reasonable to let the system choose the TCP/IP port. Thus
sockfd should almost always be ANY. accept_meeting returns the socket descriptor for the meeting. As
before this socket descriptor is an integer greater than or equal to 1 and can be thought of as a meeting
identification number. The tcpip_read, tcpip-write and tcpip-close commands are used to exchange
information and terminate the meeting.

Examples:

The following example shows a client that sends a meeting request to a server. The server either accepts
or rejects the meeting (it is not much of a server since it asks a human user whether to accept or reject
each meeting rather than making the decision automatically). If the server accepts the meeting, the
server and client exchange a pair of strings. The server code is

#!/usr/contrib/bin/agent
server.tcl

This is the '"server_agent'". It waits for a meeting request from any client
using the get_meeting command. Then it asks the user whether to accept

or reject the meeting. The client and server exchange two strings if the
user accepts the meeting.

H OH H HH R

register the agent on the current machine

if {[catch agent_beginl} {
return -code error "ERROR: unable to register the agent on $agent(actual-server)"

44

X
if {[catch {
this is the '"server_agent"

agent_force "$agent(local-ip) server_agent"
agent_name server_agent

process meeting requests forever
while {1} {
wait for the next meeting request
set source_id [get_meeting source_loc -blocking]
ask the user to accept or reject the meeting
puts "$source_id requests access to the server"
puts "Accept (Y/N)?"

gets stdin answer

on acceptance establish the connection and exchange the status strings
on rejection send a rejection notice

if {($answer == "Y") || ($answer == "y")} {
set sockfd [accept_meeting $source_id $source_loc ANY]
set status [tcpip_read $sockfd -blocking]
puts "The client $source_id says ...\n$status"
tcpip_write $sockfd "No problem!"
tcpip_close $sockfd

} else {
reject_meeting $source_id

}

}

} error_messagel} then {
make sure that we clean up on error
agent_end

return -code error -errorcode $errorCode -—errorinfo $errorInfo $error_message

clean up
agent_end
The client code is

#!/usr/contrib/bin/agent

45

client.tcl

This is the '"client_agent'". It uses agent_meet to establish a direct
connection with the "server_agent'" and exchange status information. It

H H B B B H

assumes that the '"server_agent' has the same controlling server.
register the agent on the current machine
if {[catch agent_begin]} {
return -code error "ERROR: unable to register the agent on $agent(actual-server)"
X

if {[catch {

meet with the '"server_agent"
agent_meet will raise an exception if the server rejects the meeting

set sockfd [agent_meet "$agent(local-ip) server_agent']
exchange the strings
tcpip_write $sockfd "Thank you for accepting the meeting!"
set status [tcpip_read $sockfd -blocking]
tcpip_close $sockfd
display the status information
puts "$agent(local):\nThe server says ...\n$status"
} error_messagel} then {
make sure that we clean up on error

agent_end

return -code error -errorcode $errorCode -—errorinfo $errorInfo $error_message

clean up

agent_end

The following output shows two clients attempting to meet with the server. The server rejects the first
meeting and accepts the second. The client output on the author’s machine is

% client.tcl

recipient has refused the request for a meeting
% client.tcl

bald.cs.dartmouth.edu 129.170.192.98 {} 13:

The server says

No problem!

A

46

The corresponding server output is

% server.tcl

bald.cs.dartmouth.edu 129.170.192.98 {} 12 requests access to the server
Accept (Y/N)?

N

bald.cs.dartmouth.edu 129.170.192.98 {} 13 requests access to the server
Accept (Y/N)?

Y

The client bald.cs.dartmouth.edu 129.170.192.98 {} 13 says

Thank you for accepting the meeting!

Error messages:

On error, accept-meeting raises a standard Tcl exception that can be caught with the catch command.
accept-meeting returns one of the following error messages. The indented text below each error message
describes the possible interpretations of the message.

wrong number of arguments
You specified the wrong number of arguments.
agent has NOT been registered
The agent does not have a controlling server.
unable to send to server
The requester’s machine has crashed or does not exist, the server is not
running on the requester’s machine, or the requester’s machine is
temporarily unreachable due to network failure or overload. The standard
response to this error is to retry the command at least once.
server unable to comply (bad response)
The requester’s server failed while attempting to complete the meeting.
server unable to comply (no response)
The requester’s server failed while attempting to complete the meeting.
server unable to comply (server error)
The specified requester does not exist OR the requester’s server does not
accept connections from the agent’s current machine, i.e., the agent is NOT
in the server’s access list.
unable to create socket
The system was unable to open a local socket for the meeting.

unable to bind socket

The system was unable to associate a port with the local socket.

47

unable to listen to socket

The system was unable to associate a connection queue with the local
socket.

unable to accept

The requester is attempting to connect to the local socket. The system
was unable to accept the connection.

agent identification must be
The requester’s identification was specified incorrectly.
unable to convert name

The system was unable to determine the network address of the requester’s
machine.

agent_accept id_var loc_var sockfd <-blocking | -nonblocking>

agent_accept combines the get_meeting and accept-meeting commands. It has both a blocking and
nonblocking form. The blocking form waits until a meeting request is available, accepts the meeting
request, sets id_var to the 4-element identification of the requesting agent, sets loc_var to the actual
network location of the requesting agent, and returns a socket descriptor for the meeting. The system
chooses an arbitrary TCP/IP port for the meeting if sockfd is 0 or ANY. Otherwise the system uses the
TCP/IP port that has already been bound to sockfd, i.e., sockfd must refer to a valid, bound socket. As
before, it is nearly always reasonable to specify “ANY”. The nonblocking form returns -1 if a meeting
request 1s not available. Otherwise it proceeds as in the blocking case.

Examples:

The following server is the same as the server above except that it accepts every meeting.

#!/usr/contrib/bin/agent
server.two.tcl
This is the second version of the '"server_agent". It waits for a meeting

request from any client and then automatically accepts the meeting request
with the agent_accept command.

#
#
#
#
#
#
register the agent on the current machine
if {[catch agent_beginl} {
return -code error "ERROR: unable to register the agent on $agent(actual-server)"
X
if {[catch {

this is the '"server_agent"

agent_force "$agent(local-ip) server_agent"
agent_name server_agent

48

process meeting requests forever
while {1} {
wait for the next meeting request
set sockfd [agent_accept source_id source_loc ANY -blocking]
exchange the status strings
set status [tcpip_read $sockfd -blocking]
puts "The client $source_id says ...\n$status"

tcpip_write $sockfd "No problem!"
tcpip_close $sockfd

X
} error_messagel} then {
make sure that we clean up on error
agent_end

return -code error -errorcode $errorCode —errorinfo $errorInfo $error_message

clean up
agent_end

On error, agent_accept raises a standard Tcl exception that can be caught with the catch command.
The possible error messages consist of all the error messages for get_meeting plus all the error messages
for accept_meeting.

7.8 Timing

There are four commands that are related to time.

e agent_elapsed

agent_elapsed returns the number of seconds that have elapsed since the agent started executing on
its current machine. The number of seconds will always contain a fractional part since it is reported
to the resolution of the system clock (or to the number of decimal places specified in the tcl_precision
variable if this number of decimal places is smaller).

Example:

The author typed agent_elapsed at random intervals in an interactive shell and got the following output.

agent-tcl> agent_elapsed
2.930000
agent-tcl> agent_elapsed
6.360000
agent-tcl> agent_elapsed

49

63.900000
agent-tcl>

Error messages:

On error, agent_elapsed raises a standard Tcl exception that can be caught with the caich command.
agent_elapsed returns one of the following error messages. The indented text below each error message
describes the possible interpretations of the message.

wrong number of arguments

You specified the wrong number of arguments.

agentsleep seconds
agentsleep puts the agent to sleep for the specified number of seconds.
Note:

Nothing will wake the agent up except for the expiration of the specified number of seconds. If you
want to sleep for a certain number of seconds or until something arrives from another agent, you should
use the agent_select command.

Example:

The following command will put the agent to sleep for 10 seconds.
agent_sleep 10.0

Error messages:

On error, agent-sleep raises a standard Tcl exception that can be caught with the catch command.
agentsleep returns one of the following error messages. The indented text below each error message
describes the possible interpretations of the message.

wrong number of arguments

You specified the wrong number of arguments.
number of seconds must be a real number

You must specify a number.
number of seconds must be 0 or greater

You can not go backwards in time.

retry interval multiplier iterations script

The retry command attempts to execute the specified script. If an error occurs during script execution,
the command waits for inferval seconds and then attempts to execute the script again. If another error
occurs, the command increases the sleep time by a factor of multiplier and attempts to execute the
script once again. This process continues until one of four events occurs.

1. The script executes successfully. The retry command returns the result of the script.

2. The script has not executed successfully but the maximum number of iferations has been per-
formed. The retry command throws the TCL.ERROR code with the interpreter result set to the
return value from the script.

50

3. The script issues the break command at its top level. The retry command throws the TCL_LBREAK
code with the interpreter result set to the return value from the script.

4. The script issues the continue command at its top level. The retry command throws the TCLLCONTINUE
code with the interpreter result set to the return value from the script.

Example:

The following Tcl fragment tries to jump to the machine earhart.cs.dartmouth.edu. It starts with a
sleep time of 1, increases the sleep time by a factor of 2 on each iteration and makes at most 10
attempts.

retry 1 2 10 {
agent_jump earhart.cs.dartmouth.edu

}

If the agentjjump succeeds, the retry command returns the result of the agent_jump, i.e., either
“JUMPED” or “SAME” depending on whether earhart is a different machine than the agent’s current
machine. If agentjjump does not succeed within the specified number of iterations, the retry command
throws the TCL_LERROR code with the interpreter result set to the error string from the most recent
execution of agentjump.

Error messages:

There are several error messages but there are only two possible errors. Either you specified the wrong
number of arguments or you did not specify a positive real number for interval, multiplier or iterations.

restrict {{wall seconds}} script

The restrict command is the beginning of a permit system that will allow a machine to restrict an
agent’s use of resources and that will allow an agent to temporarily restrict ifs own use of resources.
The restrict command specifies the maximum number of seconds that a script can take. If the script
finishes before the specified number of seconds has elapsed, the restrict command returns the result of
the script. If the script does not finish before the specified number of seconds has elapsed, the script
is aborted and the restrict command throws an exception.

Notes:

1. Timeout information is not captured when a script forks or migrates. Thus the restrict command
will not work if the enclosed script jumps or forks. This problem will be fixed soon.

2. The restrict command is currently limited in that the script can only be aborted between Tcl
commands. Thus the script might actually execute for much longer than the specified number
of seconds if one of the commands in the script takes a long time to complete. Note that all of
the builtin Tecl, Tk and agent commands do not have this problem since the command handlers
explicitly check for timer expiration when necessary. Consider the following script for example.

restrict {{wall 5.0}} {
agent_receive code string -time 10.0

}
If no message arrives, the restrict command will throw a Tcl exception after 5 seconds even though
the agent_receive command specifies a timeout of 10 seconds.

3. The restrict command is not a transaction mechanism. The state of the Tcl script is not rolled back
if the script is aborted. It is currently the programmer’s responsibility to handle any necessary
cleanup and any inconsistencies that might arise due to an asynchronous abort.

51

4. You can nest as many restrict commands as desired. If any of the specified timeouts are exceeded,
the corresponding restrict command throws a Tcl exception.

Error messages:

On error the restrict command raises a standard Tcl exception that can be caught with the catch
command. The restrict command returns one of the following error messages. The indented text
below each error message describes the possible interpretations of the message.

permit violation: wall time exceeded

The timeout expired before the script finished. The script was aborted at a
nondeterministic point. The errorCode variable is set to "PERMIT WALL".

wrong number of arguments
You specified the wrong number of arguments.
permit must have the form {name value}
You specified the timeout incorrectly.
unknown permit type
The only supported permit type is "wall" which specifies a timeout.
wall time must be 0 or greater

You can not go backwards in time.

7.9 Masks

Masks allow an agent to specify those agents with which it is willing to communicate at the current time. A
mask is just a list of agent identifications (except that any element of an identification can be replaced with
the word “ANY”). Each mask is identified with a unique integer handle. An agent can define as many masks
as desired. At any given time one of those masks is marked as the current message mask; one is marked as
the current event mask; and one is marked as the current meeting mask. The handles of the current message,
event and meeting masks are stored in a global array called mask.

| Element of mask array | Contents |

message handle of the current message mask
meeting handle of the current meeting mask
event handle of the current event mask

The mask array is always available inside an agent. As with the agent array, however, if you want to access
it from inside a procedure, you will have to create a local reference to the array with either the global or
upvar command. For example, the following procedure prints the handle of the current message mask.

proc display args {
global mask
puts $mask(message)

}

When an agent first starts, the mask array contains three default masks. The default masks accept all
incoming communication. You can change the current meeting, event or message mask simply by setting

52

the appropriate element of the mask array to the handle of the desired mask. Once you have the desired
mask in place, you use the agent communication commands as usual. The masks determine which messages,
events and meeting requests are reported and which are (temporarily) ignored. Specifically,

1. agent_receive will only return a message if the sender identification matches one of the entries in the
current message mask. If the sender identification does not match one of the entries, the message is
buffered internally until the message mask 1s changed.

2. agent_getevent will only return an event if the sender identification and the event tag matches one of
the entries in the current event mask. If the sender identification and event tag do not match one of
the entries, the event is buffered internally until the event mask is changed.

3. get-meeting will only return a meeting request if the identification of the sender matches one of the
entries in the current meeting mask. If the sender identification does not match one of the entries, the
meeting request 1s buffered internally until the meeting mask is changed.

4. agent_accept will only accept those meeting requests for which the identification of the sender matches
one of the entries in the current meeting mask. If the sender identification does not match one of the
entries, the meeting request is buffered internally until the meeting mask is changed.

5. agent-meet is unaffected by the current meeting mask. This makes sense since agent-meet takes the
desired recipient as an argument. It is assumed that you want to meet with this recipienet regardless
of the current meeting mask.

The most important thing to note in all of these cases is that an incoming communication is not thrown
away if 1t does not match one of the entries in the appropriate mask. Instead it is buffered internally until
such a time that it does match one of the entries.

It is critical to note that masks are currently not transferred when an agent migrates and are not present in
a forked child. You must recreate the masks after an agent_fork or agent_submit. This will be fixed soon.

There are nine specific commands for working with masks. All of the commands return the error message
wrong number of arguments

if you specify the wrong number of arguments;

mask handle must be an integer 0 or greater

if you specify an invalid handle; and

no mask with that handle

if the specified handle is not associated with a mask. These error messages are not listed under every
command.

e mask new

This command creates a new mask and returns a unique integer handle. The new mask is initialized
so that it accepts no incoming communication.

Example:

Issuing the command

set handle [mask new]

53

will set the handle variable to the unique integer id of a newly created mask.

mask delete handle

This command deletes the mask with the given handle. You can delete one of the masks specified in
the mask array but you should replace it immediately since agent_receive, agent_getevent, get_meeting
and agent_accept will return the error message

no mask in the '"mask'" array

if the required mask is not specified in the mask array. The entry in the mask array will contain the
string “NONE” until the deleted mask is replaced.

Example:

Issuing the command

mask delete $handle

will delete the mask that was created in the previous example. Issuing the command
mask delete $mask(message)

will delete the current message mask. The contents of the mask array will become

mask(message) = NONE
mask(meeting) = 4
mask(event) = 10

You should put a mask handle into mask(message) before the next call to agent_receive. Note that it
is possible to delete the current message mask without actually referring to the mask array (since you
refer to a mask with its handle). Be aware of which masks are currently in the mask array.

mask display handle
This command returns the entries of the mask with the specified handle.
Examples:

If we create a new mask and then immediately display its entries,

set handle [mask new]
set entries [mask display $contents]
puts $entries

we see
NONE

since a new mask initially accepts no incoming communcation. If we display the entries of one of the
masks in the mask array right after the agent starts,

set entries [mask display $mask(message)]
puts $entries

we see

54

ALL

since the masks in the mask initially accept all incoming communication. An example in which the
mask accepts only some communication is shown below.

Note:

The mask display command is a good debugging tool if you are having a problem with masks.

mask add handle ALL

This command makes a mask accept all incoming communication. The command returns the empty
string.
Example:

The following commands were typed interactively in the agent shell.

agent> mask new

3

agent> mask display 3
NONE

agent> mask add 3 ALL
agent> mask display 3
ALL

agent>

Note:

Any entries that were in the mask are lost. If you want to make a mask accept any incoming commu-
nication without losing the current mask entries, you should issue the command

mask add $handle {ANY ANY ANY ANY}

instead. You can later remove the {ANY ANY ANY ANY} entry with the mask remove command.

mask remove handle ALL

This command removes every entry from the mask. The mask will not accept any incoming commu-
nication. The command returns the empty string.

Example:

The following commands were typed interactively in the agent shell.

agent> mask display $mask(message)
ALL

agent> mask remove $mask(message) ALL
agent> mask display $mask(message)
NONE

agent>

mask add handle {id [-tag tag]}

This command adds an entry to the mask with the specified handle. An entry consists of an id and an
optional tag. The id specifies the sender identification and can have any of the following forms:

55

machine_name machine_IP agent_name agent_id

machine_name agent_name agent_id

machine_name agent_name

machine_name agent_id

In addition the reserved word “ANY” can be used in place of any part of the ¢d to indicate that you do
not care about that part of the id. This will become clearer in the examples. The optional fag is used
in event masks to indicate that you are only interested in events with a particular tag (you can specify
a tag in any mask but it is ignored if the mask is not used as an event mask). If a tag is specified in

an event mask entry, an incoming event will match that entry only if it has the exact same tag and
the appropriate sender identification.

Examples:

The following is a sequence of examples that give the flavor of mask entries. Here we assume that we
are modifying an event mask so that we can use the optional tag parameter. All of the examples that
do not involve a tag apply to any kind of mask.
get a new mask
set handle [mask new]
an entry that will accept any event sent from an agent on machine 'bald"
mask add $handle {bald.cs.dartmouth.edu ANY}
an entry that will accept any event with the tag "QUERY"
mask add $handle {ANY -tag QUERY}
an entry that will accept any event from the '"smart_agent'" on muir
mask add $handle {muir.cs.dartmouth.edu smart_agent}
an entry that will accept an event from the '"server_agent'" on muir
as long as the event has the tag "STOP" (113 is the numeric id of
the server_agent).
mask add $handle {muir.cs.dartmouth.edu 129.170.192.42 sever_agent 113 -tag STOP}
an entry that will accept any event sent from the agent’s root agent
mask add $handle $agent(root)
an entry that will accept an event from any '"mail_agent"
mask add $handle "ANY mail_agent"

now let’s look at the mask

puts [mask display $handle]

56

The puts command outputs

{bald.cs.dartmouth.edu 129.170.192.98 ANY ANY}

{ANY ANY ANY ANY -tag QUERY}

{muir.cs.dartmouth.edu 129.170.192.42 smart_agent ANY}
{muir.cs.dartmouth.edu 129.170.192.42 sever_agent 113 -tag STOP}
{bald.cs.dartmouth.edu 129.170.192.98 {} 9}

{ANY ANY mail_agent ANY}

Note how the mask display command shows all four elements of the id even if you specified fewer than
four elements when adding the entry. The missing pieces are filled in with “ANY” (or with an IP
address if the machine name was specified but the TP address was not).

Notes:

1. If either the machine name or the TP address i1s “ANY” | both of them will be transparently set to
ﬁ(ANY?? .

2. Consider the following command sequence:
agent-tcl> mask display 3
ALL
agent-tcl> mask add 3 "bald name_agent"
agent-tcl> mask display 3
{bald 129.170.192.98 name_agent ANY}
agent-tcl>

If you add an entry to a mask that is currently set to “ALL”, the mask will reset so that it
contains only the added entry.

Error messages:

The mask add command returns a variety of error messages if the new entry is specified incorrectly.
These error messages should be self explanatory.

mask remove handle {id [-tag tag]}

This command removes an entry from the mask. You specify the entry in the same way as in the mask
add command. The mask remove command removes any mask entries that match the specified entry
exactly, i.e., only those entries that have “ANY” in the same positions and match exactly in all other
postions. Then the command returns the empty string.

Error messages:

The mask remove command returns a variety of error messages if the entry is specified incorrectly.
These error messages should be self explanatory.

maskswap <meeting | message | event> handle

This is a convenience procedure for changing the current message, meeting or event mask. In each of
the three cases the procedure sets the current mask to the mask with the specified handle and returns

the handle of the old mask.
Example:

The command
set old [mask_swap message $handle]

1s equivalent to

57

set old $mask(message)
set mask(message) $handle

Error messages:

maskswap can return the following error message (in addition to the generic error messages that were
listed above).

can’t read "mask(...)": no such element in array

The second argument to mask_swap must be "meeting", '"message'" or '"event'.

e maskreplace <message | meeting | event> handle

This is a convenience procedure for changing the current meeting, message or event mask. In each of
the three cases the procedure sets the current mask to the mask with the specified handle and deletes
the old mask.

Example:

The command
mask_replace message $handle
is equivalent to

mask delete $mask(message)
set mask(message) $handle

Error messages:

maskreplace can return the following error message (in addition to the generic error messages that
were listed above).

can’t read "mask(...)": no such element in array

The second argument to mask_replace must be '"meeting", "message' or "event'.

7.10 Undocumented commands

Many experimental commands have been added to Agent Tcl in the last few weeks. These commands are
stable but it was impossible to document them all before the public release. The undocumented commands
are

e tcpipread sockfd to fd

e tepip-write sockfd from fd

e agent_info -ids machine [-time seconds]

e agent_info -names machine [-time seconds]

e agent_info id [-time seconds)

e agentselect fd_list <-nonblocking |-time seconds | -blocking>

e agent_disk

58

agent_transfer machine filename [-time seconds)

crypt key salt

get_remote_file machine remote_name locaLname
e glue var name [name .. .|

e glue proc name [name .. .]

A brief description of these commands appears in Appendix C. Complete documentation for these commands
will be available by December 8. At that time you can obtain an updated copy of this document via our
web site

http://wuw.cs.dartmouth.edu/ rgray/transportable.html
or via anonymous ftp
ftp://bald.cs.dartmouth. edu/pub/agents/doc.1.1.ps.gz

In the meantime many of these commands are self-evident. You are also welcome to contact the author.

7.11 Summary

All of the example agents are included in the source distribution. The best way to get a feel for Agent Tcl
is to understand the examples and then try the commands in interactive mode except for agent_jump and
agent_fork which can not be used in interactive mode). Appendix C summarizes the commands.

8 Agent Tk

The agent-tk interpreter is analogous to the agent interpreter except that it includes the Tk commands. This
allows the programmer to write a GUI that spawns child agents or to write an agent that migrates to a
remote machine and displays a GUI to interact with the user of that machine.

8.1 Creating a main window

There are two differences between the ageni-tk interpreter and the standard wish interpreter. First agent-tk
does not create a main window on startup. Instead a script must explicitly request a main window using
the main create command. The reason is that an agent might not need to interact with the user on certain
machines or at certain times. Thus it requests a main window only when needed. For example, the ”Hello,
World!” script from [Ous94] should be rewritten as

#!/usr/contrib/bin/agent-tk

hello.two.tk

#

This is the "Hello, World!" example from [Ous95] except that we use "main
create" to get a main window.

create the main window

main create —name Hello -display :0

59

make the "Hello, World!" button

button .button -text "Hello, World!" —-command exit
pack .button

This script creates the window

1 Hello, Worid!

r | r |

Clicking on the ”"Hello, World!” causes the script to terminate.

An agent can use the main create command to create a main window on its current machine. Then it can
use all of the standard Tk commands to fill in the window and interact with the user. For example here is
an agent that jumps to a remote machine and displays the “Hello, World!” window on that machine.
#!/usr/contrib/bin/agent-tk

rhello.tk

This agent jumps to a remote machine and displays the "Hello, World!"
window on that machine. It gets the name of the remote machine from the

H #H H H H H

user.
ask the user for a machine

puts "Enter the name of the remote machine:"
gets stdin machine

register the agent and jump to the specified machine

agent_begin
agent_jump $machine

create the main window
main create —name Hello -display :0
make the "Hello, World!" button

button .button -text "Hello, World!" —-command {set done 1}
pack .button

wait for the user to interact with the "Hello, World!" button
tkwait variable domne
we’re done

agent_end

60

exit

As a final example, here is a rewrite of the “who” agent that executes the Unix who command on each
machine and then jumps back to its home machine and displays the user list in a window.

#!/usr/contrib/bin/agent-tk
who.tk
This agent jumps from machine to machine and executes the Unix "who" command

on each machine. Then it returns to its home machine and displays the user
list in a window.

H B B H H

list of machines -- make sure that you replace these with your machines
set machines "muir.cs.dartmouth.edu \
tenaya.cs.dartmouth.edu \
tuolomne.cs.dartmouth.edu \
tioga.cs.dartmouth.edu"
Procedure WHO executes the who command on each machine.
proc who machines {
global agent
set list ""
jump from machine to machine

foreach m $machines {

if we do not jump successfully append an error message
otherwise append the user list

if {[catch "agent_jump $m" resultll} {
append list "$m:\nunable to JUMP to this machine ($result)\n\n"
} else {
set users [exec whol
append list "$agent(local-server):\n$users\n\n"
}
}

return $list

}

register the agent
if {[catch {agent_begin}]1} {
return -code error "ERROR: unable to register on $agent(actual-server)"

}

remember the home machine

61

set home $agent(local-ip)
execute who on each machine
set users [who $machines]
return to the home machine
agent_jump $home
make the main window and show the results
main create —name "WHO’S WHERE?'" -display :0
make the two frames
frame .top -relief raised -bd 1
frame .bot -relief raised -bd 1
pack .bot —-side bottom —-fill both
pack .top —side bottom —-fill both —expand 1
make a text box that will hold the results
text .text -relief raised -bd 2 -yscrollcommand ".scroll set"
scrollbar .scroll -command ".text yview"
pack .scroll -in .top -side right -fill y
pack .text —-in .top -side left -fill both -expand 1

make the "DONE" button

button .done -text OK -command "set done 1"
pack .done —-in .bot -side left -expand 1 -padx 3m -pady 2m

fill in the text area

.text delete 1.0 end
.text insert end $users

wait for the user to finish looking at the results
tkwait variable done
we’re done

agent_end
exit

This agent creates the window

62

milr.cE..dartmouth . edo:
agenttcl

|ten.:y.1 oE cdartmouth . eda:
makedon] Mo 23
makedon ttapl Mor 23
Gasles ok Y ¥ Morr 24

tuolomme . oE ~dartmouth . edu:
agenttol

ticga.cs..dartmouth . edo:
Tgrays ttpl
Tgray ttupl

Clicking on ”OK” terminates the agent.

Options:

The main create command takes several optional arguments. Specifically
main create [-display display] [-name name] [-geometry geometry] [-sync]

display is the name of the display on which to create the main window. name is the name of the application.
This name will be used in the Tk send command and will be the initial title for the main window. gemoetry
is the initial geometry for the main window. The geometry is specified in the normal Tk fashion. The -sync
option specifies that the agent should use synchronous mode when talking to the X server.

Notes:

1. Tt is a good idea to always specify -display :0 when an agent wants to create a main window on its
current machine. Otherwise the agent will use the contents of the DISPLAY environment variable.
These contents are not necessarily correct after a jump or submit.

2. As with all X applications the agent must have authority to access the X server on the specified
machine. main create will raise a Tcl exception if the X server is not running or if the X server denies
access. Currently access can not be controlled on an agent-by-agent basis but must instead be granted
or revoked using the normal X mechanisms such as “xhost”. In particular, this means that you must
grant screen access to either every incoming agent or no incoming agents, i.e., either allow userid agent
to access the screen or do not allow userid agent to access the screen. Recall that agent is the userid
that was created specifically for the agent servers.

3. Only the after, fileevent, thkwait and update commands are available before main create is issued. All
other Tk commands will fail with an “undefined command” error. All Tk commands are available as
soon as main create 1s issued.

63

8.2 Destroying a main window

The main destroy command destroys the main Tk window and all its children. main destroy is simply a
synonym for

destroy .

main destroy takes no arguments.
Note:

An Agent Tk script continues running even after the main window is destroyed. The script must expicitly
issue the ezit command in order to terminate. The reason that the script keeps running is that an agent
might want to jump to another machine after cleaning up on the current machine or might want to perform
additional processing that does not require user interaction.

8.3 Waiting for the user

The second difference between agenit-tk and wish relates to event loops. wish executes the script specified on
the command line and then automatically enters an event loop. agent-tk does the same thing ezcept in child
agents that were created using agent_submit and agent_fork or agents that have migrated using agent_jump.
These agents terminate if they reach the end of the script. Thus the programmer must explicitly enter an
event loop using the tkwait command. The who.tk and rhello.tk agents above use the tkwait command in
order to allow the user to view the results for as long as desired. Without the tkwait command these agents
would terminate immediately and the user would never see the window.

Note:

You can not migrate to another machine or fork from inside an event handler, i.e., agent_jump and agent_fork
will fail when called from inside an event handler. Combined with the required use of the tkwait command,
this means that most Agent Tk agents will perform the following sequence of steps.

1. Use the main create command to create a main window

2. Fill in the window and estalish event handlers

3. Use the tkwait command to enter an event loop and wait for the user to finish
4. Use the main destroy command to destroy the main window and its children

5. Jump to a new machine and repeat if desired

8.4 Tk handlers for incoming messages, events and meetings

Tk is based around an event-driven style of programming in which the programmer defines handlers for events
such as mouse clicks, key presses, file I/O and so on. Agent Tk allows the programmer to define handlers
for incoming messages, events and meeting requests as well as the normal Tk events. The mechanism for
defining the handlers is the mask command that was discussed above. For example the command

mask add $mask(message) "bald.cs.dartmouth.edu smart -handler smartMessage"

specifies that procedure smartMessage should be called whenever a message arrives from the smart agent on
bald.cs.dartmouth.edu. Similarly

mask add $mask(event) "ANY ANY ANY ANY -tag STOP -handler stopEvent"

64

specifies that procedure stopEvent should be called whenever an event arrives with the tag “STOP”. Finally
mask add $mask(meeting) "$agent(local-ip) ANY -handler localMeeting"

specifies that procedure localMeeting should be called whenever an agent on the same machine requests a
meeting.

Notes:

1. The masks are manipulated with the mask command exactly as before. The difference is that you can
specify the -handler option when adding an entry to the mask.

2. You can have multiple handlers for the same incoming item simply by adding multiple entries to the
mask. The entries might be exactly the same except for the name of the handler or one might be
a superset of the other. If multiple entries match an incoming item, the corresponding handlers are
called in the order in which the entries were added to the mask. If one of the handlers issues the break
command at 1ts top level, all subsequent handlers are skipped. This is consitent with standard Tk
semantics.

3. The handlers are just normal Tcl procedures with specific arguments. The handler for an incoming
message must have the format:

proc name {source code string} {

arbitrary Tcl code

The source parameter is set to the 4-element identification of the sending agent. code is set to the
message code. stringis set to the message string. Note that the procedure should not call agent_receive
since the message has been received implicitly. The procedure should simply handle the message as
desired.

The hander for an incoming event must have the format:

proc name {source tag string} {

arbitrary Tcl code

The source parameter is set to the 4-element identification of the sending agent. tag is set to the event
tag. string is set to the event string. Note that the procedure should not call agent_getevent since the
event has been received implicitly. The procedure should simply handle the event as desired.

The handler for an incoming meeting request must have the format:

proc name {source actual status} {

arbitrary Tcl code

The source parameter is set to the 4-element identification of the sending agent. actual is set to the
3-element list that specifies the actual location of the requesting agent as well as a TCP/IP port.

65

status is set to the current status of the meeting. Unless you are writing your own protocol for meeting
establishment (which is beyond the scope of this documentation) you should ignore actual and treat
any status other than “REQUEST” as an error. The procedure should not call agent_meet, get_meeting
or agent_accept since the meeting request has been received implicitly. Instead the procedure should
simply call reject_meeting or accept_meeting as desired.

. Entries with a handler and entries with no handler can coexist in the same mask. If a handler 1is

specified, the handler is called when the incoming item arrives. If no handler is specified, the incoming
item must be explicitly received with the agent_receive, agent_getevent or get_meeting, commands. If
an item matches multiple entries in a mask and only some of those entries have a handler, the handlers
take precedence, i.e., the handlers are called and the item can not be received with agent_receive,
agent_getevent or get_meeting.

. If you replace or add to a mask such that a pending item is now matched by at least one entry, the

corresponding handlers are added to the event queue immediately. Thus, if you want to associate
multiple handlers with the same pending item, you should construct a new mask and then replace the
meeting, message or event mask in a single step (using maskreplace or mask_swap or simply by setting
the appropriate element of the mask array).

. If an uncaught error occurs inside a handler, Agent Tk calls the ”tkerror” procedure. This is normal

Tk semantics.

Default Handlers:

In addition to associating a handler with each mask entry, you can associate a handler with the entire mask.
This handler is a “default” handler which is called if there are no other matching handlers inside the mask.
To specify the default handler, you should use the command

mask handler handle name

where handle is the mask handle and name i1s the name of the handler. The handler must have one of the
three specific formats discussed above. To display the current default handler, use the command

mask handler handle

where handle is the mask handle. To remove the current default handler, use the command

mask nohandler handle

where handle 1s the mask handle.

Example:

The following agent has two event handlers. stopFEvent is called when the agent receives an event with the
tag “STOP”. otherEvent is called when the agent receives any other event.

#!/usr/contrib/bin/agent-tk

H H H H B H R

handler.tk

This agent illustrates how to associate event handlers with incoming
messages, events or meeting requests. Procedure stopEvent is called
when the agent receives an event with the tag '"STOP". Procedure
otherEvent is called when the agent receive any other event.

set events 0

an event with tag "STOP" has arrived

proc stopEvent {source tag string} {

66

puts "Received STOP so stopping"
exit
some other event arrived

proc otherEvent {source tag string} {
global events

puts "Event $events"
puts "Source ==> $source"

puts "Tag ==> $tag"
puts "String ==> $string"
puts nn

incr events

register the agent
agent_begin
get our symbolic name

catch {agent_force "$agent(local-ip) handler"}
agent_name handler

set up the handlers

set m [mask new]

mask handler $m otherEvent

mask add $m "ANY ANY -tag STOP -handler stopEvent"
mask_replace event $m

fall off the end into the event loop -- this is NOT a child or migrated
agent so it behaves in the normal Tk fashion
\end{vebratim}

The following agents tests the previous agent by sending it two arbitrary
events and then the STOP event.

\begin{verbatim}
#!/usr/contrib/bin/agent-tk

#

driver.tk

#

This agent tests handler.tk.

register the agent

agent_begin

67

send some events to handler.tk
agent_event "$agent(local-ip) handler" QUERY "This is a query,"
agent_event "$agent(local-ip) handler" DOCUMENT "This is a document request."
agent_event "$agent(local-ip) handler" STOP "This is a stop."

we’re done

agent_end
exit

Running handler.tk and then driver.tk produced the following output on one of the Dartmouth machines.

Event 0
Source ==> tioga.cs.dartmouth.edu 129.170.192.21 {} 33
Tag ==> QUERY

String ==> This is a query,

Event 1
Source ==> tioga.cs.dartmouth.edu 129.170.192.21 {} 33
Tag ==> DOCUMENT

String ==> This is a document request.

Received STOP so stopping

Note that handler.tk does not actually use any Tk commands but does use the event-handling facilities of

Tk.
Deficiencies:

There 1s currently no way to associate a handler with an established meeting. This means that there is no
way to create a handler that is called whenever a string arrives on a meeting connection.

8.5 Summary

All of the example agents are included in the source distribution. The best way to get a feel Agent Tk
is to understand the examples and then try the commands in interactive mode. For example you might
establish a handler for messages that are sent from yourself and then send messages to yourself. Appendix
C summarizes the commands.

9 Advanced topics
Three advanced topics are not covered in this documentation.

1. Agent Tcl has a C/C++ API that is similar to the Tcl API. This APT allows the programmer to access
agent facilities from inside C code and to embed agent functionality inside a larger application. The
relevant C definitions appear in mysizes.h, tcl.h; tk.h, tclTepip.h, agentld.h, tclAgent.h and tkAgent.h.
These header files are found in the INCLUDEINSTALL directory.

2. Existing Tcl extensions can be used with Agent Tcl and Agent Tk since they are fully compatible with
Tecl 7.4 and Tk 4.0 respectively. The compilation process is the same as for standard Tcl and Tk except
that the extension must be linked with libagent.a, librestrict.a, libtcpip.a and libutility.a in addition

68

to libtcl.a and libtk.a. These libraries are found in the LIBAINSTALL directory. Make sure that you
use the versions of libtcl.a and libtk.a that come with the agent system, make sure that you do the
final linking with a C+4 compiler, and remember that the internal state of a Tcl extension will not
be captured when an agent migrates.

3. The meeting commands — agent_meet, get_-meeting, reject_meeting, accept-meeting and agent_accept —
are written in Tcl and use the low-level commands agent_req, agent_getreq, tcpip_socket, tcpip_bind,
tepipdisten, tepip-accept, tepip-connect and tcpip_getport. These low-level commands can be used
directly if desired. Reading through agent.tcl will impart the flavor of these commands. agent.tcl is
found in the TCL_.LIBRARY directory.

Readers who are interested in these topics are urged to contact the author.

10 Future directions

Agent Tcl is far from complete and is under continuous development. The author works on Agent Tcl
full-time and has part-time programming support from several project members. The immediate future of
Agent Tcl consists of adding

1. Time outs on the meeting commands

2. Multiple languages and transport mechanisms

We plan to add an e-mail transport mechanism as well as Scheme and Java interpreters. The two
interpreters are potentially long-term projects but are included here since we hope that they can be

added quickly.

3. Point-to-point authentication and permits

Permits specify which actions an agent is allowed to take on its current machine. We hope to find a
generic permit mechanism that will work across interpreters.

Three months have been allocated for these items. There will be another alpha release as soon as they have
been implemented.

The long-term future of Agent Tcl consists of addressing five open research problems.

1. Debugging

Agents have proven to be easy to write but difficult to debug if the first attempt contains major bugs.
How can the programmer debug an agent quickly and effectively?

2. Privacy

An agent might contain sensitive information or might reveal sensitive information through its external
behavior. How can an agent prevent a malicious third party — i.e., a malicious server — from obtaining
this information?

3. Security related to transportability

An agent can migrate through an arbitrary sequence of machines. This raises numerous security issues
that are not addressed in schemes such as Safe-Tcl. Safe-Tcl sends a code fragment from the local
machine to a remote machine after which the code fragment travels no farther. An agent, however,
can migrate from the first remote machine to a second remote machine. As an example, consider an
agent that migrates to machine A and then from machine A to machine B. How can machine B verify
the identity of the agent’s original sender and verify that machine A has not modified the agent in a
malicious way?

69

4. Track moving agents

This 1s a lower-level issue than resource discovery. If agent A is communicating with agent B, can
A transparently continue communicating even if B migrates to a new machine? In other words the
problem is to transparently track a known agent rather than to find a previously unknown agent that
can perform the desired task.

5. Network awareness

How can an agent discover the current state of the network and modify its actions as appropriate?

These five issues make up the programming portion of the author’s thesis and will take at least a year. There
will be another alpha release as each component is implemented.

References

[JVRS95] Dag Johansen, Robbert van Renesse, and Fred B. Scheidner. Operating system support for mobile
agents. In Proceedings of the 5th IEEE Workshop on Hot Topics in Operating Systems, 1995.

[Lew95] Ted G. Lewis. Where is client/server software heading? TEEE Computer, pages 49-55, April 1995.
[Ous94] John K. Ousterhout. Tcl and the Tk toolkit. Addison-Wesley, Reading, Massachusetts, 1994.

[Ous95] John K. Ousterhout. Scripts and agents: The new software high ground. Invited Talk at 1995
Winter USENIX Conference, January 1995.

[Wel95] Brent B. Welch. Practical Programming in Tcl and Tk. Prentice-Hall, Upper Saddle River, New
Jersey, 1995.

[Whi94] James E. White. Telescript technology: The foundation for the electronic marketplace. General
Magic White Paper, General Magic, 1994.

[Whi95a] James E. White. Telescript technology: An introduction to the language. General Magic White
Paper, General Magic, 1995.

[Whi95b] James E. White. Telescript technology: Scenes from the electronic marketplace. General Magic
White Paper, General Magic, 1995.

[WVF89] C. Daniel Wolfson, Ellen M. Voorhees, and Maura M. Flatley. Intelligent routers. In Proceedings
of the Ninth International Conference on Distributed Computing Systems, pages 371-376. IEEE,
June 1989.

A

Changes from previous releases

This section summarizes the changes from previous releases. Note that release 1.1 is the first public release.

Al

1.

Changes from 0.5 to 1.0

An agent identification now consists of four elements — the full Internet name of the machine, the IP
address of the machine, the agent’s symbolic name and the agent’s numeric id. For example,

bald.cs.dartmouth.edu 129.170.192.98 ftp_agent 16

All commands that require an agent identification will accept either the full 4-element identification
or any 2-element shorthand that uniquely identifies the agent. For example

bald.cs.dartmouth.edu ftp_agent
bald.cs.dartmouth.edu 10
129.170.192.98 ftp_agent
129.170.192.98 10

In addition it is not necessary to specify the full Internet name. Any name that the local name server
maps to the desired machine is acceptable.

The machine argument to agent_begin is optional. agent_begin will register with the server on the
current machine if the machine argument is not specified.

agent_receive returns the identification of the sender rather than the message code. The message code
and string are stored in the two variables whose names are provided as command arguments. In
addition agentreceive now has both blocking and nonblocking forms. The desired form is selected
with the -blocking and -nonblocking flags.

On success agent_jump returns SAME if the destination machine is the same as the agent’s current
machine and JUMPED if the destination machine is a different machine.

agentjump and agent_fork will return an error message if they are called in interactive mode.

The agentname, agent_root, agent_meet, agent_accept, get_meeting, reject_meeting and accept_meeting
commands are new.

The tcpip-read, tcpip_write and tcpip-close commands are new.

The agentreq, agent_getreq, tcpipsocket, tcpip_bind, tepip_listen, tcpip-accept and tcpip-connect com-
mands are new. These commands are low-level primitives that are used to implement the meeting
commands.

Changes from 1.0 to 1.1

. Most agent commands now have a timeout parameter -tzme.

The restrict command 1s new.
The retry command is new.
The ageni_elapsed and ageni_sleep commands are new.

The mask command is new.

© % N

10.
11.
12.

13.
14.

The ageni_select command is new.

The glue command i1s new. The proc command takes the optional flag glue.

The agent_.info command is new.

The agent_event and agenit_getevent commands are new.
The ageni_disk and ageni_transfer commands are new.
The tepip-read and icpip-write commands can now read and write entire files as well as Tecl strings.

The tepip-read command forces you to explicitly specify -blocking, -nonblocking or -time rather than

defaulting to -blocking.

The exec command takes the optional parameter -noPipeError.

Agents can now use Tk commands.

B Known bugs

There are fours known bugs that will be fixed as soon as possible.

B.1 Missing masks and timeouts
Masks and timeouts are not transferred when an agent migrates or forks. Thus (1) you must recreate any

desired masks after a call to agentjump or agent_fork and (2) you should not call agentjump or agent_fork
from inside the restrict command. These problems are not as limiting as they might appear.

B.2 Sticky event handlers

You can not fork or jump from inside a Tk event handler. This problem is not as limiting as it might appear.

B.3 Lost upvar reference

An upuvar reference to an element of the env array disappears when the agent jumps and is not present in a
forked child. For example, the procedure

proc run_around machines {
upvar #0 env(DISPLAY) display
set list ""
foreach m $machines {
agent_jump $m
append list "The current display is $display.\n"

}
}

will fail with the error message
can’t read '"display": no such variable

since the upvar reference to env(DISPLAY) disappears when the agent jumps. The procedure should be
rewritten as

proc run_around args {
set list ""

foreach m $machines {
agent_jump $m
upvar #0 env(DISPLAY) display
append list "The current display is $display.\n"
}
}

In other words, an upvar reference to an element of the env array must be recreated after a call to agent_jump
or agent_fork. All other upvar references will work as expected and do not need to be recreated.

73

B.4 gets, puts and read
Internally Agent Tcl uses the SIGIO signal to notify an agent that a message has arrived from another agent.
Unfortunately, if the SIGIO occurs in the middle of a blocked gets, puts or read command, the command
will fail with the error message
Interrupted system call
and will set the errorCode variable to
POSIX EINTR ...
A temporary workaround is to reissue the command whenever the errorCode variable starts with “POSIX
EINTR”. For example,
loop until there is no error
while {[catch {gets $fd} linel} {
An error has occured so see if errorCode starts with POSIX EINTR.
Loop around and issue the command again if errorCode starts with
POSIX EINTR. Otherwise handle some other error.

if {![string match "POSIX EINTR*" $errorCodel} {

handle other errors here

now the next line in the file is in the variable "line"

This code fragment can be placed inside a procedure so that you do not have to type it over and over.

C Command summaries

This appendix summarizes the agent commands.

C.1 Registration

These commands register an agent and its symbolic name, turn an agent into a root agent and forcibly

terminate an agent.

| Command

Description |

agent_begin [machine] [-time seconds] | Acquire a controlling server

Returns the new id of the agent

agent_name name [-time seconds]

Acquire a symbolic name
Returns the new id of the agent

agent_root

Turn the agent into a root agent
Returns the empty string

agent_force id [-time seconds]

Forcibly terminate an agent
Returns -1 if the agent does not exist
Otherwise returns the complete id of the terminated agent

agent_end [-time seconds]

Tell the controlling server that the agent has finished
Returns the empty string

C.2 Migration

These commands migrate an agent to a remote machine and create new agents.

| Command

Description

agent_submit machine

[-time seconds]
-script script

[—pI‘OCS name name ..

]

[-vars name name ..

]

Create an agent
Returns the id of the new child agent

agent_fork machine [-time seconds)

Clone the agent
Returns “CHILD” to the new child agent
Returns the ¢d of the new child agent to the parent

agent_jump machine [-time seconds]

Migrate the agent
Returns “SAME” if machine is the same as the current machine
Otherwise returns “JUMPED”

C.3 Basic communication

These commands send and receive messages and events.

Command

Description

agent_send id [code] string
[-time seconds]

Send a message to an agent
Returns the empty string

agent_event id tag string
[-time seconds]

Send an event to an agent
Returns the empty string

agent_receive code_var string-var
<-nonblocking | -time seconds

| -blocking)]

Receive a message

Returns -1 if the timeout expires before a message arrives
Otherwise sets code_var and string-var to the message code
and string and returns the id of the sender

agent_getevent tag-var string_var
<-nonblocking | -time seconds

| -blocking]

Receive an event

Returns -1 if the timeout expires before a message arrives
Otherwise sets tag_var and string_var to the event tag
and string and returns the id of the sender

C.4 Meetings

These commands set up a meeting between two agents.

Command

| Description

agent_meet id

Meet with an agent
Returns the meeting sockfd

get-meeting <-blocking | -nonblocking>

Get a meeting request
Returns -1 if nonblocking and no request was available
Otherwise returns the id of the requester

reject_meeting requester_id

Reject a meeting request
Returns the empty string

accept_meeting requester_id

Accept a meeting request
Returns the meeting sockfd

agent_accept id_var
<-blocking | -nonblocking>

Get and accept a meeting request

Returns -1 if nonblocking and no request was available
Otherwise sets td_var to the id of the requester

and returns the meeting sockfd

tepip-write sockfd string

Write a string onto a meeting connection
Returns the empty string

tepip-write sockfd from fd

Write a file onto a meeting connection
Returns the empty string

tepip-read sockfd
< -nonblocking | -time seconds
-blocking >

Read a string from a meeting connection
Returns the string

tepip-read sockfd to fd
< -nonblocking | -time seconds
-blocking >

Read a file from a meeting connection
Returns the empty string

tepip-close sockd

Close a meeting connection
Returns the empty string

C.5 Masks

These commands create and modify masks.

| Command

Description

mask new

Create a new empty mask
Returns the mask handle

mask delete handle

Delete a mask
Returns the empty string

mask add handle ALL

Add every possible entry to a mask
Returns the empty string

mask add handle

{id [-tag tag] [-handler name]}

Add a new entry to a mask
Returns the empty string

mask remove handle ALL

Remove every entry from a mask
Returns the empty string

mask remove handle

{id [-tag tag] [-handler name]}

Remove an entry from the mask
Returns the empty string

mask display handle

Get the contents of a mask
Returns the contents of the mask

mask handler handle name

Associate a default handler with the mask
Returns the empty string

mask handler handle

Get the default handler
Returns the empty string if there is no default handler
Otherwise returns the name of the handler

mask nohandler handle

Remove the default handler
Returns the empty string

maskswap < meeting | message | event > handle Associate a mask with an incoming queue

Returns the handle of the old mask

mask_replace < meeting | message | event > handle | Associate a mask with an incoming queue

Deletes the old mask
Returns the empty string

C.6 Timing and retries

These commands provide timing facilities and a generic retry mechanism.

Command

Description

agent_sleep seconds

Sleep for the specified number of seconds
Returns the empty string

agent_elapsed

Get the number of seconds that have elapsed since the agent
started executing on the current machine
Returns the number of seconds

restrict {{wall seconds}} script

Restrict the script to the specified number of seconds
Returns the empty string

retry delay multiplier attempts script

Retry until the script succeeds or the maximum number
of attempts have been made

C.7 Information

These commands get information about existing agents.

| Command Description |

agent_info -ids machine [-time seconds] Get the numeric id of every agent registered on machine
Returns the list of numeric ids

agent.info -names machine [-time seconds] | Get every symbolic name registered on machine
Returns the list of symbolic names

agent-info id [-time seconds] Get the status of a particular agent

Returns -1 if the agent does not exist

Otherwise returns the agent status

This command is nof implemented yet.

C.8 Advanced

These commands provide an agent version of the Unix select command and save and restore state images to
and from disk.

| Command | Description |
agent_select fd_list Wait for incoming messages, meeting requests and events
[-nonblocking | -time seconds | and for incoming strings on a meeting connection
|-blocking] Returns the list of ready descriptors
agent_disk Save the current state to disk

Returns a filename to the caller
Returns “JUMPED” when the state is restored
agent_transfer machine filename | Transfer the saved state to machine

[-time seconds) Returns the empty string

C.9 Miscellaneous

These commands create a main window for a Tk application, perform DES encryption, get a file from a
remote machine and mark variables and procedures as immobile.

| Command | Description |
main create Create a main Tk window
[-display display] Returns the empty string
[-geometry geometry]
[-name name]
[-sync]
main destroy Destroy the main Tk window and its children
Returns the empty string
crypt key salt Encrypt a constant string using DES and the given key and salt
Returns the encrypted constant string
get_remote_file machine Retrieve a file from a remote machine
remote_name localLname | Returns the empty string
glue var name [name .. .] Mark the specified variables as immobile
Returns the empty string
glue proc name [name .. .] Mark the specified procedures as immobile
Returns the empty string

