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ABSTRACT

Transportable agents are a relatively new technology for coordinating work within an organiza-
tion. Transportable agents can migrate from machine to machine, gathering information, ana-
lyzing it and interacting with human operators if required. They allow unprecedented flexibility
in carrying out tasks by allowing essentially any distributed organizational scheme to be imple-
mented. Much of the technology for implementing transportable agents is presently available and
affordable but mathematical models and analysis techniques for understanding the properties of
different, organizational implementations of agents remains primitive. In this paper, we initiate
study of one of the simplest coordination problems in a distributed system, that of resource allo-
cation. We consider a hierarchical organization in which agents aggregate information at different
stages and then act to disseminate it. The process of aggregation introduces noise or uncertainty
into the combined information. In this paper, we model how the agent architecture affects the
quality of the resulting solutions, demonstrating both analytic and simulation results. Our re-
sults show that the architecture of an agent implementation can have a significant impact on the
accuracy of solutions and that this impact is not always straightforward or intuitive. Specifically,
we explain quantitatively why higher levels of a decision structure should have better information
integration technology and why agents should minimize the number of information integration
steps they perform.

1 Introduction

Transportable agents are software programs that can migrate from machine to machine in a computer
network, carrying out information gathering and processing tasks. Transportable agents are most useful in
applications where networks are potentially unreliable or when information databases are very large. In the
case of unreliable networks, transportable agents can traverse network links and continue to carry out work
on behalf of a user even when a connection is down. Moreover, if the information resources are very large
databases, it may not be feasible to move the databases to a user’s site so that the user must send an agent
to explore the data at the remote location using less network resources. Agents can spawn other agents to
perform subtasks, meeting at a future time and integrating results for example. Several transportable agent
systems have been developed in recent years [17, 20, 19] and their use in real applications is starting to be
explored.

In implementing an agent-based solution to a distributed information application, there is much flexibility
in how the architecture is designed. For example, suppose there are several sites that contain information
that might be relevant to a task and we want to launch agents that will locate, assemble and disseminate the
relevant information. Should a single agent visit each site, collating information as it moves around, removing
redundant information when it is found? Or should several agents be spawned, acting independently for
some time and then meeting occasionally to compare results? In the second case, when should agents be
spawned and how many?
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The answer to such questions clearly depends on the performance metric we specify — minimize time,
maximize robustness, minimize cost (by avoiding redundancy or unnecessary data transmissions) for example.
If transportable agents become widely used and can spawn copies of themselves to solve information tasks
more efficiently, then some understanding of these issues is required. Models of network performance as well
as information resources and their costs in terms of time and money must be available for agent systems and
human organizational structures to dynamically optimize their performance.

In this paper, we explore the properties of a simple information gathering and dissemination problem
in order to better understand the impact of agent architectures on the accuracy of the solution. By now,
there is a sizable body of research that relates organizational structure to decision-making performance, e.g.,
analysis of primary factors for decision making in organizations [1, 2, 3]. Social-science studies of the effects
of different organizational structures on their decision making are described in [4, 5, 6]. In engineering,
extensive research has been done in a binary detection problem in a distributed organization [7, 8, 9, 11, 12].
Detection performance in different organization structures are compared in [14, 15]. An optimal solution
of the binary detection problem in a multi-level hierarchical organization is derived in [13, 10]. However,
those research does not fully address the kinds of problems that confront agent systems because agents are
completely flexible and dynamic in their execution behavior. Moreover, essentially no work has been done
comparing information processing powers of different organizational structures to our knowledge.

The main results of this paper suggest that architectures for transportable agents should be as flat as
possible. That is, the least noise or uncertainty corresponds to network structures that involve the fewest
combination steps. More specifically, the largest errors occur at the highest levels of aggregation suggesting
that agents or people responsible for combining data at higher levels within an organization must have
superior precision and techniques available to them. This analytic observation reinforces the practice already
used in many organizations — namely, that combination of information at the highest levels must be done by
agents with the highest skills and that organizations themselves are getting flatter.

Section 2 of this paper introduces the model problem that we study together with motivation and exam-
ples. Section 3 summarizes the analytic results and compares them with simulations while Section 4 discusses
the meaning of the these results and how they can be used in agent systems. The Appendix contains the
derivation of the analytic results.

2 Problem Formulation and Motivation

There is much discussion of and expectation for intelligent agent systems that will move through computer
networks, searching for information and processing it on behalf of a user. Such systems are still in their
infancy and their properties are poorly understood at this time. A simple question for example is how will
multiple agents cooperate to collectively solve information processing tasks? To illustrate such issues using
a specific problem, suppose we have multiple distributed sites which have “supplies” and “demands” for
material resources such as gasoline, machine parts or other types of inventory. We would like software agents
to move between and among sites, assessing supplies and demands, making autonomous decisions about
resource allocation. How should these agents be organized to make decisions that are most robust in the
presence of uncertainty? Uncertainty arises because of time delays and approximate encoding of exact or
true quantities.

Moreover, many interesting examples involve resources that are more difficult to quantify, such as health
care in emergency and battlefield situations, personnel management and other human resource problems. In
such applications, quantification is difficult and combining information results in loss of resolution, therefore
an increase in uncertainty. For an analytic study of such problems, the challenge is twofold — how to formulate
the problems analytically and how to learn something from those formulations.

In this section we introduce a simple resource allocation model to study how the structure of a distributed
information system can influence the quality of decisions as based on the information gathered. We are
specifically interested in the implications of these results for intelligent agents but the findings have bearing
on general organizational theory as well.



2.1 A Medical System Example

Consider for example the situation depicted in Figure 1. A number of medical centers must respond to a
medical emergency distributed over a region. Each medical emergency consists of some number of individual
cases, each of which is described using text to convey the specific conditions of the individual cases. Those
“demands” for medical services must be combined by intermediate nodes and ultimately compared with the
“resources” (physicians and equipment) currently available, also aggregated and described using text. Each
aggregation step reduces resolution because it summarizes a larger amount of information into a smaller
amount. The ultimate resource allocations are made according to information that has lower resolution
and is therefore more uncertain. Figure 1 depicts medical resources (such as hospitals) and field units with
medical emergencies that must be assigned to hospitals. Two architectures are shown — one that is deep
and one that is shallow. The deep architecture has more levels while the shallow architecture has few levels.
Which architecture leads to better decisions, assuming that agents or people combine information at each
node that the information traverses?

2.2 Information Retrieval

Another class of problems involves hierarchies for information and document retrieval. A user or group of
users delegate an information retrieval task to agents which then combine their requests, search a network,
spawning other agents, combining results and disseminating the retrieved documents. Such applications are
currently being developed by several groups. Again, what architecture is most robust and suitable?

2.3 A Formal Model of Resource Allocation

In order to formulate such a problem quantitatively and subsequently analyze it, we assume a simple model
for the process of combining information and making decisions based on it. In general, a hierarchical
organization (of either people or agents) consists of units which aggregate information from other units in
the hierarchy, passing that information through the hierarchy. Once all information is available, resource
allocations are made, and they are propagated back through the hierarchy. A fundamental ingredient of
this model is that information is condensed as it passes through the hierarchy in order to be digestible by
other units. The aggregation process introduces noise or uncertainty into the information. Thus, a unit
must make an allocation decision based on uncertain information. In this paper, we develop the resource
allocation problem for the binary tree where the supply and demand information accumulate errors during
the information propagation process. However, our results generalize to other decision structures as discussed
later.

The resource allocation problem is to mediate allocation of supplies of a resource distributed within a
system to the nodes which demand it. Our first basic model of the organizational structure is an n level
binary tree. Figure 2 shows the organization when n = 5. Levels are numbered, starting with the leaves of
the tree and increasing as the level becomes higher, culminating in the root.

DEFINITION — A resource allocation problem consists of a graph with nodes i = 1, ..., n, supplies
s; and demands d; at each node, i. The goal is to assign supplies s'; to nodes in order to satisfy
the demands, d;, at each node.

A node in the graph is an organizational unit in which information is aggregated and passed on to higher
levels with subsequent action being taken on decisions that propagate back. Each node processes two kinds
of information — supply and demand — about resources which are modeled as real numbers. At first, only
nodes on the leaves have these two kinds of information. In general, local supplies are different from local
demands. In the binary tree model, the supply and demand information propagate into higher nodes with
aggregation being implemented by addition as shown in Figure 3(a). At the root of the tree, the supplies
are distributed to the lower nodes by proportional splitting according to the demand information as shown
in Figure 3(b). In our treatment of this formulation, we consider intermediate decision nodes to be distinct
from actual nodes which contain supply and demand information but this is purely for notational simplicity.

To be more precise, let a unit v have two children, ¢; and ¢;. These two children have supplies, s; and
sz, as well as demands, d; and dy. In the noiseless case, the propagated supply from u is merely s; + so and



the propagated demand is d; + d>. These supplies and demands are propagated further up the hierarchy
unless w is the root. Resources are allocated according to a proportional splitting rule: if u is allocated a
supply of s, which may differ from d; + d», then ¢; receives dfféz and ¢, receives dffi. This rule is applied
recursively in the binary tree to each node in the upward and downward directions.

It is easy to verify that this procedure is merely an algorithm for proportionally allocating resources in

such a hierarchy. If sy, ..., s, are supplies and d, ..., d, are demands at the leaf nodes, then the algorithm
computes quantities
n n
s’ = ZS’ and d = Zdi
i=1 i=1
s'd;

and allocates *77* to leaf node i in the error-free case. However, our interest is in the noisy, uncertain case
where accumulation of information leads to errors in intermediate computed quantities.

Noise is added to the supply and demand information during the aggregation process. Our noise model
is multiplicative and is given by:

Q=q(l+e), —d<e<o

where 0 < 6 < 1 is a bound on the relative error size. Here ¢ is the correct information value and @ is
the modeled noisy information. For example, when supply information is aggregated at a node of the tree
during the aggregation process, the noisy supply is expressed as:

S =(s1 +s2)(1+¢).

The error in the resource allocation solution is a measure of how far off the allocated supply is from the
requested demand. This error is calculated by first normalizing according to:
di — S;
d;

where s} is the actual allocated supply for node, i. This normalizes the leaf error as a fraction of the leaf
demand. Next, this fraction is thresholded against 0 because a positive fraction indicates that local demand
exceeded supply which is counted as an error. If the local demand is less than 0, then no error is counted
at that node because demand has been met but our results generalize to the oversupply case as well by
symmetry and we discuss this situation later. Finally, these thresholded, normalized errors are added for
the overall error metric.

DEFINITION — The overall error is given by

a—-A
ER= Z max{dld'sl,O}.

leaf nodes i

As previously described, our model allows errors to be introduced at each aggregation step and the
proportional distribution is performed according to the information available to the local node. In the
general model, errors are cumulative. However, we examine the performance of this distributed resource
allocation model by isolating the errors contributed by different levels in the tree, separating supply and
demand respectively. This isolation and separation is done to identify the relative contribution of each level
in the overall performance. This approach is based on a first-order linear model for the local error as it
appears in the total error.

More precisely, the total error can be decomposed as follows:

ER = z": ERy s + 2”: ERp 4

L=1 L=1

where ERy s and ERy q are the errors arising from uncertainties introduced at level L due to supply and
demand uncertainties respectively. In the next section, we summarize the analytic and simulation results
isolating the role that each level plays in contributing to the total.



3 Analytical and Experimental Results

This section summarizes how errors in demand and supply affect the error in the overall resource allocation.
We isolate the contributions of errors made at each level of aggregation and restrict attention to complete
binary tree graphs.

Our main results are:

THEOREM 1. — Assume that the expected values of supplies and demands at leaf nodes are
identical. Then, For a graph consisting of 2" nodes and a binary tree combination and distribution
strategy, the resource allocation error contributed by supplies at level L is

d
\/6_,”, /9n—L

while the error contributed by demands at level L is

1)
ER[”d ~vVv1-— 2L+1in\/6_7r (2)

ERp s & (1)

PROOF — The proofs are in the Appendix. The results are approximate because we use first-order error models
and the Central Limit Theorem to simplify the analytic results leading to the closed form approximations
of the theorem.

These two expressions are plotted in Figures 4 and 5 together with the results of computer simulations.
The main conclusions from these results are:

e Errors due to supply increase as the decision making level increases, meaning that higher levels must
have more accurate supply information fusion capabilities to perform similarly to lower levels;

e Errors due to demand decrease as the decision making level increases, meaning that higher levels of
demand information fusion are less sensitive to errors than at lower levels;

e The analytic approximations are very close to simulation results.

Intuitively, these results can be explained by the way in which errors accumulate. In the supply in-
formation case, note that averaging a larger collection of numbers with random fluctuations leads to a
smaller average variance than averaging fewer numbers. Because information fusion at higher levels involves
combining a smaller amount of information, there is less opportunity for errors to cancel one another.

Conversely, errors in demand affect the distribution part of the resource allocation process. Distribution
of the supply is based on the known information about demand which has a larger absolute variation when
more information is fused (as opposed to average variation per node which is smaller for a larger number of
nodes). Because the absolute variation of errors in demand is larger when the errors occur at lower levels
of the decision tree, the overall resource allocation is worse. This explains the downward trend of allocation
errors as a function of decision level.

The implications of these results for automated decision making systems, involving both intelligent agents
and human decision makers are:

1. High levels of a decision hierarchy must have better decision making tools available to them, especially
for supply information in resource allocation;

2. A decision making hierarchy should be as shallow as possible (which is being observed in more and
more organizational structures using modern information technology);

3. Information technology, especially intelligent agents, should be and can be used to make decision
making hierarchies more shallow.



3.1 Discussion

3.2 Simulation Results

We have performed simulations which compute errors in the final resource allocation solution (that is, total
supply deficiencies with respect to demands). The simulations use a binary tree model with 7 levels (64 leaf
nodes). In order to isolate the impact of errors at each level on the overall performance, the simulations
are executed with an error which occurs on either supply or demand and then only on a fixed level of
the hierarchy. Errors are randomly and independently generated from a uniform distribution in the range
—d < € < 4. Because of our analysis, we expect the distribution itself not to make a major difference,
only the first and second order statistics. An expected average total leaf error is estimated by repeating the
same set of simulations 50 times. The total supply and demand are balanced but simulation results show the
same trends for cases where supply both exceeds demand and where demand exceeds supply. The results of
the simulations are shown by the solid lines in Figures 4 and 5. The errors are bounded by é = 0.5. The
simulations where carried out using MATLAB.

As predicted by the analytical results, observe the tendency for demand information error in higher levels
to causes smaller allocation errors in the overall problem. Conversely, supply information error at higher
levels causes larger allocations errors. The analytical predictions for the simulation, given by (1) and (2),
are represented by the dashed line in Figures 4 and 5. Notice the close agreement between the simulation
and analytic predictions.

The simulation results for supply errors match the analytical predictions well. However, simulations for
demand errors differ more from the analytical results because they use both a Taylor expansion (to get first
order terms) and the Central Limit Theorem. On the other hand, the supply error simulation results use
only the Central Limit Theorem for approximation.

The analysis of the supply case shows that total error depends entirely on the number of errors which
occur at some level of the tree. By examining the form of (4), the final error is linear in the number of nodes
involved at a given decision level of the tree. Since these errors have the same mean and variance, as the
number of error terms becomes larger, the average variance of the errors becomes smaller. This leads to a
smaller expected value for the total allocation error.

On the other hand, the analysis of demand information error, the expected total error is not strongly
affected by the number of nodes contributing to the demand error. The curve of expected error in the
demand case in Figure 5 shows a more gradual dependence on decision levels than the supply case of Figure
4. Examining equation (9) of the proof in the Appendix, the term

€1téer+ ... +en-—m-2+En—m-1
gn—m—1 ’

which is the only factor that depends on the number of error-contributing nodes, is much smaller than 1. It
has a small effect on the value of (9).

We have further examined the error tolerance of each level with respect to a fixed total allocation error.
That is, for a fixed total allocation error, say FR, how large can ¢ at level & be without having the total
error exceed ER? This value is plotted for each level in Figures 6 and 7. The analytical curves of the bound
in the demand and supply case are obtained according to the expressions in (5) and (11).

The analytical and simulation results in the supply case clearly show that higher decision making levels
require a smaller error to achieve a fixed total allocation error.

The analytical and simulation results in the demand case (Figure 7) agree fairly well also — note that the
bounds are almost constant for all the level. However, a careful comparison of the results for the demand
case, shows that the simulation result does not match the analysis well in the higher decision making levels.
This mismatch is not surprising because the analytical and simulation result of Figure 5 themselves didn’t
agree well, especially at higher levels.

3.3 Relationships to Backward Error Analysis

Backward error analysis is a commonly used technique in numerical analysis to study the numerical stability
of floating point algorithms [18]. In backward error analysis, computed output data are interpreted as exact



solutions to perturbed input problem data. We can apply backward error analysis in this model as well,
leading to the same results, just arriving at them differently.

For example, instead of adding errors after aggregating information, S = (s; + s2)(1 + €), the same error
is interpreted as arising from perturbed input data before aggregating it:

S = (s1)(1 +2/2) + (s2)(1 + £/2).

Backward error analysis leads to the same results in both supply and demand cases as has been shown in
this paper.

3.4 Decision Tree Depth

In Figure 8, we show the total allocation error as a function of the branching factor for a decision tree with
256 nodes using branching factors of 2, 4 and 16. These correspond to trees of height (depth) 8, 4 and 2
respectively. Clearly, with respect to both supply and demand errors, the total allocation errors decrease
together with the tree depth supporting our earlier claims that decision trees for both agents and human
organizations are better being shallow.

4 Summary

We have studied a simple problem in distributed information gathering and decision making, namely the
resource allocation problem, with the goal of understanding how agent and human organizational architec-
tures can affect the quality of the final outcomes. We have modeled information fusion as a noisy process
and evaluate the effects of the noise on the quality of the final allocation solutions. We have derived analytic
results which have been verified against computer simulations.

Our analytic results show that information gathering and decision making in a hierarchical structure is
more susceptible to uncertainty at the higher levels of the hierarchy, in the case of noisy supply data, and
more sensitive to noise at the lower levels in the case of noisy demand data. However, the sensitivity with
respect to decision levels in demand information is pronouncedly smaller. These effects can be alleviated
by using shallower decision trees, that is, using fewer levels in a hierarchy. For agent based systems, this
means that spawning many agents earlier on in a process and using fewer agents to fuse the resulting
information is superior to less frequent spawning of agents and more aggregation steps. For human decision
making structures, this translates into using fewer levels of management which is something that information
technology makes possible and is indeed being done in practice.

Our analysis has been for a very specific problem that we could quantify and analyze but the vast
majority of distributed information processing and decision making problems remain to be studied. Much
work remains to be done towards understanding the relationship between decision making structures, both
electronic/digital and human, and the quality of the final results. We hope that this study is a small first
step towards understanding and quantifying those relationships.
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A Appendix: Proof of Main Theorem

A.1 Uncertainty in Resource Supply

Here we consider the supply error isolated by level. First of all, we study how an error at a parent node
propagates to its children nodes when there is no error in demand. Assume that the parent node has noisy
supply information S’ which should be distributed to its children. The noisy information S’ is related to the
exact supply information S according to

S'=S(1+¢)

where g1 is the relative error at the node and S is the supply without error.



The supply S’ is distributed to children n; and n;41 according to

d.
n; - 5171
di +diy1
diiq
i SI i+ )
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The normalized errors at n; and n;4; are, respectively,
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In the same way, children nodes under both n; and n;41 get the same normalized error £;. Thus, it turns
out that all the leaf nodes descendant from a given node with normalized error ¢ have the same normalized
error €. jFrom this result, it is clear that each leaf node has the same normalized error in supply as does
the root. Thus, the total error at leaves is obtained by calculating the normalized supply error at the root
times the number of leaves.

Next, we show how to calculate the normalized supply error at the root. Consider the nth level of the
binary tree and assume that all the nodes in the kth level from the leaves have supply information error.
Given the correct supply at each node in the kth level is s;, the total supply information which is collected

at the root is
2n—k

Z Si(l + Ei)
i=1
including the error.
The normalized supply error at the root will be:

on—k on—k
Doimg Sill+e) =i s
on—k

dim1 Si

ErTrory oot =
2n —k
Ei:1 Si€q
on—k

Zi:l Si

The expected value of the normalized and thresholded error at each leaf node is

E(erroryoot) = E (max (%, 0>> (3)

This expected value is affected by the sizes of the s;. In order to make the analysis tractable, we use a
constant size for each of the leaf values, s;. In the simulations, we randomize the supplies and use their
expected values as a basis for the corresponding analysis. Using E(s1) = E(s2) = .. = E(sgn—k) = s, (3)

becomes
2n—k
E(erroroot) = F (max (%, 0>>
e S

= F (max (%, 0)) (4)



Assuming the errors ¢; are uniform random variables whose ranges are —§ < ¢; < ¢, an estimate of (4) can
be based on the Central Limit Theorem [16] as follows.
According to the Central Limit Theorem, if €1, €5, ..,€, is a sequence of n independent random variables
with E(e;) = p;, variances V(g;) = o7 and we define X =1 + &2 + .. + €,-1 + &5, then
Z, = X iz bi i
V2iii0;
has an approximate N (0, 1) distribution as n approaches infinity. Each error random variable ¢; in (4) has

n—k
the same mean, FE(§;) = u = 0, and variance, V (¢;) = 02 = %. Let X = 2?21 €; so that

has approximately an N(0,1) distribution. Therefore, (4) leads to the approximation

1
E(erroryoet) = —— E(max(X,0))
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As described before, the total leaf error due to noisy supply at a fixed level is the size of the error at the
root multiplied by the total number of leaf nodes. We then divide by the number of leaf nodes to get an
average. Thus, the expected value of the total average leaf error due to errors in supply information at the
kth level will be

E(total error) ~ __0 (5)

\/@, /on—k
Note that in our simulations, we show these errors as percentages and so they are multiplied by 100 in
the figures.
The general trend is evident from this expression: the larger that k is, the larger the total error will be.
This is because at higher levels, there is statistically less opportunity for error cancellation so the variances
are larger as expressed by (5). The simulations bear this out.

A.2 Uncertainty in Resource Demand

There are two stages in the propagation of demand errors. First there is the aggregation process of demand
information followed by the distribution process in which supply is allocated according to the known demand.

In the aggregation process, errors which occur in a certain level propagate to higher levels as in the
supply case. The demand errors are aggregated in the parent nodes and are stored there. Thus, all nodes at
a higher level than the one in which the errors originally occurred have errors in demand information.

10



Let d,,; represent the demand at node [ in level m. Isolating the demand errors to level m, the demand
information at nodes above level m will be:

2k—1;

dmik,i = Z (14 ¢1).

1=2k=1(i—1)+1

Once the aggregation process reaches the root, the distribution process starts. Aggregated supply information
at the root is distributed to the children nodes in proportion to the demand information of the children.
Therefore, if there is an error in a demand information, the distributed supply also gets an error. Since all
the nodes ranging from the root to the level where errors occur in demand information (say, the mth level)
have demand errors, errors in the distributed supplies accumulate until the distribution process reaches the
mth level. Below level m, the nodes receive the same normalized errors that their ancestor node in the mth
level gets. Thus, the normalized error in the distributed supply on the leaves, will be equal to the normalized
error at the nodes in the mth level multiplied by the number of leaves which are descendant of the nodes.
Notice that we can restrict attention to nodes 1 and 2 at each level to simplify notation. The distributed
supply at a node in the mth level can be calculated as follows. At node n,, ; the delivered supply is:

s - Sx dn—l,l x dn—2,1
m,1 -
dn—11+dn—12 dp21+dp22
dm+1,1 dm,l

X
Admt1,1 Fdmr12  dmi +dmpe

where S is the supply at the root.

Since
A+ (k+1),1 = Atk + dptk,2 (6)
in (6) except the case where
dmt1.1 = (dm1 +dm2)(1+ 1) (7
(7) reduces to
oot = § x —LFE)dms (®)

dn—1,1 + dyp_12

Applying this reduction and using an average value for d,, ;, that is, E(dy, ;) = d, (8) becomes

s, 1 =8 1+e;
™ (T4+e)+ (1+e2) + e + (1 +Egn-m-1))
1 14+¢
- 52”—7”—1 1+ % 9)
Since El+82+""zgn":mmfl2+5"""‘l << 1, using a Taylor expansion, (9) reduces to
1 €1 — €3 — .. — Egn-m-1
smi & Soo—m(L+e)(l - Sl )
1 €1+ €2+ ..+ Egn-—m-1 €] —€2 — .. — Egn-m—1
= S2n7m71 (1 +er— 2n7m71 & 2n7m71 )
1 €1 —€2— ..~ €pn—m-1
~ SQn—m—l (1 +eé— gn—m—1 )
_ g 1 ) (2" ™7l — 1)) —en — €300 — Egnom—1
- 2n—m—1( o on—m—1 )
where we have eliminated second order terms, specifically
€1 — €2 — ..&gn—-m-—1

€1 2n—m—1
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because they are much smaller than 1.
In the same way, other nodes at the mth level have

1
smi ~ So—(1
—€1 — €2 —..—Ei—1 + (2n—m—1 — 1)6i — €41 — .- —Egn-m—1
- 2n7m71 )
The correct distributed supply is
d .
Sm,i =S —
’ dm71 + dm72 + ..+ dm72n7mfl
1
= Sanmfl ’

again using an average for d, ;, that is, E(dy, ;) = d. Therefore, the normalized error at a node in the mth

level is
St — Sm.i
em,i :maX{M,O}
Sm,i
2n=m=1 _ 1)g; — gy —€3... — Eqn-m—
~ max{l—(l— ( Jer — 2 — & = 1)’0}

2n7m71
M=M=1 _ 1Vei — £y — 5. — Eonom
max { ( Je1 — €2 — €50 — Egnom ,0} (10)

2n7m71

The reason why the max operator is taken in (10) is that the error in distributed supply is considered to
be the supply deficiency with respect to the demand. If the delivered supply exceeds the requested demand,
then no error occurs.
We can now reduce (10) extended by using the Central Limit Theorem as before. Let E(e;) = 0,
V(e;) =0? = %, and
Y =21 ~1)g; —e2 — €300 — Egnm—2 — Egnom—1
so that E(Y) =0 and

V(Y) — (Qn—m—l _ 1)20_2 4 (Qn—m—l _ 1)0_2 — (2n—m—1 _ 1)(2n—m—1)0_2_

According to the Central Limit Theorem,

Y -0
7 =
\/(anmfl _ 1)(2n7m71)0
Y

\/(2nfmfl _ 1)(2n7m71)%

has an approximately N(0,1) distribution. Therefore, (10) can be simplified into

1
w1 2()
_ ! _ /00 Y : D T ) gy
on—m o (\/(2n—m—1)(2n—m—1)%)m
1 5

— W\/(anmfl _ 1)(2n7m71)
V2ormm—=1l 1§ 1

A /2n7m71 \/g 27
A /]_ _ 2m+lfni

Vér

5l
5~




As mentioned above, the expected value of the total normalized errors in distributed supply on the leaves
is the number of the nodes on the leaves times the expected value of the normalized errors of the nodes
at the mth level given by (10). We then divide by the number of leaf nodes to get an average. Thus, the
expected value of the total average normalized error on the leaves due to errors in demand occurring at the
mth level is

E(total errory,) = 2" x E(error)

~ I—gmiin (11)

Vor

The corresponding quantity for errors arising at the (m — 1)st layer is

E(total errorpmst) ~ V1 —2m=—n

0
A
By examining (11), we observe that demand errors at higher levels (that is, closer to the root) are expected
to cause a larger error in the final allocation of supply.
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Figure 1: Shallow vs. Deep Architectures
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® — Levdl @ — Levd?2 Q@ Lecs .—Levem . Level 5
Figure 2: A Sample Hierarchical Agent Organization
Node u Supply : s=s1+s2 Node u g Supply: s
Demand : d=d1+d2
Supply : st
Supply : s1 ) = §(d1/(d1+d2) s2'=8 (d2 /(d1+d2))
Demand : d a2 Demand : d1g/Node cl d2
Node c2 Node c2
(a) Aggregation of Information (b) Distribution of Information

Figure 3: Aggregation and Distribution of information
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Percent Error (errors in supply) level=7, branch=2, delta=0.5
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Figure 4: Error as a Function of Decision Level (Supply information)
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Percent Error
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Percent Error (errors in demand) level=7, branch=2, delta=0.5

2

Figure 5: Error as a Function of Decision Level (Demand information)
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Size of Delta required for Error(=2.0) : Error in Supply
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Figure 6: Error bound of supply error for a fixed total error
Size of Delta required for Error(=15.0) : Error in Demand
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Figure 7: Error bound of demand error for a fixed total error
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Percent Error as a Function of Uncertainty: leaves=256
35 T T T T T

Percent Error
N
(6)]

N
o

K
151

10
2 4 6 8 10 12 14 16

Branch level : solid-Demand, dashed-Supply, dash_point-Both

Figure 8: Error as a Function of Branching Factors — 2,4 and 16
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