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1 Introduction

1.1 Purpose of this Document

This document serves two purposes. First, it is intended to be a chronology of decisions
made by the Prism design team from January to April 1987. It is also intended to describe
some important aspects of the design of Prism, but as a design document, this work is in
no way complete.

1.2 Background and Motivation

Chip and cell design take several forms. There are mask-level systems, symbolic-level
systems, silicon compilers, and standard cell systems, just to name few. Many of these
forms can be used together to help create an entire design.

This design paper describes a symbolic design system called Prism. The motivation
for designing Prism arose from the desire to improve symbolic-to-mask compaction —
specifically in the VIVID! system. Current compactors run as totally batch processes.
Running batch, a compactor must either smash the chip hierarchy and compact the entire
chip as one cell or compact individual cells, making assumptions about the environment
and connections for each cell. In either case, the area of the mask suffers. Also, compactors
can take an extraordinary amount of time, and one small change — even if it would make
no change in the area of the compacted mask — requires a total recompaction.

Experiences with using and creating VIVID indicated more reasons to build Prism.
VIVID is considered one of the best existing symbolic systems, but strides in state-of-the-
art communications, user interfaces, and design automation software engineering have left
it behind. Prism is a descendant of VIVID, but Prism is a new model for symbolic design.

1.3 Improving on VIVID
1.3.1 Changes to Compaction

Improvements to compaction here do not revolve around improving compaction algo-
rithms.? Rather the emphasis is on building a controller around an existing compaction
engine. The responsibilities of the controller are making compaction user-guided (rule-
based), constraint-based, and incremental. These changes are discussed in detail in other
sections.

The reader is asked to keep in mind that it is primarily compaction that has provided
the motivation for this work. Many other suggestions grew out of the compaction discus-
sions, and so the Prism design team was organized. For the remainder of this document,
the compactor is treated as any other tool in the Prism system.

1VIVID is a trademark of the Microelectronics Center of North Carolina.

2There are two basic forms of compaction algorithms: constraint-graph and virtual grid. The work
described here incorporates the Microelectronics Center of North Carolina’s virtual grid compactor, but
these compaction improvement schemes are in no way specific to any compaction algorithma.



1.3.2 Other Changes

There are several fundamental flaws in VIVID, and many of them can be directly traced to
changes in the state-of-the-art. In terms of the system as a whole, VIVID sits apart from
the rest of the design process. It is difficult to use other tools in cooperation with VIVID,
and it is nearly impossible to use cell designs created elsewhere in a VIVID design. With
the onslaught of new tools and the special requirements of some cells — which cannot
be handled by a symbolic system — it is now best to consider a symbolic system as one
element in the design path rather than as the only member.

Some flaws in VIVID are based in the use and distribution of data. The lack of a
centralized coherent database makes the system incapable of handling large designs —
that is, designs of more than 100,000 transistors. This problem stems from the use of
ASCII as the data storage format. The sheer magnitude of data makes multiple ASCII files
difficult to manage. ASCII files, while providing great generality and access to standard
text utilities, are very expensive to read, parse, and write. To make matters worse, no
two tools share their data, meaning that to use output data from one tool as the input
to another tool, the data must be written out in ASCII and then parsed back in, using
expensive lez/yacc parsers.

One of the major advantages of symbolic design is technology independence. How-
ever, problems have arisen from the implementation of the technology information in
VIVID. The implementation assumes too much about some technologies, and setting up
a configuration for a new technology is complex and requires an intricate knowledge of
C programming and VIVID itself. It is obvious that additions of new technologies must
be better supported and more simple. A move away from the C language to one better
recognized by designers is the first step. Lisp is the obvious choice since it is similar to
the design language EDIF.

In terms of specific tools, there is also room for improvement. The interactive editor
of VIVID, ICE, has a reasonable interface, but many functionally similar editors today

have a better interface to the user, and some operations can be improved with the use of
better data structures.

1.4 Goals

The goals of the Prism design team can be divided into two groups: goals for the system
in general and goals for specific tools. The delineation between these groups is usually
clear, but there is some gray area. Also, it is important to keep in mind that some system
goals will influence design and implementation of specific tools, and some goals for tools
will affect the design of the system as a whole.

1.4.1 System Goals

The Prism system must meet the following criteria:

1. provide the user with a wide variety of design tools,



2. allow easy integration of new design tools into the environment and easy integration
of this system into other environments,

3. allow tools to run concurrently on separate machines, connected through a network
to the user console,

4. support design sharing among multiple users,
5. easily support designs of over 100,000 transistors,
6. do all of the above efficiently.

Prism tools include a symbolic-level circuit editor and a compactor. Other tools will
include mask-level circuit editors, simulators, automatic design generators (PLA and mem-
ory array generators), and data format translators.

Prism has an open architecture, meaning that tools from different sources, with dif-
ferent data formats, can be easily integrated into the system. This feature is supported
by a centralized design database. The database stores design data in a number of formats
that represent a middle ground; that is, they can be easily translated back and forth to
most of the design data formats currently in use.

The target environment for Prism is distributed workstations. The chip design database
is stored on a disk farm, possibly attached to a large central machine. In such an envi-
ronment, concurrent operation of design tools spreads the computational burden among
many machines. To support this environment, Prism has a communication infrastructure,
based in the database server.

Multiple invocations of the Prism system share the same design database, although
they each have their own database manager. This architecture supports the sharing of
design data among multiple users and projects. The data formats used by Prism and the
communication architecture allow them to easily support large circuit designs with less
overhead than current systems.

The actual efficiency of the system will not be known until it is implemented, but our
experience and experimental data suggest that all of the above can be done efficiently
enough to make the project worthwhile.

1.4.2 Goals for Specific Tools

Prism has two tools in common with VIVID: the interactive cell editor and the compactor.
Other tools are developed for Prism to support the new architecture of the system. The
goals for the database server were discussed in the previous section. A browser is also
needed so that chip hierarchy can be visualized and manipulated and so that ASCII
manipulations can be made on cell designs.

The interactive editor must provide fast response to the user in an agreeable inter-
face. Also, to better incorporate cells designed elsewhere and to provide good compactor
feedback, the editor must be able to display both symbolic and mask designs.



To improve compaction, three changes need to be made. The most important improve-
ment is to add user direction. User-directed compaction implies the other two needed
changes: compaction must be incremental and constraint-based. Basically these changes
mean that the user can compact in a piecewise fashion, choosing the compaction order
and selecting the method of compaction, and the user can determine what environment
the cell will be compacted in. However, the compactor is still executable as a totally batch
process. With this ability, compactors developed elsewhere are usable in the system, and
changes in technology for the entire design can be easily tolerated.

1.5 Implementation

These goals are largely met by the system described in this paper, although some issues
will not be resolved until an implementation is complete. The system will be imple-
mented on Berkeley-compatible Unix,?® using the C++ language. Some Unix networking
and interprocess communications facilities will be used to simplify the communications
architecture. The system will be built on top of an Ethernet, using Unix sockets.

The X graphics standard will be used to simplify the implementation and enhance

portability, and support for the EDIF language will help ensure a wider range of applica-
tions.

1.6 Requests for Information

Please direct any questions or requests for information to Jonathan Rosenberg, Neil Sul-

livan, or Jim Nusbaum at Duke University, Department of Computer Science, Durham,
NC 27708.

8Unix is a trademark of AT&T Bell Laboratories.




2 Prism — A View From The Top

2.1 Prism System

Prism is a symbolic VLSI design system built around a database, and it is run in a net-
worked environment. Prism implements an open architecture. This architecture manifests
itself to the user as a system incorporating many disparate tools and to the system builder
as a program that easily grows.

The foundation for the architecture is a centralized design database. This database
stores design data in a number of formats that represent a circuit as it goes from symbolic
design to mask level description. Multiple invocations of the Prism system share the same
design database, although they each have their own database manager called G.

2.1.1 Topology of the System

The database server, G; the compaction controller, Biv; the interactive editor, Roy; and
the browser, Tom, form the skeleton of Prism. Each of these tools is discussed in detail
in other sections of this paper. They are all discussed briefly in section 2.4/ Tools.

Prism is designed to run in a distributed environment. Tools may be started on any
machine connected to the network. They communicate with the user console and the
design database through sockets. Figure 1 shows a layout of Prism system.

Prism Shell
[ [ LRl
: |

Tom [? | misc tools
I
l

- E/ :

/
:

Figure 1: Prism Skeleton

Note, in the figure, that all lines represent communication sockets. The dashed lines
that lead into the Prism shell indicate that the socket is only used by the shell to start
up the tool and to kill it. If a tool dies before the shell kills it, that information is sent to
the shell through that socket.



There will be other miscellaneous pieces of a CAD system that will not be part of the
design of Prism but must be integrated with Prism. There will be at least the following:
PLA generators, module generators, mask editors (Magic), routers, and standard cell
systems.

These miscellaneous applications may wish a different interface to the database; so a
translator or compiler between data formats makes tools fit together better. Hopefully,
a tool uses a procedural interface to its data. If 5o, a layer of routines between their
procedures and the G data server routines, loaded with the program, provides all the
integration necessary. This layer is called the Adaptor, and it is discussed in detail in
section 4.1 Adaptors. This layer is not displayed in figure 1, but it would communicate
with the Mini-G routines shown as the resident portion of the G data server in each tool.

2.1.2 Windows and X Graphics

The user enters the Prism system from a workstation. The user interface is in windows,
through graphical and textual interaction with the database. The windows are imple-
mented using the X graphics system developed at MIT, which runs under 4.3BSD Unix
and Ultrix-32 Version 1.2. X has been successfully used on MicroVAXes? and has been
ported to Sun workstations as well.

When a tool starts under Prism shell, the shell creates a window and begins the tool
process in that window. Each process may split its own window into subareas. Windows
provide the user with an ability to shift between tools, running several at a time (say, a
compaction and an editing job) without the tools needing to know about each other.

X graphics provides fast displays and efficient interaction with all the various tools,
making more progress towards removing the user’s frustration in the process of chip design.

2.2 Prism Shell

The user invokes Prism system by typing the command prism into a shell window. This
command opens a new window and starts a process: the Prism shell. Associated with
that process is a command file, called .prismre, which determines where to call up the
database server G and possibly some other tools. Each of the processes has a port into G
as shown in figure 1.

2.2.1 Hardware Allocation

Since a Prism session includes using tools on possibly remote machines, a method for
starting those processes is necessary. To avoid the complexity of a resource monitor and
allocator, the Prism shell takes responsibility for all process initialization. A table, specific
to each site, indicates the processor choices for each tool.

“Ultrix and MicroVAX are registered trademarks of Digital Equipment Corporation.



The processor choice table is indexed by the process name. For each name there is a
list of processors and a threshold associated with each processor. The threshold indicates
a load factor. Prism then selects a processor for the tool in the following manner:

/*

* For the given process, check down the list of processors it

* can be run on. Select the first processor whose current load
* is under its acceptable level. If no processors are usable,
* select the current processor.

*/

for (i=0; i<=MAX_LISTED_PROCESSORS; i++) {
curr_load = get_load(choice_tbl[tool_name] [i].processor_name):
thresh_lcad = choice_tbl[tool_name][i].threshold;
if (curr_load <= thresh_load)
return(choice_tbl[tool_name] [i].processor_name);
}

return{curr_host);

2.2.2 System Startup

The .prismre file contains Prism-level commands to be executed and environment variables
to be set upon startup. It indicates which tools a user wants to start with. The file also
contains the location of a Prism system file, called sys_prismchoices. This file indicates,
for all tools that can work on a remote site, a list of the machines they can run on, ordered
by preference. Associated with a tool and a particular machine there is a load threshold
value useful for hardware allocation. When sys_prismchoices is referenced for a particular
tool, the hardware allocation proceeds as explained previously in section 2.2.1 Hardware
Allocation.

It is clear, however, that a user may have some preferences on where to start a tool
on the network. These preferences might obviously be different than the choices indicated
in sys_prismchoices. Thus the user is able to specify, for some tools, a list of personally
preferred machines. This information is found in a user file called .prismchoices.

Whenever a tool has to be started, .prismechoices is referenced to find the site where
the tool will reside; if no site is given, sys_prismchoices makes that decision instead.

Upon startup, the user indicates a project, possibly through .prismre. Associated with
each project is a technology and possibly some libraries. They are automatically assigned,
if possible. If necessary, the user is prompted to tell which technology is being used. The
technology information is not changeable during a Prism session.

The G data server is automatically started by the Prism shell if any tool is started.
There is no need to mention it in .prismre, and only one G is ever used under a Prism
shell. Prism shell remembers the port number of G when G is started. Immediately after



G, the browser, Tom, is started. Whenever another process is started, it is passed the
port number of G, and it requests service there.

The .prismre file also contains other miscellaneous information, such as where to place
the windows associated with each tool. A list of commands is given in the next section.

2.2.3 Commands

The following commands are available in the Prism shell:

source filename

Read and execute a file of commands. (Note .prismre is sourced automatically.)

status [ toolname |

Give some information about the tool itself and the machine it is running on (which
machine, load factor, et cetera). If no tool is specified this information is given for
all the tools that are running.

start toolname [ machine [threshold_load | ]

Start the tool. If a machine is named, the tool is started on that machine. If a
threshold load is given for the machine, the tool is only started there if the load on
the machine is under the threshold. If no machine is given, either the . prismchoices
file or the system’s sys_prismchoices file determines the machine the tool will be
started on. Lacking any instruction, the default is to start the tool on the current
machine.

kill toolname

Remove the tool from the current invocation of the Prism system.

exit

End a Prism session. Kill all the processes still alive.

Since a user interacts with Prism at a workstation, the usual window commands pro-



vided through mouse interaction are available. These commands include open a window,
close a window (that is, map it to its corresponding icon), and kill a tool.

2.3 The Database Server — G

Every invocation of the Prism system spawns a new G process for communications between
the design database and the various tools that may be part of that invocation. The decision
to have a separate server process for every invocation of Prism — that is, for every user
of the system — came after weighing the advantages and disadvantages of having one G
per user (many Gs) or one G per site. The table below lists some of the criteria that must
be considered. )

Central G Individual Gs
machine process space advantage
socket management advantage
consistency and coherency of data advantage
simplicity of communications advantage
general efficiency advantage

Table 1: Database Server Distribution Examination

The issue of process space is not a crucial one. It is assumed that all the memory and
processing power required are allotted.

The issue of socket management is important. The Sun operating system, for instance,
restricts the number of sockets to 32 per process. In the event that several designers are
working on a chip design at the same time, it is not difficult to imagine that a central G
server could easily run out of sockets. This fact quickly debilitates the argument for a
central G server.

Since the heart of the Prism system is the potentially large design database, concerns
for the consistency and coherency of the data must be addressed. Clearly, consistency and
coherency are much easier to maintain when there is only one process that will manipulate
the data. Keep in mind, however, division of human labor, and note that it would be
unusual for several individuals to be simultaneously, yet independently, working on the
same part of the same design. In the rare event that several designers are working on
the same part of a design, a simple warning-based approach can be employed to handle
concurrency and overlapping conflicts (see section 3.5 Avoiding Concurrency Problems).

Consider the following scheme. When a cell is taken from disk, it can be taken for
reading or for reading/writing. The cell is marked accordingly. When the next designer
tries to take the cell, a warning is issued to this person currently checking out the cell.
It will be the responsibility of the users to resolve any such conflicts that might arise. In
relying upon human interaction to resolve consistency problems, the complexity of the
database server is greatly decreased; moreover, the feasibility of a discrete G for each
invocation of Prism is enhanced.



The communication between the server and the cooperating tools would be quite
complex if there was only one database server. If the constraint on the number of sockets
per process was not a limiting factor, then the vast number of service requests initiated by
the tools would certainly be a bottleneck. As an example, consider a central G server that
must communicate with many users. Each user will likely have an editor, a compactor,
and perhaps other tools running simultaneously. The bookkeeping involved in serving all
these process is expensive, especially if it is to be maintained by one process. Also, much
of the bookkeeping facility will be unused if the assumption is correct that the division of
human labor will preclude much work from overlapping.

Note that this discussion has been based upon the assumption that there are only two
choices for deployment of the G database server. Such is not the case. Several schemes
have been investigated, such as having a G server per machine. This scheme would require
a daemon on each machine, creating a very complex communication structure between
the servers. On top of those troubles, the target environment for this system is (probably
diskless) workstations, where cells are saved on a large disk farm off some possibly central
machine. In this enironment, the one-G-per-machine scheme degenerates to precisely the
one-central-G. Other distributed G architectures presented similar problems.

In summary, a G for every invocation of the Prism system eliminates much of the
bookkeeping that is needed in a one server environment. In addition, each user would
have a dedicated server, therefore escaping competition with other Prism systems running
simultaneously. The communication complexity is also reduced, as each G will talk with
only the tools from the Prism session from which it was spawned. Finally, lack of sockets
encountered in the one-G-server case, is not a problem when each G-server communicates
with only the tools that one user has invoked.

2.3.1 Mini-G

The communication between G and the tools that are part of the Prism system is via
sockets. Each tool has, as part of its structure, a library of information retrieval and
deposition routines that directly communicate with G by way of the sockets. This library,
which is called Mini-G, consists of a set of routines designed to get and put data from
and to the design database. It is provided as a common communications foundation for
built-in tools and for alien tools that are being integrated into the system. Through Mini-
G, all tools, therefore, access the design data in the database. The specific commands of
Mini-G and the role of Mini-G as viewed by an arbitrary tool are explained in section 8.7
The Tool’s Interface to G — Mini-G.

2.3.2 Technology Database

One of the advantages of a symbolic design system is that it provides technology inde-
pendence. The technology information must be stored in a database, though, and G is
responsible for the distribution of that data. The technology information system is called
Otis, and it is explained in detail in section 3.8 Introduction to G Technology Information

10



System.

2.4 'Tools

The protocol of communication between G and the tools of the Prism system is designed
with the concept of an open architecture in mind. The delegation of the data transfer
routines to Mini-G has eliminated the requirement that a tool developer be intimately
familiar with the inner workings of the system. The library of Mini-G functions frees the
developer from data transfer concerns, and in order to integrate a tool into the system,
the developer need only know how to translate the new tool’s data into the format of the
data in the design database and vice versa. The translation will be incorporated as part of
a tool adaptor (see section 4.1 Adaptors). The tool itself then requires little modification
to be integrated into the system.

There are some basic tools already part of the Prism system: an interactive editor, a
compactor, and a browser. Prism provides these as Roy, Biv, and Tom. There is no need,
therefore, for new versions of these tools to be added to Prism, but if a user prefers some
particular program, there is no reason why it cannot be integrated and used in place of
an existing tool.

Some of the capabilities of Prism’s base tools are listed here:

¢ Roy — the interactive symbolic editor

— display and editing (including edit-in-place) of symbolic design
— display and editing (including edit-in-place) of floorplans

— graphical selection of compaction ordering

— display of mask format

— routing
e Biv — the compactor

— compaction ordering

— compaction to constraints
— worst-case compaction

— pitchmatching

— interactive, user-guided compaction
e Tom — the browser

— examine database contents
~ ASCII interface

These basic tools are referenced throughout this document, and a somewhat more
detailed description of each may be found in the appendices.

11



3 Organization Of G
3.1 Hierarchy of Designs

A circuit design is made up of cells. A cell is a description of a piece of circuitry. Cells
can be divided into two categories: leaf cells and composite cells. A leaf cell contains
a description of the.transistors, wires, and other features of an integrated circuit in a
number of different data formats. A composite cell is made up of other cells placed in a
certain pattern. It contains only cells, not actual circuit description information. This
organization suggests a graphical view of a circuit design. A graph representing a circuit
takes the form of a tree. Interior nodes of the tree are occupied by composite cells, and
the leaf nodes are occupied by leaf cells.

The tree structured view of a circuit imposes a hierarchy on the design elements where
each level of the treeis a level in the hierarchy. This hierarchy is called the design hierarchy.
It is used by many tools in the Prism system and is encoded in the data stored by G, but
it is not used by G to organize the storage of data. G does not use the design hierarchy
because it has to store many circuit designs at the same time. Many of these designs will
share parts of their design hierarchy. This sharing leads to a very complicated graph that
cannot be easily managed.

G imposes a secondary hierarchy on cells to order their storage: the naming hierarchy.
Each cell is given a name when it is created. Each use of that cell then becomes a reference
to that name. Names refer to a cell of a certain type, but each use of the cell must refer
to a unique storage location because the environment in which a cell is used can affect the
data in the cell. Therefore, each reference in a design refers to a specific instance of that
name. Each instance is a unique entity.

The naming hierarchy in G can best be viewed as a class system. The creation of a new
cell results in the creation of a new class in G. Each use of a cell creates a new instance
of that class. Instances share some data that is common to their class, but they also have
some data that is unique. For example, a leaf cell, ANDCELL, is created. ANDCELL
implements a simple two input logical and. ANDCELL is then used in two separate
composite cells, FOO and BAR. FOO and BAR contain references to unique instances of
ANDCELL. Depending on the way FOO and BAR use ANDCELL, each of these instances
may contain some different data, although they will also share some common data.

Each class in the system will also have a special instance, called the null environment
instance. The null environment instance represents an instance of a cell that is guaranteed
not to be referenced by any other instance. In other words, the null environment instance
is not contained in any composite cells at a higher level of the design hierarchy. Therefore,
no external primitives can affect the size of this instance. This instance of a cell is used
in simulation and compaction to get test data and lower bounds on circuit size.

12



3.2 Namespaces

In order for G to implement a class system that avoids undue name conflicts the concept
of namespaces is used. A namespace is a collection of named classes, providing a way for
the same name to be used to refer to different classes.

G divides class names in a hierarchical manner. At the top of the hierarchy are
packages. A packageimplements a namespace. A package may represent a certain project
or a library of standard cells. Each package has a name. In order to prevent inadvertent
or malicious modification of design data, each package has an access system that controls
read and write permissions. This system is especially important when a package represents
a library.

Within each package are the classes in that package and some package-specific infor-
mation. Package-specific information includes an indication of the technology associated
with the package, package documentation, and data necessary for managing the package
access system.

Each class represents a cell and has a name. Class-specific information and instances
are stored with the class. Class-specific information includes the type of the class (leaf,
composite, or unknown) and whether the class is public or private. Public classes may
be used by anyone and modified by anyone who has write permission to the package.
Private classes may only be used and modified by those with read or write permission to
the package. A symbolic description of the class, documentation on the class, and backup
data are also class-specific information.

Old versions of the symbolic and documentation data for a class are backup informa-
tion. When the data for a class is changed, the old data is stored in a backup location. A
type of garbage collection removes unneeded backups from the system when appropriate.

The format of some class-specific data depends on the type of the class. If the class
represents a leaf cell, the symbolic data is an actual description of the features of an
integrated circuit. If the class represents a composite cell then the symbolic data describes
the locations, connections, and names of the cells contained in it. If a class represents a
cell of unknown type then the symbolic data is merely a bounding box for the circuit that
the class will describe.

The data for each instance of the class has different formats depending on the type.
For leaf cells the formats are: a mask level description called Rez; compaction constraints,
which are imposed on the instance by its neighbors in a design; and a simulation de-
scription. If a class is a composite cell then the formats for instance-specific data are the
compaction constraints on the cell, simulation data, a list of the specific cell instances
contained in it, and the order of compaction for those subcells. (Recall that the class
itself defines the symbolic data for the cell.)

Compaction constraints are not actually stored with a class. Since they are easily
calculated and will change often, they are recalculated for every access.
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3.3 Namespace Implementation
3.3.1 Directory Structure

The Unix file system is used to store the naming hierarchy. Packages are directories.
All package-specific information is stored in files in these directories. Classes have subdi-
rectories in the package directories. The data common among all instances of a class is
stored in files in the class directory. Each instance of a class has a subdirectory in the
class directory. Instance specific information is stored in files in these directories. Backup
information is stored in a subdirectory of the class directory. In the backup directory are
subdirectories for each backup version.

A pictorial representation of this directory structure is in figure 2. Only the directories
are shown, not the files in the directories. Both leaf and composite cells have the same
directory structure but different files in their directories and different data in the files,

root

™~

packagel s packageN

/

classl v classMT

) ™

instance0*  instancel * - -instanceL backup

old1 sees oldK
*Instance0 is the null instance.
If a class is of type leaf or composite, it has this structure.

Figure 2: G Directory Structure

G also supports a generic file storage capability. The user can create packages to act
as directories and classes to act as generic data files. Generic files are accessed similarly
to cell data. A package for a generic file directory contains no subdirectories — only files.

3.3.2 IName References

The following C++ structure, called a name descriptor, is used to completely reference
data in the system:
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struct name_descriptor_s {

char *package; /* a string for the package name */
char *class: /* a string for the class name */
int version; /* an integer for the version */
setofint instance; /% a set of integers for the instances */
char fgrmat; /* a character for the format */

};

The package field is a string of characters representing the name of the package. The
class field is similar. The version is an integer identifying the version of the data that
is desired. This number must be one of the valid version numbers that G has for that
class. Version 0 is considered the most recent version. The instance is a set of integers
representing the instances that the name descriptor refers to. It is necessary to refer to
a set of instances, rather than a single one, in order to permit G to share data among
subsets of instances. Format is a character designating which of the data formats for a
class is desired. See section 3.4 Data Structure Formats for a detailed description of the
formats. The valid format characters are:

S Symbolic. In a leaf cell, symbolic refers to the description of the actual circuit. In a
composite cell it refers to the description of how the subcells are connected, where
‘they are located, and how they are oriented. If a version number other than O is
specified, G looks in the backup directory for the correct version of this format.

D Documentation. This format is a IATpXable file describing the cell. If a version
number other than 0 is specified, G looks in the backup directory for the correct
version of this format.

R Rex. Rex is only valid for leaf cells. It refers to the Rex circuit representation. An
instance must be specified for this format.

U Simulation. This format is the simulation representation of the cell. An instance
must be specified for this format.

C Constraints. This format refers to the compaction constraints on a cell.

O Ordering. In a composite cell, 6rdering refers to the compaction ordering and meth-
ods for the subcells.

N Names. This format returns all the class names in a package or all the instances of
a class.

G Generic. This format indicates that a generic file is being referenced.

I Information. This format gives statistics for a package or class. Statistics on a pack-
age include read and write permissions, time information for creation and modifica-
tion, and the technology associated with the package. Statistics for a class include
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its type, what versions are available, timestamp information, use information, and
whether it is public or private.

A facility is provided to the user to set up a path of packages to search for name
resolution. The path is initially set in the .prismrc file, but it can be subsequently changed
in the browser tool. The path is a sequence of package names that is searched in order
to locate a class name if no package name is specified. It allows tools to ignore package
names to some extent, and G uses it whenever a name descriptor is encountered with no
package name.

Name conflicts are resolved by choosing the first package in the path where the name
appears. Of course, the user can always short circuit the path search by specifying the
package name explicitly. New names are put into the first package on the path if they are
not given a specific package name.

All name references stored by G contain package names, thus removing any ambiguity
in stored name references.

3.3.3 TFile Formats

G extensively uses the Unix file system to organize its name storage. To avoid a shortage
of file descriptors, file names are remembered rather than keeping open descriptors for a
file that may be inactive after one operation.

G stores the circuit description data in files. The data in these files is grouped into a
small number of formats. These formats are based on — if not identical to — the data
structures being stored. All formats are stored in a compact linear organization suitable
for transmission over a socket.

3.4 Data Structur_e Formats

The data requirements for G are shown in figure 3. All data structures known by G are
shown in ovals, and tools are drawn as rectangles. The direction of the arrows indicates
the flow of the data and which tools can change the data. An arrow pointing into a tool
indicates that the data structure is required by the tool for proper operation. An arrow
pointing into a data structure means that the tool changes data of that form. Data is
never changed by G, itself.

The data structures have been carefully chosen in an attempt to minimize the number
and size of data formats needed while providing necessary efficiency and flexibility. Thus,
some of the formats are a middle ground, approximating the format desired by several
tools.

All data stored by G is in one of these formats. The general file format for unstructured
data accommodates temporary and other files for tools. Translators should be provided
for conversion to and from common external formats, for example, CIF, EDIF, Magic, and
Caesar. The tool specifies (via the format field of the name descriptor) the type of data

structure it desires from, or is sending to, G (see section 3.3 Namespace Implementation
above).
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Note that the G technology information data structures are not shown in the figure.
Portions of the technology information are required by every tool shown in the figure.
Also, note that the external world cloud includes both data structures and tools.

All data structures are stored in a machine-readable format; that is, no data is con-
verted to ASCII unless explicitly required. So G can transfer extremely quickly from the
data base directly to the appropriate socket. The tool can read directly from the socket
into its data structures. Some conversion may be necessary in tools running on machines
with different word formats. Any further translation to a form desired by the specific tool
is the responsibility of the tool (see section 4 Tools).

3.4.1 Symbolic Data Structure

ASCII symbolic chip designs are basically expressed by ABCD.5 The symbolic data struc-
ture used by G is essentially a compiled form of ABCD. (Clearly, one of the translators
mentioned above is an ABCD translator.) This structure is powerful enough to express
the hierarchical connectivity of the chip, which is basically the floorplan, as well as the
specific devices composing a leaf cell. The data structure consists of a set (that is, an
unordered list) of symbolic objects. Each object contains a type and some type-specific
information.

In the implementation, the data structure set is given to the tool as a linked list
of structures, each of which has the type field first, followed by an arbitrary structure
that is type-specific. The types and their associated information are given below. New
components, which are not supported by ABCD, are shown in italics.

instance cellname, reps, direction, orientation, corner, connect
device location, orient, type, W/L, dnet/gnet/snet, bboz
wire - . point-list, layer, width, net

pin location, layer, net (signal name)

contact location, type, net, orientation

label box:[location, size], text

resistor location, resistance, net

capacitor location, type, net

3.4.2 Mask and Compaction Data Structures

One data structure is used to represent arbitrary mask objects before and after compaction,
This data structure is called Rex. Conceptually, Rex has three parts:

1. grid: the position, in microns, of each horizontal and vertical grid line, relative to
the origin of the local universe;

SABCD is A Better Circuit Deascription language, developed for the VIVID system at the Microelec-
tronics Center of North Carolina and Duke University. Version 2.0 of ABCD is the basis for both the
ASCII symbolic and data structure symbolic used in Prism.
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2. virtual mask rectangles (VMRs): the set of occupied mask grid points and for each
grid point a linked list of rectangles at that grid point — each rectangle has a
bounding box, a layer, and an indication for each side telling if the rectangle stops
at that point or stretches to another grid point;

3. offsets: the (z,y) distance of each rectangle from its associated grid line — originally
zero for every rectangle.

In detail, the Rex data structure is not split as cleanly as the conceptual model. The
structure itself contains the following information: the distance, from the origin, of the z
and y grid lines and the VMRs. The 2 and y grid distances are changed by the compactor.

struct rex_s {

int #x_grid_dist; /% dist of horz grid lines from origin */

int *y_grid_dist; /* dist of vert grid lines from origin */

struct vmr_s **r_vmr; /* virtual mask rectangles */
} *rex;

The VMR structure describes a grid point, and the offset information depicted in
the conceptual Rex structure is actually found here. For each grid point, there is a list of
rectangles — so abstractly the VMR structure is a two-dimensional array of pointers, each
point pointing to a list of rectangles found at that grid point. Each rectangle must have
a bounding box, a layer, a net-list node, and an offset from the grid point. If a rectangle
stretches to another grid point, the bounding box value in that direction is infinity. For
example, if the rectangle is a horizontal wire, both the min = and max z could be infinity.
Initially, the offset value for each rectangle is zero for both the z and y directions. The
compactor may change those values.

struct vmr_s {

int v_x_posit, v_y_posit; /* the grid point */
struct rect_s { /* list of rects at this pt */
struct bbox_s { /* bounding box of one rect */

int 11_x, 11_y;
int ur_x, ur_y;

} rbox;
int r_layer; /* layer of this rect */
int r_node: /* elec node of this rect */

int r_x_offset, r_y_offset; /* rect’s offset from grid pt */
} *v_rects:

};
Any other mask format can be easily converted to a Rex data structure that has

a single grid point at (0,0) from which all rectangles are offset. Symbolic layout can
be converted by expanding each primitive into a set of VMRs with zero offset from the
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primitive’s original gridpoint. The distances between grid lines are initially based on a
worst-case design rule. This Rex is passed to the compactor, which may change offsets,
move grid lines, or even merge or delete rectangles.

Rex is used by tools such as Biv, Roy (for display), mask translators (in to and out of
the system), plotters, and simulators.

3.4.3 Compaction Ordering Data Structure

The compaction ordering (see appendix C.8 Compaction Ordering for a description) is a
list of cell instances in the order that they should be compacted, along with a method
of compaction. Instances may be grouped for identical compaction; so the list is an
ordered set of pairs (method, instance-set). The compaction method may be compact-
to-constraints, pitchmatch, or worst-case-environment. The list is stored as a linked list.
Similarly, the instance-sets are also stored as linked lists.

struct comporder_s {
comp_method_t co_method; /* compaction method */
struct name_descriptor_s *co_instances; /* instance set */
} *comp_order;

3.4.4 Compaction Constraints

One type of compaction is compaction to constraints. In compaction to constraints, there
is an ordering — either explicit or implicit. Consider the example of cell FOO. Cells
compacted previous to FOO (preceding it in the order) can affect its compaction, and
FOO can affect cells that follow it in the order.

The compaction algorithm is as follows. When it is time to compact FOO, examine
previously compacted neighboring cells, noting the positions of all objects on the boundary
of those cells. These objects will include any pins that FOO connects to and features such
as transistors and wire endpoints. The objects constrain the positions of the corresponding
pins and features in FOO. Additionally, the bounding box of FOO, specified by the mask-
level floorplan (essentially, whatever hole its neighbors leave it), may be constrained to
some amount. Thus, the constraints are a bounding box and an ordered set for each side
of the cell. Each constraint in this set is a triple:

struct constraint_s {

int grid_line; /# virtual grid line */
int offset; /* required offset from origin of side */
char obj_type; /* object type */

};

Since the constraints are relatively easy to compute from the Rex for a cell, it seems
unnecessary to store them. However, it also seems inefficient to send all of the Rex for all
of the neighbors to the leaf cell compactor simply to obtain the constraints. Thus, G has
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access to a local tool that finds the constraints for a cell, which may then be sent to the
compactor.

3.5 Avoiding Concurrency Problems

Because each designer has a G server, but all designers work on the same data, there is
always the possibility of concurrency problems. That is, two users may be manipulating
the same data at the same time. G has taken the philosophy that concurrency problems
indicate larger human interaction troubles. G uses appropriate levels of warnings, leaving
final problem resolution to humans.

When data is needed by a tool, G marks the data as taken by the tool for read or for
read-write. If another tool then requires the same data, G informs this second tool, at
the time of the read, that someone else has the data. If the first tool then tries to write
the data back, G warns that other tools have the data, also. There are three development
modes of operation:

raw development mode: never inform any user that some previous changes may
be lost;

write-protection development mode: inform the user only if someone else has
written the data since it was read by this user;

production development mode: always inform the user, whether reading or writ-
ing, if any other user has read or written the cell.

Compaction concurrency problems are handled slightly differently. See appendix C.5
Possible Problems with Compaction Algorithm.

3.6 G Commands-

All interaction with G is through sockets, using a very simple protocol. As G is a server,
commands are sent from the tool to G, and G responds. This simple protocol justifies the
use of a single-stream (half-duplex) socket. (How the system works on top of the sockets
is discussed in section 2 Prism — A View From The Top.)

Thus a command sent to G consists of a packet, which is constructed and sent as a C
structure. Nearly all operations can be expressed as getting or putting a particular name
in a particular format, so there are relatively few packet structures. The commands are
listed below.
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G_login

The user name and password of the user are sent to G, and G uses this information
to check permissions on all packages that are accessed. Also, information is sent
regarding the service priority that this tool has with G. Note that the strings have
to be sent over the socket in a special manner.

struct login packets {

G_command_t command; /% code for the command */
char *username; /* user name */
char *password; /* password */
int priority; /* priority */
}:
G_logout

Logout is for terminating a connection to G, specifying that the tool is shutting
down.

struct logout_packet.s {
G_command_t command; /¥ code for the command */

G check_out

G marks the indicated name as being used by the tool and user submitting the
command. This marking must be done before a tool may G_put the data associated
with a name, and should be done as soon as the tool thinks it may be modifying
the data. The access code describes the intentions. The previous value of the code
is returned by G. When the tool is done with an object, the tool should check it
back in by specifying access code zero.

struct checkout_packet.s {

G_command_t command; /% code for the command */
struct name descriptor.s name; /% name to checkout */
int access_code; /* intended access type %/

};
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G_get

The name specifies the object to be obtained, with the format field specifying ex-
actly which data associated with that object is to be returned. Note that some
formats may apply only to the fully-specified (instance) name (for example, Rex),
whereas others may apply to several levels of the naming hierarchy (for example,
“information” or “names”). Consider: if a package is specified with format “in-
formation”, and all other fields are null, then information at the package level will
be returned. The details of names and namespaces are discussed in sections $.2
Namespaces and 3.3 Namespace Implementation.

struct get_packet.s {
G_command_t command; /* code for the command #*/
struct name _descriptor_s name; /* name to get */

}i

G_put

This command is the opposite of G_get. The name must previously have been
checked out in this format. Certain formats cause G to perform other actions, such
as copying the existing data to a backup version (for symbolic and documentation
data) or invalidating the Rex (when putting symbolic data).

struct put_packet_s {

G_command t command; /* code for the command */
struct name_descriptor_s name; /* name to put */
long size; /* size of data */

}:

Other commands may be necessary. For example, the delete function provided by
Mini-G (see section 8.7 The Tool’s Interface to G — Mini-G) may need its own packet
type as it does not fit directly with any of the above. Commands from the Prism shell to
G may also have to be added (for example, to terminate G). The implementation may also
choose to merge the above structures into one or two common forms to avoid proliferation
of structures.

The requests are handled by G in a multiphase protocol. On receiving a G_get com-
mand, G examines the request for validity. A packet is sent back to the tool containing
either an error indication or giving the size of the data to be transferred. When the tool
is ready to receive the data it sends an acknowledgement to G. Only once G receives the
acknowledgement does it send the data.

When G receives a G_put command, the request only contains the size of the data
to be sent. If G determines that the request is valid, it sends an acknowledgement to
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the requesting tool, which then sends the data. This scheme allows G to allocate an
appropriately large input buffer. It may send a message asking the tool to try again later
if it is short of memory.

The other three commands, G_login, G_logout and G_check_out, have a simple re-
sponse packet from G.

The goal is to prevent G from blocking on reads and writes to the sockets. Tools may
block as necessary, but G must not block since it needs to service several tools simultane-
ously. Therefore, G maintains some state about each socket to which it is connected and
continuously cycles between them, servicing each as input or output becomes possible.
The state necessary for each tool includes a state code (idle, waiting for acknowledge-
ment, receiving data, sending data), the current request packet, and the current input or
output buffer with a pointer indicating the current position. If the socket is non-blocking,

arbitrarily small portions of the data may be read or written with each call, slowly filling
or emptying the buffer.

3.7 The Tool’s Interface to G — Mini-G

At the tool end of a socket connected to G is a layer of interface procedures collectively
called Mini-G. Mini-G provides a procedural interface that gives the illusion that the tool
has its own local database, hiding the sockets and interprocess communication. Mini-G
generally maps from a procedure call to one of the G socket commands mentioned in the
previous section. Note that the G command name is usually redundant with the format
field of the name descriptor. The format field given in these instances is ignored, as Mini-G
supplies the appropriate format from the context.

It is intended that Mini-G be rather small and simple, providing a flexible, fully pow-
erful, unassuming interface to G. Further tool-specific enhancements such as data caching,
translation, and even semantic changes to the procedural interface are left to the adaptor
level of the tool (see section 4.1 Adaptors).

The needed Mini-G procedures are listed here. The procedures that get information
allocate the necessary space for that information, returning a pointer to the information.
Note that most procedures return an error indication. Detailed information regarding the
error can be obtained with the routine g_get_error().

int

g-init (machname, listens)
char *mach_name;
int listens;
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Given the address of the G to connect to, specified by a machine name and a
socket to listen on, this command initializes the socket interface. The address
information is provided to the tool by Prism at startup. This routine returns a 1
if initialization was correctly completed and a O if not.

int b

g-login (user, password, priority)
char *user;
char #*password;

int priority;
Identify the user to G. This routine corresponds directl-y to the G_login command

packet to G. The priority is used to specify the level of service that should be
provided. For example, the compactor may receive lower priority than the editor.

struct symbolic.s ¥
g-get_symb (name)
struct name descriptor_s *name;

Obtain the symbolic data for the given cell, and return a pointer to it. Return
NULL if unsuccessful.

int

g-put_symb (name, -sp)
struct name._descriptor_s *name;
struct symbolic_s *sp;

Write the symbolic data for the cell, pointed to by sp and named by name. The
function returns a 1 if successful and a 0 otherwise.

struct rexs *
g-get_rex (name)
struct name descriptor_s *name;

Obtain the Rex form of the given cell, and return a pointer to it. Return NULL if
unsuccessful.
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int

g-put_rex (name, rp)
struct name_descriptor_s *name;
struct rex_s *rp;

Write the Rex data for the given cell, pointed to by rp. The function returns a 1
if successful and a 0 otherwise.

FILE *
g-get_doc (doc_name)
char *doc_mame;

Get the documentation for a cell. The function returns a descriptor for a file that
can be read and written like any normal file. When finished, write the documen-
tation back using g_put_doc, or simply close the file if no changes are desired in
the stored documentation. The file is copied to a local temporary file, opened, and

unlinked. So the file “disappears” when it is closed. Returns a NULL pointer on
error.

int

g-put_doc (doc_name, £p)
char *doc_name;
FILE *fp;

Write back the documentation for a cell. The function returns a 1 if it 18 successful
and a O otherwise. Essentially this routine copies the file back to G. The file is
closed on return.’

FILE *

g-get file (package name, file_name)
char *package name;
char *file name;

Get an arbitrary file from the “generic” file space of the specified package. That is,
copy the file stored by G (with no interpretation placed on its format or purpose)
to the local file system, and return a file descriptor for it. When finished, the tool
should use g_put_file to restore the file, or simply close the file if no changes are
desired in it. The implementation is similar to that for documentation files. A
NULL pointer is returned on error.
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int
g-put file (package.name, file name, fp)
char *package._name;
char *file name;
" FILE #*fp;

Store a file from the local file system in the “generic” file storage area of the
given package for later retrieval by the name file_name. The remote file will be
overwritten if it exists and created if it does not. Closing the local file is up to
the caller. The file need not be one that has been obtained from G. The function
returns 1 if successful, 0 if not.

int

g-get_stats (name, stat)
struct name_descriptor_s *name;
struct status_s *stat;

Get status information about a cell. The routine takes a cell name and returns in-
formation on, for example, bounding box, timestamp, compaction status, memory

\ space needed, access permission (such as read only), and concurrency information
(such as “Thomas Lengauer has read this cell”). The actual information returned
depends on the format specified in the name descriptor. Returns 1 on success, 0
on error.

struct xcXs *
g-get_otissooxx (tech, ...)
char *tech;

Get some piece of Otis data for a given technology. Other arguments might be ap-
propriate for some pieces. If xxxx is 11sp_1list, the routine returns the technology
information in the form of a standard Lisp list, with no data structure conversion.
New tools, which have their own data formats, can use this routine and translate
any data themselves. See section 8.8 Introduction to G Technology Information
System — Otis for further details on the Otis data formats and procedures.

char **

g-get_dir (name, options)
struct name_descriptor_s *name;
int optiomns;
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The function returns an array of names that are children of the given name in the
namespace tree. For example, given a project, it would list all of the cell names.
Given nothing, it lists all the projects. The options can be used to limit the number
of versions listed, et cetera. Returns NULL pointer on error.

struct compact.s *
g-get_compact_order (name)
struct name descriptor_s *name;

Obtain the compaction ordering for the named cell, and return a pointer to the
information. Return a NULL pointer on error.

int

g-put_compact_order (name, cp)
struct name descriptor._s *name;
struct compact_s *cp;

Rewrite the compaction ordering for the named cell. Return 1 on success, 0 on
error.

struct constraint.s *
g-get_constraints (name)
struct name _descriptor_s *name;

Have G calculate the compaction constraints for the named cell and return a
pointer to the information. Returns a NULL pointer on error.

int

g-put_constraints (name, cp)
struct name_descriptor_s #*name;
struct constraint_s *cp;

Send the computed compaction constraints to G. This routine is used only by the
compaction constraint calculator, and it returns 1 on success, 0 on error.

int

gcheck out_cell (name, access_code)
struct name. descriptor_s *name;
int access_code;
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Tell G how the cell will be used. At some point the cell may be thrown away,
modified, compacted, et cetera. This function tells G about this event, and G can
accurately tell other users what is being done to it. The cell must be checked out
before any information can be put back. The name structure provides the specific
format to check out. The access code defines the intended uses. The code given
will override any previous access code specified by the same user. So checking the
cell out later with stronger or weaker access codes upgrades or downgrades the
current check out on the cell by a given user. The old value of the access code is
returned or 0 on error.

int
g-delete_cell (name)
struct name descriptor_s *name;

Delete the data for the cell with the given name, the format defining the data to
be deleted. Return 1 on success. 0 on error.

char *%
g-get.path ()

Return the current set of package names through which G will search for a name
that does not specify a package. Return NULL on error.

int .
g-set_path (path)
char #*#*path;

Provide the current set of package names through which G will search for a name
" that does not specify a package. Return 1 on success, 0 on error.

int
g-freexocox (cp)
struct xooxx.s *cp;
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Free some data structure that had been previously allocated and returned by the
Mini-G routines. Routines that are provided are:

gfree_symb
gfree_rex
g-free_otis

g-free dir
gfree_compact_order
g-free constraints

struct g_error s *
g-get_error ()

Return a pointer to a static structure that contains information regarding the
reason behind the failure of one of the Mini-G routines. The information pertaining

to a failure in one routine is available until the next call of one of the Mini-G
routines.

3.8 Introduction to G Technology Information System — Otis

The Technology Information System, Otis, is the part of G that allows access to various
technology dependent parameters. The main goal in the design of Otis is to make G
independent of the technology being used. Otis subsumes the functions of the MTF® in
the VIVID system. The heart of Otis is a Lisp interpreter that is an interface to the Otis

database. The technology dependent information, referred to as the Otis database, is in
the form of Lisp functions.

3.8.1 Why Lisp?

The MTF system for VIVID is in the form of dynamically loaded C code. Dynamically
loaded code is unacceptable because it presents portability problems and wastes space,
and it is quite inflexible without a complete linker/loader in subroutine form. However,
not all the data in the Otis database can be stored as simple tables, and therefore, there
must be some way to write functions to provide technology information.

The Otis database is in the form of Lisp functions, which are interpreted. This ap-
proach has several advantages:

1. the database allows technology information to be in the form of functions,

2. the database does not need to recompiled whenever it is changed, and

SMTF is the Master Technology File system, developed for the VIVID system at the Microelectronics
Center of North Carolina.
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3. most designers are more comfortable with Lisp, which is similar to EDIF, than with
something like C.

A subset of a form of Lisp that is very common, such as Franz Lisp, allows the user
access to a well documented language. It is preferable for the sake of portability and ease
of interface to Prism that the interpreter be written in C or C++.

3.8.2 Interface to Lisp Interpreter

The interface from G to the Lisp interpreter is a very simple function call of the form:
ret_list = otis_get(func_name, param_list);

where func name is the name of the function in the Otis database that is being called,
and param.list and ret_list are pointers to the standard Lisp data structure. After
G has made this function call, it processes the information from Otis and packs it into a
new data structure. This data structure varies depending on the type of data being sent,
but it is a structure that is suitable for transmission over sockets. After building. this new
data structure, G then sends the information over the socket to Mini-G.

Functions in the Otis database return their data as a list of lists. Essentially everything
is in the form of a list of numbers. However, there is a library of Lisp functions that
enable a designer to write a new Otis database. This library includes functions that
return a properly formatted list of numbers for drawing a rectangle or other polygon. The
designer is insulated with functions as much as possible from the fact that integers are
really underneath the data returned.

Although a designer can write a new database with little trouble — perhaps for a
new technology — the technology information must be extendible. That is, because
the required technology information will certainly change, the requirements for the Otis
database will also. The structure of the database encourages such growth, and any new
information is returned as a Lisp list. Any tool requesting the new information must,
however, provide translation routines from the list structure to whatever form the data
should be.

3.8.3 Division of Data and Interface to Otis

There are two types of access to Otis: requests for sets of numbers (such as design rules)
and function calls (such as how to draw a transistor). In the interests of efficiency, the
data in the database that is not function calls is divided into several categories, and when
requests are made to Otis, entire categories are shipped. These categories are listed below
with the corresponding MTF file in parentheses.

1. Technology data needed by most tools

(a) declaration of layers (layer.dec.mtf)

(b) declaration of synonyms for layers and transistors (layer_dec.mtf)
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(c) layers conflicts (ats.mtf)
(d) declaration of contacts — names and types (ats.mtf)

(e) declaration of transistor information (ats.mtf)
2. Technology data related to Biv and similar tools (such as a router)

(a) design rules (cmpctr.mtf)
(b) anti-feature information (cmpctr.mtf)
(c) resistance and capacitance information (abstract.mtf)

(d) router information, such as routing layers and which, if any, to minimize (gen-
eral.mtf)

(¢) name and type of process (general.mtf)

(f) virtual grid spacing and mask size (general.mtf)
3. Technology data related to Roy and other graphics tools

(a) color maps (cmaps.mtf)

(b) stipple patterns (stipples.mtf)

(c) write masks, fill styles, and line styles (layer_def.mtf)
(d) colors for layers (layer_def.mtf)

(¢) declaration of graphics layers (layer_dec.mtf )

4. Simulator information
(a) model related information (model.mtf)

When a tool makes a request for a particular piece of data, its Mini-G actually receives
everything in that category, and Mini-G passes the data to the Adaptor, which caches the
data if it wants to.

Function calls, although they logically fit into disparate categories, make a category of
their own. Each function, however, is left as a separate call to Otis since the calls cannot
be grouped.

5. Functions

(a) functions for translation of symbolic to VMR (ptrans.mtf)
(b) functions for drawing symbolic transistors (sraph.mtf)
(c) virtual shape routines (virtual.mtf)

(d) miscellaneous functions, such as those asking for the length of gate or the area
of diffusion (abstract.mtf)

Some of the functional information can be put into tables, but in each case the in-
formation required is at least complex enough to require a functional search through a
table.
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3.8.4 Caching Information

Access to the Otis database is slow because everything needs to be interpreted. Interpre-
tation is not a problem for the data that is in categories because a tool will normally only
need to request it once and will cache it for its own use. However, the parts of the Otis
database that are functions could be accessed over and over again from a tool like Roy.

These functions deal mainly with translating data in symbolic form to another form,
and one of the most important factors is the number of different kinds of transistors in
the chip design. A quick survey of symbolic designs at MCNC reveals that only a small
number of (well under 50) types of transistors exist in a particular design. Therefore, a
tool that needs to access a function in the Otis database many times would cache each
request and answer so that it only needs to ask a particular question once.
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4 Tools

4.1 Adaptors
4.1.1 Description of an Adaptor

There are many tools associated with the Prism system, performing many different tasks.
Some of these tools"have been central to the design of Prism and G and are built to
be explicitly compatible with G. However, to provide an open architecture, to which
other tools may be added relatively easily, G has been designed very carefully to provide
maximum flexibility without compromising efficiency. By removing higher-level functions,
such as caching and translation, from Mini-G, Mini-G can stay simple and standard across
all tools. :

The tools interact with G through a layer of subroutines, the lowest level being Mini-G,
which insulates the tool from any direct knowledge of the the socket-based interface. Mini-
G is meant to be a rather small, unassuming, flexible interface to G. The Prism-specific
tools will find Mini-G too simple for their uses. The data may not be in the structure
that they prefer, or they may find it more efficient to cache various types of information.
External tools will have high-level routines that manipulate their data communication
with the outside world in a form that they have defined (say, Caesar). Thus, a second
layer, that is tool-specific, provides a buffer between the standardized Mini-G routines

and the tool’s preferred interface to the world. This layer adapts the tool to the G /Prism
environment. See figure 4.

Prism
o application
Adaptor
Mini-G|
G

Figure 4: Use of an Adaptor

Note, in the figure, the communication flow between Prism and the tool and between
G and the tool. All data communication travels through Mini-G and then through the
(possibly non-existent) Adaptor. The dashed line between Prism and the application is
only for process creation and termination.
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The Adaptor is tool-specific, but certain commonly used functions may be useful to
keep in an Adaptor Library, which can be used by several tools. The Adaptor Library
will be most useful in the home-grown tools, though it is easy to envision data translators
(for example, to and from EDIF) that would help outside tools interface with G. For
example, the Browser would have reason to use an ABCD+symbolic translator (and
possibly a CIF+Rex translator). The editor, Roy, would like symbolic or Rex cell caching
and translation to two-dimensional data structures. The compactor, Biv, needs to cache
constraint information. Some of these routines may be useful to other tools and, if designed
carefully, could be kept in the Adaptor library for all to use.

4.1.2 Associative Memory

As previously mentioned, caching and data translation are kept out of Mini-G. The Adap-
tor for a tool provides the interface to Mini-G, and as such, must translate the data, but
the Adaptor also can supply some associative memory, where associative memory is dif-
ferentiated from caching by virtue of less functionality. Full caching is the responsibility
of the tool, itself.

The access and translation routines are built on top of the associative memory routines
in the Adaptor. For example, when the tool calls a data access routine to get some symbolic
data, the routine works as follows:

struct symbolic_s *

adaptor_get_symb (name, access_method, cache, xlate)
struct name_descriptor_s *name;
int access_method;
struct symbolic_s *cache(), *xlate();

{ .
struct symbolic_s *symb_data;
struct raw_symbolic_s *raw_symb_data;
symb_data = (*cache) (GET, name, access_method);
if (cache routine fails because data is not in table) {
symb_raw_data = g_get_symb(name, access_method);
(*¥xlate) (symb_raw_data, symb_data);
(*cache) (ENTER, name, sizeof(symb_data), symb_data) ;
}
return(symb_data);
}

Note that the cache and translation routines are assigned by the tools. Adaptor_get_-
symb takes the name of the symbolic data, how it will be accessed (for example, read,
read-write, or append), and the two needed routines. If the data is in the cache, it is
returned. If not, the Mini-G g_get_symb routine returns the raw form of the data, which
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must then be translated and put in the cache. The translation and cache routines may be
effectively null and do nothing.
The comparable put routine is much simpler:

adaptor_put_symb (name, symb_data, xlate_inverse)
struct name_descriptor_s *name;
struct symbolic_s *symb_data, *xlate_inverse();

{
struct raw_symbolic_s *raw_symb_data;
(*xlate_inverse) (symb_data, raw_symb_data);
g-put_symb(name, raw_symb_data);

}

Again, the xlate_inverse may be a null routine if the tool is willing to use the
symbolic data in the form used by G.

Finally, note that an adaptor may be as sophisticated as necessary for a tool, or it may
not even exist. If there was no adaptor, the tool would call the Mini-G routines directly,
and its interface to G, therefore, would be very primitive.
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Appendices
A Glossary

ABCD. A Better Circuit Description language. Developed at the Microelectronics
Center of North Carolina and Duke University as an ASCII description of sym-
bolic layout.

Biv. The compactor for Prism. See section 3. Data Structure Formats and appendix
C The Compactor — Biv.

browser. A tool, incorporated into Prism, for seeing the hierarchy of a chip and for
providing an ASCII interface to cell data. The browser is called Tom.

- CAzM. A circuit-level simulator developed at AT&T Bell Laboratories and the Mi-
croelectronics Center of North Carolina.

Caesar. A mask-level circuit editor. The name of the language used by this tool is
also called Caesar.

CIF. CalTech Intermediate Format. A language for describing mask-level circuits.

Curious George. A cute little monkey, who always gets into mischief and is looked
after by The Man In The Yellow Hat.

EDIF. Electronic Design Interchange Format. A standardized language for describing
circuits in mask, symbolic, nets, and other forms.

FACTS. A timing-level simulator developed at the Microelectronics Center of North
Carolina.

G. The database server of Prism. See section & Organization Of G.

Magic. A mask-level circuit editor developed at U. C. at Berkeley. The name of the
language used by this tool is also called Magic.

MTF. The Master Technology File system of VIVID and ancestor of Otis. See section
3.8 Introduction to G Technology Information System.

Otis. The technology environment of G, developed from the Master Technology File
(MTF) system of VIVID. See section 2.8 Introduction to G Technology Informa-
tion System.

Prism. The second generation, symbolic layout system, derived from VIVID, with
major components Roy, G, Biv, and Tom.

Rex. The data structure used by the compactor in Prism. See section 3.4.2 Mask
and Compaction Data Structures.

RNL. A switch-level simulator with a Lisp interpretor that we just might steal.

Roy. The interactive, graphical editor for Prism, which edits leaf cells and floorplans
with mixed mask and symbolic cells. See section 3.{.1 Symbolic Data Structure
and appendix B The Interactive Editor — Roy.
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Spice. A circuit-level simulator developed at U. C. at Berkeley.
Tom. The browser for Prism. See appendix D The G Browser — Tom.
VIVID. Product of the Microelectronic Center of North Carolina for symbolic layout.

VMR. Virtual mask rectangle. Part of the Rex data structure for the compactor,
Biv. See section 3.4.2 Mask and Compaction Data Structures.
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B The Interactive Editor — Roy

B.1 Improving on ICE

Roy is an interactive, symbolic editor provided with the Prism system. It is not a mask-
level editor; Magic is expected to provide that function. Roy is based on the ICE editor
from VIVID but will incorporate many enhancements.

One enhancement is the ability to display cells in both symbolic and Rex formats,
allowing cells that were generated outside of the editor, and have no symbolic description,
to be displayed. Roy has two display modes. The first displays all cells in symbolic format.
Any cells that do not have symbolic data are shown as bounding boxes. The other mode
displays all cells in Rex format. All cells have a Rex format. If a mask-level cell is brought
into the system, a translator converts its data into Rex so it can be fit into the design,
and if a cell is designed in Prism, its Rex is the result of a compaction. If, during a Rex
display, Roy finds a symbolic cell with no corresponding Rex, that cell is shown as just a
bounding box.

Another enhancement over ICE is the use of a more efficient two-dimensional data
structure to store circuit primitives during editing. The data structure is a small, fixed
size array combined with linked lists. The array defines a window on the circuit that is
being edited. This window covers the area that the user is currently working on. When
the user moves the editing area, this window follows. The array holds pointers to the
linked lists, and they hold all the circuit primitives that are currently contained in that
window.

The purpose of the data structure is to speed up the editing operations of inserting
and deleting primitives without using much memory space. The array provides constant
time access to points in the window, and access to primitives is linear. Although a linear
search for a primitive seems long, experimentation has shown that each point in the user’s
window contains an average of only one and a half primitives. The array is big enough to
hold most leaf cells entirely inside of it.

B.2 Interactions with the Compactor

Since Roy is already an interactive graphical editor, there is one graphical responsibility
of the compactor that is logical to incorporate into it. \Since compaction is incremental
and guided by the user, the user must be able to indicate the order in which cells should
be compacted. This order can be clicked out of the floorplan in Roy. The ASCII version
of the ordering file can be directly manipulated by Biv. See appendix C.3 Compaction
Ordering.
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C The Compactor — Biv

C.1 Introduction

Biv is viewed by the rest of the system as a compaction controller. Biv is designed as such
so that different compactors can be connected to it. This way, integration into the rest of
the system will not be necessary. A compactor only has to talk to Biv. The compaction
engine that is initially integrated into Biv is the current leaf cell compactor from VIVID,
Biv is responsible for coordinating the use of the compaction engine in different methods
of compaction.

The job of Biv is to take unmodified Rex data structures in , process them in some way,
and return compacted Rex data structures. An incremental approach to compaction is
used, as the goal is to compact the minimum number of cells at one time. Biv has its own
window, through which it communicates with the user. The designer uses this window to

indicate what to compact, and Biv uses this window to communicate problems arising in
compaction to the designer.

C.2 Compaction to Constraints

Compaction is constraint-based. The compactor from which Biv is derived does only
worst-case environment compaction, meaning that if a cell is to be compacted, all the
instances of that cell are viewed and all the design rule interactions with neighbors are
considered for a compaction environment. The advantage is that time is saved since there
are fewer compactions to do, but a price is paid in layout size.

Constraint-based compaction uses the environment of only one or possibly few in-
stances of a cell for the compaction. The constraints are easily generated from exami-
nation of neighboring cells. Constraints include pin positions, cell corners (virtual pins),
design rules, and worst-case environment. They can also be width or height, but these
can be simulated by using corners. Other possible forms of constraints are for primitives
to be equal size or equal distance from some object.

Constraints are easily calculated in the following manner:

for (every abutting mask-level cell) {
Examine pertinent side.
for (every non-empty grid point) {
Generate an absolute position for that constraint.

}
}

C.3 Compaction Ordering

The compaction process is incremental to avoid compacting an entire chip every time a
small change is made in the design. The goal is to do as little compaction as possible,
while ensuring that everything is compacted that is affected by a design change. The
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incremental compaction process is user-guided meaning that the user can interactively
specify the order in which cells will be compacted and the method that will be used to
compact these cells. The order can be specified in Biv or it can be clicked out on the
floorplan while in the editor (see appendix B.2 Interactions with the Compactor).

The compaction process should be deterministic. Deterministic compaction means that
if a user has interactively specified an ordering that results in a certain compaction, Biv
should be able to store that ordering and regenerate the same compaction from scratch —
without user intervention. A linear ordering of the cells is the most appropriate ordering
for compaction. In this ordering, which has been described in section $.4.8 Compaction
Ordering Data Structure, the method of compaction that was used to compact a cell is also
specified. This ordering must be a complete transcript of how a compaction completed.
For example, if a cell is compacted and then much later it is pitchmatched to some other
cells, the ordering must reflect the fact that the cell was compacted at a certain position
in the order, and then later pitchmatched at another position.

The selection of a compaction ordering is rule based. Initially the rule provider is the
user. Biv provides an interface for the user to specify this ordering. The interface also
allows the method of compaction to be specified. Currently three methods are identified:

1. compaction to constraints,
2. pitchmatching, and
3. compaction to worst-case environment.

The user can easily specify large groups of cells to be compacted to worst-case environ-
ment. By using this worst-case scheme, the user can actually choose the environments of
particular instances of a cell for a compaction, and other environments can be chosen for
another compaction. In this manner, the user can specify the “badness” of the worst-case
environment compaction.

Biv provides as much guidance as possible to the user. For example, if the user
requests that cell FOO be pitchmatched to cell BAR and this would result in many
other cells needing to be pitchmatched, Biv would inform the user. After there is a better
understanding of how to specify a good compaction ordering, an expert, rule-based system
to generate the compaction ordering can be built.

C.4 Compaction Controller Algorithm

Presented here is the basic algorithm that Biv uses to guide compaction. This algorithm
allows the user to make three types of requests:

1. Compact cell FOO, and recompact anything that cell FOO affects in the ordering.

2. Compact cell FOO (and a limited number of cells following cell FOO in the ordering),
and flag everything in the ordering after it as needing to be checked for recompaction.

43



-

3.

Compact cell FOO to the null environment, meaning that the environment consists

only of cell FOO (it may be a composite cell), and do not recompact or flag anything
else.

Note that these three possibilities do not take into account constraints or pitchmatch-
ing. This list simply illustrates how the compaction itself can be employed.

When using method three above, the ordering consists only of cells in subtrees where
FOO is the root. The storage of the newly compacted data is handled by G, and it

is discussed in section 8.8 Namespace Implementation. The Biv compaction guidance
algorithm follows.

1.
2.
3.

8.

Biv receives a request to compact cell FOO. (The type of request does not matter.)
If there is not already an ordering from G, request it.

Starting at the beginning of the ordering, look for the first cell that has been flagged.
A cell is flagged for one of two reasons: either its symbolic has been changed and it
has not been compacted since then, or it was flagged during an earlier compaction.
Go to the next step, starting with the first flagged cell. Since the cells are being
compacted in order, it is guaranteed that we can regenerate this compaction later.

The user has the option to skip this step, simply compacting all cells in the order
starting with FOO.

Request that G generate the constraints on this cell, and check to see if the current
compacted version of this cell meets those constraints. If it does, unflag the cell and
go step 9 of the algorithm; otherwise continue.

Only perform this step if cells following the current cell in the order have not been
flagged. Request that G generate the constraints that the current compacted version
of this cell is exerting on its neighboring cells. Check those neighboring cells, and
flag them if the new constraints no longer match to the cells.

Compact the cell according to the method specified in the ordering.
If the compaction is successful:

a. Write out the new Rex to G.
b. Unflag the cell.

c. Only perform this step if all cells following the current cell in the order have not
been flagged. Request that G generate the constraints that the new compacted
version of this cell is exerting on its neighboring cells. Check to see if these
constraints are different from those of the previous version. If they are, flag all
cells after this one in the ordering as needing to be checked. If they are the
same then do not do any flagging.

If the compaction is unsuccessful:
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a. At this point the algorithm halts, and Biv reports to the user exactly where the
compaction failed and, if possible, why it failed. The user then has several op-
tions to try to remedy the problem: 1) change the ordering of the compaction,
2) move the cells apart and attempt to route them together, 3) try pitchmatch-
ing if it has not been tried already. Biv should eventually give the user some
guidance as to which method seems appropriate.

9. Find the next cell in the ordering that has been flagged. Go to step 4 for this cell.
If no cells remain in the ordering that are flagged or none remain in the specified
range then halt.

C.5 DPossible Problems with Compaction Algorithm

This approach is obviously fairly complicated, and the question arises as to whether finding
a compaction ordering that will work will be too frustrating or impossible for the user
to find. If all the cells in a chip abut together, then yes, this task of finding an ordering
may be almost impossible. But, in normal VLSI design a large number of cells rarely
abut together. Rather small units, routed together, are the rule. This approach will
make finding a compaction ordering a reasonable task, but it points out the need for good
routing facilities in Roy.

Keep in mind the fact that the benefits being reaped from interactive compaction
process should be large enough to justify the work a designer must do to find the ordering.

The other possible problem is compaction concurrency. If two designers are working
concurrently, and each wants to compact a cell that is geographically close to the other, it
is possible that these compactions could affect each other. Also, two designers might try
to change the compaction ordering simultaneously. There are two concurrency controls:
1) relaxed mode — let both designers know that they are affecting each other’s work and
let them work it out, and 2) strict mode — only one designer may compact something
in the chip at any one time. The general concurrency problem is discussed in section 8.5
Avoiding Concurrency Problems.
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D The G Browser — Tom

A browser, Tom, is provided to allow the user to interact directly with G, thereby bypassing
any other tools. The browser allows the user to examine the namespaces and perform high
level manipulations on them. Tom interacts with the user through a window on the console
screen.

Commands are provided to get a listing of all packages in the system, all classes in
the packages, and all the versions and instances of a class. These listings are in an Is -/
type format.” For a package the listing shows the technology associated with the package,
the date of creation and last modification to the package, a list of classes in the package,
and a list of users with read or write permission to the package. For a class the listing
shows whether the class is public or private, what data formats are checked out, the date
of creation and last modification of each data format, and a listing of all the versions and
instances of that class. For each instance of a class the listing shows the date of creation
and last modification of each data format stored with the instance and what data formats
are checked out.

The user can do direct modifications on the data stored with a class or instance using
an ASCII interface. This interface implements many of the Unix commands for text files,
including a standard visual text editor. The browser translates data in G format into
ASCII, allows the user to manipulate the data, and then translates the new data back
into a G format.

With the browser, a user is be able to modify the package-name path (see section 3.9.2
Name References). The user can add and remove package names from the path.

The browser also provides a way of reinstating old versions of data as the most current
version.

"The Unix Is -l format displays information about files and directories, including file type; read, write,
and execute permissions; size; ownership; and last modification date.

46



.,

E Simulators

Chip simulation is a vital part of any design system, whether that system be mask-level,
symbolic-level, or some other. Although there is no simulator that is a basic component of
Prism (as the editor, compactor, and database server are), G supports a simulation data
structure for a switch-level simulator, which operates on symbolic layout.

There are, however, many different circuit-level, switch-level, and logic-level simulators
that could be integrated into Prism, each of which uses a different data structure form.
For this reason, a net-list extractor specific to the simulator is needed between G and the
simulator. The extractor will generate whatever form of data is required by the tool, and
it should be part of the Adaptor created for the tool. Prism will support at least FACTS,
CAzM, RNL, and SPICE.
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