
Foundations and TrendsR© in
Computer Graphics and Vision
Vol. 10, No. 2 (2014) 103–175
c© 2016 P. H. Christensen and W. Jarosz
DOI: 10.1561/0600000073

The Path to Path-Traced Movies

Per H. Christensen
Pixar Animation Studios

per@pixar.com

Wojciech Jarosz
Dartmouth College

wojciech.k.jarosz@dartmouth.edu

Contents

1 Introduction 104

2 Illumination 107
2.1 Direct and indirect illumination 107
2.2 Indirect illumination types 108

3 Path Tracing 110
3.1 Origins of path tracing 110
3.2 Simple path tracing . 111
3.3 Depth of field and motion blur 113
3.4 Path tracing in movies 114

4 Other Rendering Techniques: A Retrospective 115
4.1 Reyes . 116
4.2 Ray casting . 117
4.3 Recursive ray tracing . 117
4.4 Distribution ray tracing 118
4.5 Photon mapping . 121
4.6 Point-based global illumination 123
4.7 Preview renderers . 125

5 Advanced Path Tracing 127

ii

iii

5.1 Algorithmic improvements 127
5.2 Hardware efficiency and parallel execution 137
5.3 Beyond surfaces . 139
5.4 Flexibility . 145

6 Enabling Technology 147
6.1 Physically based rendering 147
6.2 Denoising . 148

7 Why Path Tracing and Why Now? 151

8 Extensions and Challenges 154
8.1 Bidirectional path tracing 154
8.2 Metropolis . 156
8.3 Vertex connection and merging 157

9 Discussion and Conclusion 160

Acknowledgements 162

References 163

Abstract

Path tracing is one of several techniques to render photorealistic im-
ages by simulating the physics of light propagation within a scene. The
roots of path tracing are outside of computer graphics, in the Monte
Carlo simulations developed for neutron transport. A great strength of
path tracing is that it is conceptually, mathematically, and often-times
algorithmically simple and elegant, yet it is very general. Until recently,
however, brute-force path tracing techniques were simply too noisy and
slow to be practical for movie production rendering. They therefore re-
ceived little usage outside of academia, except perhaps to generate an
occasional reference image to validate the correctness of other (faster
but less general) rendering algorithms. The last ten years have seen
a dramatic shift in this balance, and path tracing techniques are now
widely used. This shift was partially fueled by steadily increasing com-
putational power and memory, but also by significant improvements in
sampling, rendering, and denoising techniques. In this survey, we pro-
vide an overview of path tracing and highlight important milestones
in its development that have led to it becoming the preferred movie
rendering technique today.

P. H. Christensen and W. Jarosz. The Path to Path-Traced Movies. Foundations
and TrendsR© in Computer Graphics and Vision, vol. 10, no. 2, pp. 103–175, 2014.
DOI: 10.1561/0600000073.

1
Introduction

Rendering computer-generated (CG) movies is tough. There are
130,000 high-resolution frames in a 90-minute movie, with each frame
requiring computation of typically two million pixel colors (many more
for IMAX movies). This is several hundred billion pixel colors that
will be scrutinized by the movie director and by audiences worldwide.
The images are often computed with motion blur and depth of field, to
mimic these characteristic effects (limitations) of real cameras. The im-
ages must be free of visual noise—one particularly pesky type of noise
is occasional bright pixels known as “fireflies”. There can be no spatial
or temporal aliasing (affectionately known as “jaggies” and “crawlies”)
in the images. The color of each pixel depends not only on what ob-
ject is visible in that pixel (including its orientation, material, texture,
illumination, etc.), but also—through shadows and reflected light—
on objects in other parts of the scene. The surface color calculations
have to be programmable, with the computations specified in stand-
alone programs called “shaders”. Typical scenes contain huge amounts
of geometry and texture data, often straining the available memory
even on high-end computers. There are often dozens of textures spec-
ifying the material properties of each surface, and a scene can contain

104

105

Figure 1.1: Frames from the movies Toy Story (1995) and Finding Dory (2016).
(c© 1995, 2016 Pixar/Disney.)

millions of surfaces. With all the data that goes into rendering each
frame, production-strength renderers are sometimes jokingly referred
to as data management systems with images as a by-product. Ren-
dering times are crucial as well, both for quick test images during the
development of the movie, and for the final-quality frames that will
appear in movie theaters.

Figure 1.1(a) shows a frame from the first computer-generated an-
imated feature film: Pixar’s Toy Story from 1995. This movie was ren-
dered with the RenderMan renderer using the Reyes scan-line algo-
rithm [25] with shadow maps and reflection maps [4]. For many years,
the Reyes algorithm was the work-horse of most CG and visual effects
work at major studios.

The last 15 years has seen hybrid renderers combining the Reyes
algorithm for directly visible objects with ray-traced shadows and re-
flections. Soft indirect illumination has been computed with a variety
of methods, including distribution ray tracing and point-based global
illumination.

At the same time, other renderers, such as Arnold, pushed for a
complete switch to path tracing. Compared to Reyes-based hybrid ren-
derers, path tracing is a simpler and more brute-force approach. It has
its roots in a statistical sampling method called Monte Carlo, which was
first used for particle simulation in nuclear engineering. Path tracing
can render shadows and reflections in a conceptually simple recursive

106 Introduction

manner, but on the other hand it is more noisy and less memory ef-
ficient than some Reyes hybrids. Path tracing is not necessarily the
fastest method to render final movie-quality images with indirect il-
lumination, depth of field, and motion blur: for example, point-based
global illumination has no noise, and distribution ray tracing with irra-
diance gradients and radiosity caching is better able to exploit sample
domain coherency. However, path tracing’s natural ability to handle
complex light transport effects, along with its potential to simplify the
production pipeline, reduce iteration time during layout and lighting,
and improve overall workflow, are enticing advantages.

Figure 1.1(b) shows a frame from the recent movie Finding Dory.
Here all the direct visibility, shadows, reflections, refractions, indi-
rect diffuse illumination, and subsurface scattering are computed with
RenderMan’s implementation of path tracing.

Even though the algorithmic developments for the switch to path
tracing have been under way for quite some time, there is a fairly sud-
den wave of studios switching their pipelines over. One might even talk
about a path tracing “revolution” [61]. This article is our attempt to
retrace the steps the industry has taken on its journey to path-traced
movies. We will identify major hurdles that stood in the way of that
transition, describe the technical milestones that pushed the field for-
ward over the last couple of decades, and discuss the combination of
circumstances that came together to propel the CG and VFX movie
industry into a path-traced world. Since the journey is not yet com-
plete, we will also discuss on-going challenges and open questions that
practitioners and researchers will need to address in the years to come.

2
Illumination

Rendering programs typically divide the light transport into illumina-
tion that comes directly from the light sources and is reflected exactly
once before reaching the camera, and indirect illumination that has
been reflected multiple times.

2.1 Direct and indirect illumination

Figure 2.1 shows four images of a diffuse box with chrome and glass
teapots illuminated by a light source in the ceiling. Figure 2.1(a) shows
only the bright square light source in the ceiling. Figure 2.1(b) shows
direct illumination: diffuse reflection by the walls and floor, and specu-
lar reflection (small white highlights) by the chrome and glass teapots.
Figure 2.1(c) shows indirect illumination in the same scene. The most
visible effects are: the ceiling is now illuminated (mostly by light bounc-
ing off of the walls and floor), the white surfaces are tinted red and blue,
specular reflection in the chrome teapot, specular refraction through
the glass teapot, and a bright “puddle” of focused light under the
glass teapot. Figure 2.1(d) shows all illumination in the scene: the light
source, direct and indirect illumination from images (a)–(c).

107

108 Illumination

(a) (b)

(c) (d)

Figure 2.1: Illumination components: (a) Light source. (b) Direct illumination.
(c) Indirect illumination. (d) All illumination.

2.2 Indirect illumination types

The three images in Figure 2.2 show different components of indirect
illumination.

A simple real-life example of indirect diffuse (also known as “global
illumination”, “soft indirect”, “diffuse interreflection”, or “color bleed-
ing”) is a white carpet next to a matte red wall. Light being reflected
by the wall is red, and gives the white carpet a pink hue. This effect
is shown in Figure 2.2(a) where the red and blue colors from the walls
bleed onto the white ceiling, back wall, and floor. For a long time, in-
direct diffuse was faked in movie rendering by manually adding direct
illumination from additional colored lights (or it was ignored).

2.2. Indirect illumination types 109

Figure 2.2: Indirect illumination components: (a) Indirect diffuse. (b) Specular
reflections and refractions of diffusely reflected light. (c) Diffuse reflection of specular
reflections and refractions (caustics).

Specular reflection or refraction of diffusely reflected light shows the
diffuse surfaces reflected in smooth surfaces or refracted through glass,
water, etc. See Figure 2.2(b) for an example.

Light that travels from the light source through one or more spec-
ular reflections or refractions and then hits a diffuse surface are called
“caustics”. Common real-life examples are the bright spot on a table-
cloth next to a candle-lit glass, or inside a metal ring resting on a rough
surface. Caustics are shown in Figure 2.2(c): the most prominent is the
previously mentioned focused light under the glass teapot, but also
note the bright region around the chrome teapot, and the subtle ring
of light from the chrome teapot lid onto the ceiling and back wall.

The textbooks by Cohen and Wallace [21], Glassner [35], and Dutré
et al. [30] provide good overviews of computation methods for indirect
illumination.

3
Path Tracing

This chapter describes the origins of path tracing, and gives a simple
overview of path tracing and how it has been used in movies.

3.1 Origins of path tracing

The very first Monte Carlo simulations were done by Enrico Fermi using
a small mechanical adding machine in the 1930s [84], but Monte Carlo
only became more widely used as the first electronic computers were
developed. Monte Carlo simulations were especially useful for neutron
transport simulation in the development of nuclear bombs and reactors
in the 1940s. Much inspiration can be found in classic texts such as
Spanier and Gelbard [114], and Kalos and Whitlock [59].

Photons are governed by the same equations as neutrons (they are
both electrically neutral—each particle neither attracts nor repels oth-
ers of the same kind), so the same mathematical simulation methods
can be used. Path tracing is a variation of Monte Carlo simulation
that was introduced to computer graphics by Kajiya [57] in 1986, and
the connection to particle transport was later solidified by Arvo and
Kirk [5].

110

3.2. Simple path tracing 111

3.2 Simple path tracing

Path tracing is a simple recursive method. To calculate the color of an
image pixel, a number of rays are traced from the eye point through
that pixel. When a ray intersects a surface, the direct illumination from
the light sources is calculated for the intersection point (which includes
tracing shadow rays between the light sources and intersection point—
referred to as “next-event estimation” in the particle transport field).
In addition, a new ray is spawned to calculate indirect illumination.
The direction of the new ray is stochastically chosen based on the
light scattering properties of the surface material: specular or matte,
reflective or refractive. When such a ray hits another surface the direct
illumination is calculated there (including tracing more shadow rays),
a new ray are spawned, and so on. The colors from all rays at all
depths contribute to the color of the pixel of their originating eye ray.
The recursion stops when the new ray does not hit a surface, or it
is probabilistically terminated using Russian roulette [5], or when a
pre-determined maximum recursion depth has been reached.

glass

image plane

chrome

eye subpath

shadow
 connection

Figure 3.1: An illustration of tracing paths from the eye to the light sources in a
Cornell box scene with two teapots.

112 Path Tracing

Figure 3.1 illustrates this process in a variation of the classic Cornell
box with two teapots and two light sources. One path originating from
the eye hits the chrome teapot. Chrome exhibits specular reflection so a
reflection ray is generated (in the mirror direction), which subsequently
hits the diffuse red wall. At that point a random position on one of the
light sources is chosen, a shadow ray (shown in red) is shot to determine
visibility, and the direct illumination from that light source point is
calculated. The path continues as a new random diffuse reflection ray
is chosen, which this time hits the ceiling. A new shadow ray is shot,
and the path is stochastically terminated. The other path from the eye
first hits the diffuse back wall, direct illumination is calculated using
a shadow ray to determine visibility, and a new reflection direction is
chosen. That ray hits the glass teapot, where a choice is made between
specular reflection or refraction, and refraction is chosen. After one
more refraction the path hits the diffuse floor, a shadow ray is traced,
and a new ray direction is stochastically chosen. The new ray hits the
back wall, another shadow ray is traced, and this path is terminated.

Figure 3.2: Path-traced images rendered with 1, 16, and 256 samples per pixel.

Figure 3.2 shows path-traced images with 1, 16, and 256 samples
per pixel in the box scene from figures 2.1 and 2.2. The image on the
left was rendered very quickly, but is very noisy; the other images took
longer to render but are much less noisy. Despite the noise, an artist
can form an opinion about the illumination and materials in the scene
even with only a few samples per pixel, i.e. after a few iterations in an
interactive session.

3.3. Depth of field and motion blur 113

When shadows, reflections, refractions, and indirect diffuse are com-
puted in a single pass, all geometry needs to be accessible during the en-
tirety of rendering. This is very different from Reyes, and puts a harder
constraint on scene size (or requires a computer with more memory).

3.3 Depth of field and motion blur

Real cameras have finite aperture openings and the shutter is open for a
finite amount of time. Hence real images have limited depth of field and
contain motion blur. In fields such as architectural visualization these
effects are not important, but movie audiences expect these effects in
CG and VFX images. Figure 3.3 shows examples of these effects: in the
left image the front teapot is in focus while the back teapot is out of
focus; in the right image both teapots are moving and blurry while the
checkered plane is static and sharp.

Figure 3.3: (a) Depth of field. (b) Motion blur.

Depth of field can be simulated in path tracing by—instead of shoot-
ing eye rays from a single viewpoint—shooting camera rays with small
variations in origins and directions [24, 67]. Motion blur can be sim-
ulated by assigning each camera ray a random time within the time
interval the shutter is open [24] (spawned rays inherit the time of their
parent ray). For ray intersection tests, moving or deforming objects
have to be transformed to the position and shape corresponding to the
ray’s time.

114 Path Tracing

3.4 Path tracing in movies

Figure 3.4(a) shows a frame from the short film Bunny from Blue Sky
Studios, released in 1998. This was an early ground-breaking use of path
tracing, proving that effects like indirect diffuse illumination, depth of
field, and motion blur can successfully be rendered at film quality using
path tracing.

Figure 3.4(b) shows a frame from the movie Monster House from
2006. This was the first feature-length movie to be rendered with path
tracing; it used the Arnold renderer. The movie was rendered without
motion blur—partially as an artistic choice to mimic the look of clas-
sic stop-motion films, and partially to avoid noise from sampling the
motion. Depth of field (as seen in the image) was added in a separate
post-process. For a long time Arnold was the only production-strength
renderer based on path tracing, but recently at least a dozen other
commercial and in-house renderers have been written or re-written to
use path tracing.

Figure 3.4: Path-traced images from Bunny and Monster House. (Bunny: c© 1998
Twentieth Century Fox. All rights reserved. Courtesy of Twentieth Century Fox.
Monster House: c© 2006 Columbia Pictures Industries, Inc. and GH One LLC. All
rights reserved. Courtesy of Columbia Pictures.)

4
Other Rendering Techniques: A Retrospective

While a few companies dove head-first into ray tracing and path trac-
ing, the vast majority of the industry stayed with the Reyes-style ren-
dering approach for many years. For the industry as a whole, the so-
called path tracing revolution was more a steady evolution. There are
many compounding reasons for the gradual switch, ranging from the
memory and computational demands of path tracing in complex pro-
duction scenes, to the immense engineering and coordination effort of
overhauling production pipelines that were entrenched in the Reyes
world. Due to these constraints, the industry and research commu-
nities were strongly motivated to find alternatives to full-blown path
tracing—alternatives which could introduce the benefits of path trac-
ing (e.g. indirect diffuse illumination, soft shadows, recursive reflection
and refraction), but as additions incorporated into existing Reyes sys-
tems. To understand the reasons why the industry has switched to path
tracing now, we first need to discuss the many innovative alternative
solutions that postponed the wholesale transition until now.

In this chapter we discuss alternative methods for direct visibility
(Reyes and ray casting), recursive ray tracing for specular reflections
and shadows, and several methods for indirect diffuse (global illumina-

115

116 Other Rendering Techniques: A Retrospective

tion). We also discuss dedicated preview renderers. These methods all
have particular strengths over path tracing, but the advantage of path
tracing is that it is a single method that can do it all quite well.

4.1 Reyes

The Reyes scan-line algorithm [25] splits object surfaces into patches,
tessellates each patch into a grid of small polygons (“micropolygons”),
computes the color of each grid vertex, and projects the polygon colors
onto the screen. This decouples the number of vertex color calculations
(“shading”—typically roughly one per pixel) from the number of visi-
bility tests for antialiasing—typically at least 16 per pixel, but often
64 or higher. This decoupling is also great for efficiently computing
(approximate) motion blur and depth of field: shading results can be
reused by “smearing” them onto multiple pixels. The Reyes algorithm
shades an entire grid at a time, which is advantageous for coherent
shader execution and coherent access to texture and geometry data.
Reyes is also very memory efficient: the image is rendered one tile at
a time, and objects are loaded and tessellated on demand only when
rendering reaches the image tiles they are in, and deleted as soon as they
have been rendered. This allows highly complex objects and densely
displaced surfaces. Figure 1.1(a), in the introduction, showed a classic
frame from Toy Story rendered with Reyes.

Unfortunately, the Reyes algorithm is a bit cumbersome to use since
shadows have to be rendered with shadow maps and reflections ren-
dered with reflection maps, both of which need to be generated in a
pre-pass. Furthermore, global illumination has to be faked with many
manually positioned light sources (“bounce lights”)—which requires an
expert eye and is very labor intensive.

Over time, the Reyes algorithm has been combined with ray tracing
and with many of the global illumination methods described in the
following sections.

4.2. Ray casting 117

4.2 Ray casting

An image can be rendered by tracing rays from the eye point through
the image pixels to determine what is directly visible in each pixel.
A shader is evaluated at every hit point. For reasonable antialiasing at
least 16 rays per pixel are required—more if the scene has motion blur
or depth of field. This limited version of ray tracing is often referred to
as “ray casting”.

If the image is divided into tiles with each tile rendered to com-
pletion, ray casting has the same desirable data locality and coherency
properties as Reyes. However, for progressive rendering, where a single
ray is traced through each pixel in each iteration, all geometry and tex-
tures are accessed repeatedly, so the entire scene needs to be present
in memory to keep iteration times fast. This is problematic in very
complex scenes where the tessellated version of the geometry is larger
than the available memory.

4.3 Recursive ray tracing

Recursive ray tracing was introduced by Whitted [135] in 1980. At
each eye ray intersection point, a shadow ray is traced to each light
source, and recursive reflection and refraction rays are spawned. The
process repeats at the intersection points of these recursive rays. Ray
tracing can render sharp shadows from point and directional lights,
and sharp specular reflections and refractions (as seen in for example
smooth metal, mirrors, and glass).

For many years, typical commercial ray tracers would tessellate the
entire scene up front in order to build an optimal global acceleration
data structure. This put ray tracing at a disadvantage compared to
Reyes: ray tracing of complex displacement-mapped scenes would im-
mediately run out of memory, whereas Reyes could render them without
problems.

On the other hand, an important advantage of ray tracing (and ray
casting) is that rendering many copies (“instances”) of a few objects is
very memory efficient: each instance is simply defined as a transforma-
tion of a master object. Rays (and ray hit points) are transformed by

118 Other Rendering Techniques: A Retrospective

Figure 4.1: (a) Ray-traced glass bottle in a Reyes image from A Bugs Life. (b) Com-
bined Reyes and ray tracing image of Luigi from Cars. (c© 1998, 2006 Pixar/Disney.)

the transformations of the instanced object, but the object itself is not
transformed.

The use of ray tracing was very limited in early CG movie work.
For example, it was used to render reflections and refractions in a glass
bottle in two shots of A Bugs Life (1998); see Figure 4.1(a). This was
done by having RenderMan (purely a Reyes renderer at the time) call
the BMRT ray tracer as a “ray server” [4]. To keep memory overhead
down, only a subset of the scene objects was visible to the rays. Later,
for the movie Cars (2006), a combination of Reyes and full ray trac-
ing was used to render realistic specular reflections and detailed shad-
ows. Figure 4.1(b) shows an image of the car Luigi with ray-traced
reflections (most visible in the hood, chrome bumper and hubcaps),
and ray-traced shadows. Other early movies rendered partially with
ray tracing—using mental ray—were City of Lost Children (1995), Po-
seidon (ILM, 2006), and Speed Racer (Digital Domain, 2008). More
discussion of the strengths of Reyes and ray tracing, respectively, can
be found in Christensen et al. [18].

4.4 Distribution ray tracing

Cook et al. [24] introduced distribution ray tracing for stochastic sam-
pling in rendering. Examples are random sampling of shutter time, lens
position, and area light sources to render motion blur, depth of field,

4.4. Distribution ray tracing 119

Figure 4.2: (a) ‘1984’ pool balls rendered with distribution ray tracing. (b) Irradi-
ance cache points (marked in yellow) for indirect illumination in a Cornell box.

and soft shadows. Figure 4.2(a) shows a classic distribution ray tracing
image of moving pool balls with motion blur and soft shadows.

Distribution ray tracing has also been widely used to compute in-
direct diffuse (global) illumination. This allowed a drastic reduction in
the number of light sources since the indirect illumination no longer
had to be faked with manually-placed bounce lights. However, getting
results with low noise requires tracing of many rays. In order to reduce
the number of rays (and hence increase the efficiency), Ward et al.
[133] introduced caching and interpolation of distribution ray tracing
results (irradiance) and heuristics to determine where such interpola-
tion is safe. Figure 4.2(b) shows the placement of irradiance sample
points and interpolated irradiance results in a Cornell box. The inter-
polation quality was later improved by utilizing gradients [71, 132, 134]
and Hessians [109] of the irradiance results. Tabellion and Lamorlette
[118] at DreamWorks introduced a method that first pre-computed di-
rect illumination on all surfaces and stored the results in 2D texture
maps (this requires the surfaces to have a uv-parameterization), and
then performed one level of distribution ray tracing with lookups in the
texture maps at the ray hit points. This technique was first used in the
movie Shrek 2—as shown in Figure 4.3(a)—and significantly reduced
the expense of computing indirect diffuse illumination.

120 Other Rendering Techniques: A Retrospective

Figure 4.3: Distribution ray tracing images: (a) “Shrek 2” (property of Dream-
Works Animation, 2004). (b) “Monsters University” (c© 2013 Pixar/Disney).

The use of distribution ray tracing for indirect diffuse illumination
was later streamlined by computing and caching the direct illumination
on surface patches on demand, thus avoiding the pre-computation pass
and the requirement of uv-parameterized surfaces [19]. This caching
approach also allowed multiple bounces of indirect diffuse illumination
to be computed (still without a pre-pass). A combination of Reyes
and this technique was used to render the movie Monsters University;
Figure 4.3(b) shows an example.

Compared with pure path tracing, the sampling is more coherent
since it computes direct and indirect illumination over entire surface
patches at a time. This amortizes time to analyze complex direct il-
lumination (selecting light sources), and allows reuse of (interpolated)
cached values for subsequent rays hitting that patch. Furthermore, dis-
tribution ray tracing from a point can stratify the hemisphere direc-
tions, whereas for path tracing of e.g. camera rays from a pixel to a
curved diffuse surface, each camera ray hits the surface at a position
with a different surface normal, and the hemisphere strata are rotated
and overlap; hence there is less benefit from stratification and more
noise for the same number of diffuse reflection rays. This difference is
illustrated in Figure 4.4. (The same issue happens for quasi-random
samples where the stratification is implicit.)

4.5. Photon mapping 121

Figure 4.4: Hemisphere stratification for diffuse reflection: (a) Distribution ray
tracing. (b) Pure path tracing.

On the other hand, the caching approach uses more memory and
cannot benefit from object instancing: even though the geometry can be
instanced, the illumination on each object instance is different, so each
object needs separate cache values no matter whether it is instanced
or not. In contrast, path tracing, which doesn’t cache illumination, can
take full advantage of object instancing.

4.5 Photon mapping

The photon mapping method [51, 52] is a three-pass method to com-
pute indirect illumination (including indirect diffuse illumination and
caustics):

1. Emit light particles (photons) from the light sources, trace them
through the scene, and store them in a point cloud when they hit
a surface (or get scattered in a volume).

2. Organize the photon point cloud into a global data structure
called a photon map—typically a kd-tree—which is independent
of surface complexity and parameterization.

3. Render using local photon density and power to determine indi-
rect illumination.

Figure 4.5 shows the familiar box with all illumination on diffuse
surfaces determined from a photon map. The image shows the “stucco-

122 Other Rendering Techniques: A Retrospective

Figure 4.5: Photon map irradiance estimates.

looking” low-frequency noise that is characteristic for this kind of den-
sity estimation. Another problem with such density estimates is that
they tend to be too dark near surface edges—although this can be
avoided by using a convex hull radiance estimate [55]. To reduce the
low-frequency noise it is common to calculate the direct illumination
separately, and only use the photon map for indirect illumination. To
further reduce the low-frequency noise, another common variation is
to change the rendering step to compute both direct illumination and
caustics separately, and do one level of distribution ray tracing (with
irradiance caching and gradients [132]) to compute indirect diffuse illu-
mination. This rendering method is often called photon mapping with
“final gather” [51].

Huge photon maps can be handled with the radiosity atlas
method [15], and progressive versions of photon mapping were intro-
duced by Hachisuka et al. [39] and Knaus and Zwicker [65].

Photon mapping has been used for very specialized effects in a few
movies. It was used to render a caustic from a whisky glass in Final
Fantasy: The Spirits Within (2001)—this was rendered with a plug-in
to the Maya renderer (and composited on top of RenderMan Reyes
images). Photon mapping was also used for rendering artistic photon
beam effects [50, 88] in volumes in Disney’s Tangled and Frozen—as
shown in Figure 4.6.

4.6. Point-based global illumination 123

Figure 4.6: Photon beams from Tangled and Frozen (c© 2010, 2013 Disney).

Even though photon mapping was built into renderers such as men-
tal ray and RenderMan, it was never very successful as a general global
illumination solution for movie production. We can only speculate why
it never “took off”, but one possible explanation is that users found it
hard to tune its parameters: how many photons should be emitted, how
many photons should be used for density estimation, and how many
final gather rays should be used?

Photon mapping has recently been incorporated into advanced ren-
dering techniques such as VCM/UPS (see Section 8.3), so photon map-
ping is probably—indirectly—still part of the future of movie rendering.

4.6 Point-based global illumination

Point-based global illumination [9, 14] is also a three-pass method for
computing indirect illumination:

1. Generate a point cloud representation of reflected direct illumina-
tion on all surfaces in the scene. Each point represents the color
and geometry of a tiny part of a surface (often called a surface
element or “surfel”).

2. Organize the point cloud into a cluster hierarchy, with total di-
rectional illumination from clusters represented as spherical har-
monics.

124 Other Rendering Techniques: A Retrospective

3. Render the image, with indirect illumination computed from the
hierarchical point cloud. At each surface point, gather illumina-
tion from nearby points and distant clusters in the point cloud.
Rasterize the points and clusters into a very coarse raster (for
example a cube with 12 × 12 pixels on each side) and accumu-
late this illumination weighted by the surface reflectance function
evaluated for each raster pixel.

Figure 4.7(a) and (b) show examples of point clouds used to ren-
der the movie Up (Pixar, 2009), and Figure 4.7(c) shows the resulting
point-based global illumination. Figure 4.7(d) shows another exam-
ple of point-based global illumination: Davy Jones from Pirates of the
Caribbean 2: Dead Man’s Chest (ILM, 2006).

Figure 4.7: Point-based global illumination: (a) Point cloud for key light. (b) Point
cloud for fill lights. (c) Up living room rendered with indirect illumination from the
two point clouds (c© 2009 Pixar/Disney). (d) Davy Jones from Pirates 2 (c© 2006
Disney and Jerry Bruckheimer).

4.7. Preview renderers 125

The biggest advantages of the point-based method are that it is
memory efficient (the working set is small since hierarchical point
clouds can be cached) and the computed indirect illumination has no
noise. The disadvantage is that the point clouds must be generated in
a pre-pass, so the method is not suitable for progressive rendering.

Ritschel et al. [104] presented a GPU version of the algorithm. Their
version rasterizes the point clouds (surfels) onto a single raster (in-
stead of a cube), with directions being transformed to raster pixels by
an importance-warping function based on the surface reflectance func-
tion. Kontkanen et al. [69] developed an extension where point clouds
are kept out of core, and only read in on demand, thus allowing the
rendering of even more complex scenes. Figure 4.8 shows an example
of out-of-core point-based global illumination in a very complex scene
from Kung Fu Panda 2 (DreamWorks, 2011). Point-based global illumi-
nation has been used in more than sixty movies, but is currently being
phased out in the industry in favor of single-pass rendering methods.

Figure 4.8: Point-based global illumination from Kung Fu Panda 2. (Property of
DreamWorks Animation, 2011.)

4.7 Preview renderers

Several renderers have been developed specifically for quick previews
during lighting setup. This is usually done by having a “deep frame-
buffer” representing the geometry in each pixel [106]. The deep frame-

126 Other Rendering Techniques: A Retrospective

buffer enables quick updates since screen visibility has already been
resolved, but restricts the approach to static geometry.

The Lpics renderer [93] used a GPU to execute simplified versions of
shaders. It recomputed illumination and shadows for each light individ-
ually if there was a change in that light’s intensity or other parameters.
The shaders were manually translated from RenderMan shading lan-
guage (RSL) to GPU-executable kernels; the manual translation made
it cumbersome to update when the RSL shaders changed.

The Lightspeed system [100] was more general. It handled trans-
parency, motion blur, depth of field, and subsurface scattering. A sec-
ond generation of Lightspeed was even more interactive, handled in-
direct illumination, and even allowed some moving geometry (shadow
casters and bounce cards). Both versions of Lightspeed had automatic
shader translation from RSL to the Cg language for GPUs, thus avoid-
ing the manual shader translation step. The automatic translator had
to be updated, however, when the RSL syntax or language capabilities
were extended.

Lpics and Lightspeed were used for a few years at their respective
studios, but then fell out of use. While these dedicated systems enabled
a limited form of preview for Reyes-based rendering, it is probably fair
to say that in practice, it is more convenient to have a single renderer for
both previews and final frames, and a single set of shaders to maintain.

5
Advanced Path Tracing

Basic path tracing is simple to implement, but creates noisy images that
converge slowly. Many techniques have been developed to make path
tracing faster: both algorithmic improvements and better use of mod-
ern many-core hardware. Furthermore, path tracing has been extended
from surfaces to also render important cases like hair, fur, volumes,
and subsurface scattering, and has been made more flexible to allow
selection of specific light paths and non-physical effects.

5.1 Algorithmic improvements

The algorithmic improvements include better sampling techniques and
sample patterns, use of ray differentials to determine texture filter sizes
and geometry tessellations, stochastically choosing between thousands
of light sources, and ray (and ray hit) reordering for improved co-
herency.

5.1.1 Improved sampling techniques

Many general techniques have been developed to improve the accuracy
and efficiency of Monte Carlo simulation—see for example the classic

127

128 Advanced Path Tracing

textbooks by Kalos and Whitlock [59], and Spanier and Gelbard [114].
These techniques include importance sampling (where knowledge of the
sampled function is used to place the sample points), control variates
(where we estimate the difference between our target function and a
similar function with a known integral), and Russian roulette (proba-
bilistically terminate low-contribution paths without introducing bias).

In computer graphics, we use the same techniques to reduce image
noise [5]. Also, a clever way to combine the results of multiple impor-
tance sampling techniques has been developed for computer graphics
by Veach and Guibas [121]. This combination is widely used; one of
many uses is combining importance sampling according to the surface
reflectance function with importance sampling according to the light
source position: either approach alone gives low sample noise for some
surface areas but not for others; combining them with multiple impor-
tance sampling yields the best of both, as illustrated in Figure 5.1.

Computing the incident illumination to a surface point can be for-
mulated as an integration. We commonly split the integration domain
into light sources vs. other (non-emissive) surfaces. Efficient sampling
of direct illumination from an area light has been covered by e.g. Shirley
et al. [111], Ramamoorthi et al. [101], and Subr et al. [115]. More ex-
amples of the use of efficient sampling techniques in rendering can be
found in the course notes by Hery and Villemin [46]. We will discuss
efficient sampling of many lights in Section 5.1.4.

Some very promising importance sampling techniques have re-
cently been developed specifically for path tracing: “hero” wavelengths
[99, 136] can be used for efficient spectral rendering (i.e. simulating
more wavelengths than the usual red, green, and blue components),
and advanced next-event estimation [42] can reduce noise in caustics.
The images in Figure 5.2 illustrate these two techniques; both images
were rendered with Weta’s in-house renderer Manuka. There has also
been a wealth of new sampling techniques developed specifically for
volumes, which we discuss in Section 5.3.2.

5.1. Algorithmic improvements 129

(a) (b) (c)

Figure 5.1: Multiple importance sampling. Top row: (a) Importance sampling ac-
cording to the surface reflectance function. (b) Importance sampling according to the
light source position. (c) Multiple importance sampling according to both surface
reflectance and light source. Bottom row: close-ups. (Images courtesy of Christophe
Hery.)

Figure 5.2: Recent techniques for improved sampling: (a) Hero wavelengths.
(b) Manifold next-event estimation. (c© 2014, 2015 Weta Digital.)

130 Advanced Path Tracing

5.1.2 High-quality sample patterns

One of the most “dry” topics that must be considered for efficient ren-
dering is the use of high-quality sampling patterns. Using good sample
patterns can reduce noise and improve convergence very significantly.
An ideal sample pattern has points that are well distributed, i.e. no
points very close to each other and no large areas with no samples.
Selecting sample patterns is a trade-off between conflicting goals, and
no single pattern is ideal for all uses: for example, for progressive ren-
dering or adaptive sampling, different patterns should be selected than
for non-progressive, non-adaptive rendering, and the optimal strategy
for high-dimensional sampling is not clear-cut.

The simplest sample pattern is uniform random samples (gener-
ated with e.g. a linear congruential function [66] or the Mersenne
twister [82]). Random samples are simple to generate and use, but
as shown in Figure 5.3(a) they tend to clump together and leave gaps
in the sample domain. This gives slow convergence. A much more even
distribution of sample points can be created by generating a number of
candidate points for each new sample, and picking the one that has the
largest distance to the previous points [86]. This gives a pattern where
the points have nice even distances and there are no large gaps, as
shown in Figure 5.3(b). However, even though the samples look nicely
distributed, unevenness in the distribution remains. For example, for
500 best-candidate samples, there are typically anywhere from 115 to
135 samples in each quadrant (whereas we would expect very close to
125 samples if the distribution was even).

(a) (b) (c) (d) (e) (f)

Figure 5.3: 500 two-dimensional samples from six sample patterns: (a) Uniform
random. (b) Best candidates. (c) Correlated multĳitter. (d) Larcher-Pillichshammer.
(e) Halton. (f) Sobol.

5.1. Algorithmic improvements 131

If we know a priori how many samples are needed, we can use sample
sets where the order of the sample points does not matter. Three pop-
ular stochastic sets are jittered [23], multĳittered [13], and correlated
multĳittered [62] samples. To generate N jittered samples, the domain
is divided into

√
N ×

√
N cells, and a random sample point is placed

in each cell. Multĳittered samples furthermore ensure that the sample
points fall into N rows and N columns with 1 sample each. Correlated
multĳittered samples furthermore have a larger average distance be-
tween the sample points. Figure 5.3(c) shows a correlated multĳittered
sample set. Two other popular sample sets are the Hammersley and
Larcher-Pillichshammer quasi-random sets. The samples in both sets
have x component i/N and a y component that is computed with sim-
ple formulas [68]. Figure 5.3(d) shows a Larcher-Pillichshammer set
with 500 samples. Out of these sample sets, Larcher-Pillichshammer
and correlated multĳittered samples give the best results.

Sample sets are only useful if all the samples are used, so they are
not suitable for adaptive sampling or progressive rendering. For pro-
gressive rendering where the images are displayed while being rendered,
it is not sufficient that the final image has low noise—we also want the
partially computed images to have as low noise as possible. For this
purpose we need ordered sample patterns where each prefix of the se-
quence is well distributed. We call such patterns sequences. Two popular
quasi-random sample sequences are Halton and Sobol sequences, with
the first 500 samples of each sequence shown in Figure 5.3(e) and (f).
As the figure shows, some of the sample points are very close to each
other, and the Sobol sequence has pronounced diagonals which can lead
to aliasing. Nonetheless, for progressive rendering or adaptive sampling,
sequences are preferrable over sets.

If a quasi-random pattern is used, there is a potential problem in
that there is only one pattern of each type: if the same pattern is used
in all pixels, very visible aliasing will occur, especially at low sample
counts. To avoid this, the pattern can be offset by a different toroidal
shift (Cranley-Patterson rotation [26]) in each pixel, or the digits of the
sample points can be scrambled [89, 68, 96] by a different permutation
(which is a simple bit-wise xor in some cases) in each pixel.

132 Advanced Path Tracing

The previous discussion was focused on two-dimensional samples,
but for rendering realistic images we need samples in higher dimen-
sions. Some patterns—for example Hammersley, Halton, and Sobol—
have straightforward extensions to higher dimensions. However, cau-
tion should be used when using these quasi-random sequences in high
dimensions since they have unfortunate systematic patterns in some
dimensions. For example, Figure 5.4(a) shows the first 100 samples
from the Halton sequence in dimensions 6 and 7 (base is the primes 17
and 19). There are two large gaps in the sample domain with no sam-
ple points at all, and the samples have a very regular pattern making
them prone to aliasing. As another example, Figure 5.4(b) shows the
first 500 samples from a Sobol sequence [56, 36] in dimensions 14 and
15. The samples are clumping together and roughly half the domain
has no samples at all. Only if more samples are taken will the gaps fill
in. Digit scrambling helps in both cases, but the distribution is still not
as even as in lower dimensions. For best-candidate samples, if they are
generated in high dimensions, it is important that they are generated
in such a way that their lower-dimensional projections also have a good
distribution [86, 102].

Figure 5.4: Initial samples in high dimensions: (a) 100 Halton samples in dimen-
sions 6 and 7. (b) 500 Sobol samples in dimensions 14 and 15.

Alternatively, independent 2D sets or sequences can be combined;
this is is referred to as “independent sampling” or “padding” [110, 68],
or one can switch to random samples beyond a certain dimension [48,
75]. If sample sets are combined, the order of the samples in all but the
lowest dimensions have to be shuffled to avoid systematic correlation.
For sample sequences, shuffling the order of the entire sequence will
severely reduce the quality of the sample pattern, so the shuffling has
to be done within groups of samples.

5.1. Algorithmic improvements 133

5.1.3 Ray differentials

A ray is defined mathematically by an origin and a direction. Igehy [47]
introduced the concept of ray differentials; a ray differential expresses
how the origin and direction would differ—through propagation and
specular reflections and refractions—for a ray emitted from a slightly
different origin or direction. Conceptually, one can think of this as
tracking where a slightly different “neighbor” ray would travel—with
modest overhead since no extra rays are actually traced. Igehy’s ray
differentials provide an elegant way to determine optimal texture filter
sizes for specularly reflected and refracted rays.

Christensen et al. [18] extended ray differentials to diffuse reflection
in the context of distribution ray tracing, and used the ray differentials
to select geometry tessellation and texture detail. Eye rays and specu-
lar reflection rays from flat surfaces are coherent, while reflection rays
from curved or diffuse surfaces are incoherent. The incoherent rays can
thrash geometry and texture caches if the finest resolution is always
chosen. Fortunately, less geometric and texture detail is necessary in
the incoherent cases; this observation was formalized by analyzing the
ray differentials for different types of scattering. The authors utilized
this observation to obtain efficient multiresolution caching of geome-
try and textures (including displacement maps) for complex scenes.
Figure 5.5 shows five different tessellations of a surface patch; in this
example the finest tessellation rate is 14×11 and the coarsest tessella-
tion is simply the four corners of the patch. One can think of the various
levels of tessellation as a MIP map [137] of tessellated geometry; the
ray differential is used to select the appropriate tessellation.

Figure 5.5: Multiresolution tessellation example for a surface patch: 14×11 quads,
7×6 quads, 4×3 quads, 2×2 quads, and 1 quad.

134 Advanced Path Tracing

The same observations about ray coherency and ray differentials
also apply to path tracing. Since many paths are traced for each pixel,
the differentials do not have to be as accurate as the ones derived by
Igehy. In fact, the differentials can be simplified to just two isotropic
quantities per ray: the radius of the ray at its origin, and the ray spread
which expresses how much wider the radius gets for each unit the ray
travels. Figure 5.6 shows examples of path differentials at specular and
diffuse reflections.

Figure 5.6: Path differentials: (a) Specular reflection from a flat smooth surface.
(b) Specular reflection from a curved smooth surface. (c) Diffuse reflection from a
rough surface.

Suykens and Willems [116] presented two strategies for calculating
path differentials. Recent work on covariance tracing [7, 8] has further
formalized and refined the calculation of optimal filtering sizes for path
tracing.

Yet another use of ray differentials is to switch from (expensive)
subsurface scattering simulation to (faster) diffuse reflection when the
diffuse mean free path of the subsurface scattering is shorter than the
ray differential radius at a shading point.

To summarize, ray (path) differentials are essential to determine
the proper geometry tessellation level and texture filter sizes, thereby
avoiding geometry and texture cache thrashing and unnecessary vari-
ance in the texture lookup results (if too narrow filter sizes were used)
or too coarse geometry and overly blurry textures (if too wide filter
sizes were used).

5.1. Algorithmic improvements 135

5.1.4 Direct illumination from many lights

It turns out that, ironically, one of the unexpectedly hard problems
in path-traced global illumination is computing the direct illumina-
tion accurately and efficiently—particularly in scenes with thousands
or millions of light sources. For efficiency, only a small fraction of the
lights can be sampled at each surface point.

Ward [131] and Shirley et al. [111] did early work on this problem.
They utilized the fact that even in scenes with thousands or millions
of lights, only a few light sources will create strong illumination in
each part of the scene. With Ward’s method, the lights are sorted
according to their potential contribution to a point, and only the lights
above a specified threshold are shadow-tested. The illumination from
the remaining lights is estimated by taking into account the average
occlusion per light and per surface point. The approximation tolerance
can be increased for paths with low contribution to the image. Shirley’s
method divides the scene into regions, and for each region the light
sources are divided into (locally) bright and dim. The bright lights are
sampled carefully, but only one or a few of the dim lights are chosen
stochastically and sampled (with their contribution weighted higher,
according to their probability of being chosen).

More recent work clusters the light sources and sorts their potential
contributions at each receiving point, or stochastically chooses a radius
for each light source beyond which it is ignored, as described by for
example Tokuyoshi and Harada [119]. Many of these ideas are concep-
tually similar to the hierarchical clustering utilized by the point-based
global illumination methods described in Section 4.6 and many-light
methods [27] such as variants of Lightcuts [128, 129, 130]. Learning
algorithms [124] can be applied too: for example, if in some parts of
a scene a nearby, bright light is found to be entirely occluded, this
information can be utilized to reduce the probability of sampling it
there. But changing probabilities has the unfortunate side-effect that
sample-sequence stratification shifts during progressive rendering, ru-
ining stratification and hence introducing more sampling noise in the
illumination.

136 Advanced Path Tracing

5.1.5 Ray reordering and sorting

Rays can be reordered to increase coherency of geometry and texture
accesses. In the Toro renderer [95, 97], rays are queued, and once suffi-
ciently many rays are waiting to be intersection-tested against an ob-
ject, that object is read in, tessellated, and (optionally) displacement
mapped. This reordering makes it possible to render scenes that are
too large to fit in memory.

Disney’s in-house renderer Hyperion [31] sorts both rays and ray
hits. It collects rays into batches of 30–60 million, where each batch is
first sorted into bins on local solid-state disk (SSD) based on the six
cardinal directions. Each bin is then sorted based on ray origin positions
until groups of 4096 rays have been obtained, and then sorted further
based on ray directions until ray groups of 64 rays have been found.
Each group of 64 rays forms a coherent ray packet.

After the rays have been traced, the ray hits are sorted based on
which texture file they need to read from. This makes texture accesses
coherent and minimizes the number of times each texture file is re-
opened—this is essential for complex geometry since the ptex texture
format does not have MIP map levels covering multiple faces. Each
texture file is opened only once for each ray batch. Figure 5.7 shows a
frame from Big Hero 6 rendered with Hyperion.

Figure 5.7: The city of San Fransokyo in Big Hero 6 (c© 2014 Disney).

5.2. Hardware efficiency and parallel execution 137

Relying on large batches of rays for efficiency is not ideal for inter-
active rendering where each iteration typically only traces one eye ray
per pixel (around 2 million eye rays). Áfra et al. [1] recently described
coherent shading with much smaller ray batches.

5.2 Hardware efficiency and parallel execution

Modern processors have many computation cores and wide instruction
sets.

5.2.1 SIMD ray tracing: intersection tests and BVH traversal

Each new generation of computers has more compute power and mem-
ory than its predecessor. However, exploiting the new and faster multi-
core and many-core processors requires careful multithreading and ju-
dicious use of SIMD (single instruction multiple data) instructions such
as SSE and AVX.

Intel added 4-wide SIMD instructions to their CPUs in 1999. These
instructions run identical operations (add, multiply, square root, etc.)
on sets of four adjacent float data in a single clock cycle. Early work on
speeding up ray intersections using these new instructions was done by
Wald and colleagues [125, 126]. Their method intersection tested four
rays against one triangle in parallel, which is efficient for coherent rays
such as eye rays from adjacent pixels or shadow rays from adjacent eye
ray hit points. An alternative that works better for incoherent rays is
to intersection test one ray against four triangles in parallel [17]. (Mod-
ern variations use a hybrid approach: trace bundles of rays when the
rays are coherent, single rays when incoherent.) Traversal of a ray ac-
celeration data structure can also be sped up using SIMD instructions.
A bounding volume hierarchy (BVH) can be traversed efficiently by
storing four bounding boxes together and intersection testing them in
parallel [126]. Other significant speedups came from carefully arranging
the ray and geometry data to align on memory cache lines. These days
we have wider SIMD instructions: AVX can perform 8 or 16 intersection
tests simultaneously, enabling further speedups.

138 Advanced Path Tracing

GPUs have higher bandwidth than CPUs but also memory with
high latency. There are typically 32 threads running together in a
“warp”, and those threads must execute the same control flow (al-
though, for example, CUDA presents a MIMD-like software program-
ming model). This means that we need more rays to be traced together
with the same control flow (since control flow divergence is detrimen-
tal to performance). Aila and collaborators have explored ray tracing
efficiency on GPUs [2, 75]. They found that the most efficient strategy
is to use persistent threads, i.e. the same kernel running in any given
thread but have the kernel fetch work (e.g. rays to trace) from a global
pool until the pool is empty. A wavefront of rays is traced, then the
surface shaders at the ray hit points are executed, a new wavefront of
rays is generated and traced, and so on.

These days, the major microprocessor vendors provide basic li-
braries for efficient ray tracing on CPUs and GPUs—for example Em-
bree [127] and OptiX [90]. These libraries are very convenient for ren-
derer developers; using these building blocks ensures good performance
without having to rewrite highly specialized ray tracing code for each
new generation of hardware.

5.2.2 Many-core scalability

Ray tracing and path tracing are sometimes called “embarrasingly par-
allel” in the sense that it is “trivial” to obtain near-perfect parallel
speed-ups. It is true that each pixel color can be computed completely
independent of other pixels. In theory all pixel colors could be com-
puted simultaneously if the entire scene (all tessellated geometry, tex-
tures, etc.) is pre-loaded into memory.

However, in reality it is not that simple. Caching is necessary if the
geometry and textures do not fit in memory, and there may be cache
contention and many threads waiting for the same data to load. Even
if all the data is in main memory, if it is not in the L1 cache of the
processor that needs it, a delay will occur. Incoherent accesses tend to
quickly push data out of L1 processor caches. Adding more processors
will only make matters worse if memory isn’t scaled up at the same
time. There might be no speedup at all beyond a certain number of

5.3. Beyond surfaces 139

processors if they all are waiting for different data to be loaded from off-
chip memory with a fixed bandwidth. Another dangerous trap is if an
algorithm is designed such that many processors try to read and write
the same data simultaneously (protected by a lock): then adding more
processors might actually slow the execution down. Getting optimal use
out of 64 or more processors requires suitable algorithms and thoughtful
software design and implementation.

5.3 Beyond surfaces

Realistic movie scenes do not consist of only surfaces, but often also
contain hair, fur, and volumes, and have light scattering below the
surfaces.

5.3.1 Hair and fur

Early work on rendering of fur was done for Bunny (1998) and the furry
monsters in Monsters, Inc (2001). One trick is to not model individual
hairs, but render planes with textures of hair (and transparent space
between the hairs). Another trick is to widen the hairs, but at the same
time make them more transparent; this reduces sampling noise. Such
tricks are less suitable for physically realistic path tracing, though.

Hair and fur consist of very dense geometry, so they require highly
efficient ray intersection algorithms. A recent paper describes an ac-
celeration data structure developed for fast ray tracing of hair and fur
[139]: tight bounding boxes that are aligned with the local hair orien-
tation instead of loose axis-aligned bounding boxes.

In order to make hair and fur look realistic, it is important to have
good algorithms for sampling and shading evaluation. The Marschner
model [81] is the most popular hair scattering model. Efficient sampling
methods have been developed by Hery and Ramamoorthi [45], d’Eon
et al. [29], Pekelis et al. [92], Yan et al. [142], and Chiang et al. [11].
Figure 5.8 shows fur in two CG movies: a rabbit from Alice in Wonder-
land (2010) rendered using Arnold and a lamb from Zootopia (2016)
rendered using Hyperion.

140 Advanced Path Tracing

Figure 5.8: Path-traced fur: (a) Rabbit from Alice in Wonderland. (b) Lamb from
Zootopia. (c© 2010, 2016 Disney.)

5.3.2 Volumes

In the early days of computer graphics in movies, rendering of just sur-
faces was already pushing against the limit of what was computation-
ally tractable, so fully-fledged, physically based volumetric rendering
was simply beyond reach. Consequently, volumetric effects were either
shoe-horned into production surface renderers (in an often cumbersome
fashion) or generated in a separate volumetric rendering pass (often in
a different renderer) for later compositing. Both of these options com-
plicated the production workflow and made simulating light transport
between surfaces and volumes difficult. The computational complexity
also often meant that only single scattering (direct illumination) was
computed in the volumes.

Early examples of volumetric effects in movies relied on ray march-
ing [3] to compute direct illumination from light sources. Hanson’s
chapter in the book by Apodaca and Gritz [4] describes how this
approach was applied in the movie Contact (1997) within a Reyes
framework, and Wrenninge [140] provides a more recent treatment.
Deep shadow maps [78] were introduced to provide the benefits (and
drawbacks) of shadow maps in the context of volumetric rendering.
Several production renderers (including Houdini’s Mantra and Pixar’s
RenderMan) generalized Reyes-style micropolygon rendering to mi-
crovoxel [20] rendering, where volumes are first divided into small vox-

5.3. Beyond surfaces 141

els which are then shaded before being sampled on screen. More recent
work by Wrenninge [141] has also examined ways to perform correct
motion blur in this microvoxel framework. While microvoxels elevate
volumes to equal status as surfaces, the approach suffers from the same
basic limitations that Reyes has for surfaces, making global illumina-
tion and progressive updates challenging.

One major benefit of moving to path tracing is that rendering of vol-
umetric effects (e.g. fog, clouds, smoke) fits naturally within the same
framework as surface rendering. The path tracing algorithm, in essence,
remains unchanged. We still need to construct random paths between
the light sources and the eye, but these paths can now have vertices
not only on solid surfaces, but also within the volumetric media (see
Figure 5.9). This can have a huge impact on the ease of incorporating
such effects in a production environment.

glass

image plane

chrome

scattering
medium

eye subpath

shadow
 connection

Figure 5.9: An illustration of tracing paths from the eye to the light sources in a
Cornell box scene with two teapots and a scattering medium.

In a scene consisting of only solid surfaces in a vacuum, rays travel
unobstructed and only scatter at their intersection locations with sur-
face geometry. Extending path tracing to volumetric path tracing [74]
requires two changes to the base algorithm: we need 1) a way to evalu-
ate the potential contribution of a light source to a path vertex in the

142 Advanced Path Tracing

Figure 5.10: Images rendered with volume path tracing: (a) Residual ratio tracking
(c© 2014 Disney). (b) Equiangular sampling (c© 2012 Sony Pictures Imageworks, Inc.
All rights reserved).

presence of volumes, and 2) a way to generate light paths with vertices
within the volume.

When evaluating shadow rays in the presence of media, the binary
visibility function (which previously took on the value of either 0 or 1
for opaque surfaces), generalizes to the transmittance function (which
can take on any fractional visibility value between 0 and 1). Accurately
and efficiently evaluating this fractional visibility therefore becomes an
important consideration in volumetric path tracing. Novák et al. [87]
proposed residual ratio tracking, which accelerates this computation.
Figure 5.10(a) shows an image from Disney’s Big Hero 6 (2014) which
leveraged residual ratio tracking for efficiently computing the fractional
visibility in the thick fog. When performing shadow connections, the
strategy for sampling locations on the light source can also impact
noise considerably: Villemin and Hery [123] developed an approach for
sampling volumetric light sources directly.

In volumes, scattering can occur at any location along a ray, so
the distance must be sampled probabilistically. One strategy is to com-
pute a so-called free-flight distance within the medium, which corre-
sponds to importance sampling the transmittance term. This distance
can be computed by incremental ray marching [3, 94, 53, 37], or by a
technique called Woodcock tracking [22, 32, 112, 138], which was intro-
duced to graphics by Raab et al. [98]. Yue et al. [143] and Szirmay-Kalos

5.3. Beyond surfaces 143

distance

real
density

�ctitious
density

distance

real
density

Woodcock trackingRay marching

distance

Equi-angular sampling

distancedistance

real
density

light
intensity

Figure 5.11: Uniform ray marching (left) marches at regular intervals along the ray.
Equiangular sampling (middle) samples proportional to the inverse-squared distance
term of the lighting. Woodcock tracking fills the medium with fictitious density to
create a homogeneous medium, and then proposes tentative free-flight distances
within this denser medium, rejecting them until it probabilistically collides with the
real density.

et al. [117] proposed ways to accelerate Woodcock tracking for highly
heterogeneous volumes. Kulla and Fajardo [70] proposed equiangular
sampling—a technique previously developed in the neutron transport
field [58, 103]—to account for the inverse-squared distance term from
light sources when sampling the scattering distance along rays. This
strategy can dramatically reduce noise in single scattering for scenes
containing light sources within volumetric media (see Figure 5.10(b)).
Georgiev et al. [34] extended this idea to importance sample a chain
of path vertices while accounting for both the inverse-squared distance
term and scattering phase function. Figure 5.11 illustrates sampling
the distance using three different sampling strategies.

5.3.3 Subsurface scattering

Realistic modeling of subsurface scattering is important for rendering
believable images of translucent materials such as skin, meat, fruits,
plants, wax, marble, jade, milk and juice. A common approach is to
consider subsurface scattering under a flat surface after dozens or
hundreds of bounces—a so-called diffusion model. Computer graph-
ics researchers have developed increasingly sophisticated and accu-
rate physically based diffusion models from the simple dipole diffu-
sion model [54] to the quantized diffusion [28] and photon beam dif-

144 Advanced Path Tracing

fusion models [38]. A simple but accurate approximation of all sub-
surface bounces—including single-scattering and diffusion—has been
developed as well [10, 16].

The first practical approaches to rendering of subsurface scattering
were point-based, and later based on distribution ray tracing. More
recently, subsurface scattering diffusion models have been shoe-horned
into the path-tracing framework (see for example King et al. [64] or
similar techniques), further making path tracing a unified, general ren-
dering solution. The subsurface scattering is computed by selecting a
random position on the surface, evaluating the incident illumination
there, and multiplying by the diffusion profile. For more efficient sam-
pling, the diffusion profile is used to importance sample the position on
the surface. Figure 5.12(a) shows a highly realistic, carefully recreated
young Schwarzenegger from the movie Terminator: Genisys (2015); he
was rendered with path-traced subsurface scattering in RenderMan.

Figure 5.12: Path-traced subsurface scattering: (a) Diffusion model used in ren-
dering a young Terminator (c© 2015 Moving Picture Company). (b) Brute-force
approach on the snow monster from Frozen Fever (c© 2015 Disney).

An alternative method that has only recently become viable for
subsurface scattering is brute-force volume path tracing (as described
in the previous section, but for many bounces in a very dense volume).
This approach does not assume a flat surface, and can correctly ren-

5.4. Flexibility 145

der scattering in crevasses and on thin or granular objects [10, 12]. It
requires simulation of many bounces to get a realistic result, so it is
slower than using a diffusion model. Recent research proposes better
sampling by steering paths towards the surface where the brightest il-
lumination comes from [83], which can make the brute-force approach
more efficient. Figure 5.12(b) shows the snow monster from Frozen
Fever rendered with brute-force volume path tracing using Disney’s
Hyperion renderer.

5.4 Flexibility

Allowing the user to separate and artistically manipulate light paths
has become a practical and convenient tool for path tracing in movie
production.

5.4.1 Light path expressions

Light path expressions are very useful to distinguish between the dif-
ferent paths that light can take from the light sources to the eye. This
can be utilized to increase or decrease the intensity of certain light
paths, or even delete some paths entirely. For example, caustic paths
might contribute a lot of noise to a path-traced image without any
desirable visible contribution, so they are sometimes explicitly omitted
from the final images. Separate images for diffuse and specular reflec-
tions are also needed as input to denoising algorithms (more on this in
Section 6.2).

Light path expressions can be written concisely using Heckbert’s
regular expression notation [44]: E denotes the eye (camera), L denotes
a light source, D is diffuse reflection, and S is specular reflection. ‘|’ is
a choice between two paths, ‘*’ means zero or more repeats, ‘+’ means
one or more repeats, and ‘[x]’ means x is optional. With this notation,
light directly from the light source to the eye is LE, light reflected
exactly once (i.e. direct illumination) is L(D|S)E, light reflected at
least twice (i.e. indirect illumination) is L(D|S)(D|S)+E, and light
reflected any number of times (all illumination) is L(D|S)∗E. Figures
2.1 and 2.2 were generated using light path expressions.

146 Advanced Path Tracing

Extensions of this notation allow distinction between reflection and
transmission, and between light sources and emissive geometry. In ray
tracing and path tracing settings it is common to reverse the direction
of the expressions, i.e. starting at E and ending at L.

5.4.2 Artistic manipulation

It is possible to take many of the same liberties in path tracing as were
taken with classic rendering techniques [6]: some lights might only illu-
minate certain objects, some objects may only cast shadows on certain
other objects, some ray paths can be explicitly omitted, reflection rays
can be “bent”, some light paths can be enhanced or reduced, color
bleeding from one particular object to another can be increased or
decreased, caustics and secondary specular reflections can be deleted
or brightened, etc. A recent paper by Schmidt et al. [107] formalizes
and proposes a practical system for several such manipulations of light
transport paths, as shown in Figure 5.13. The survey by Schmidt et al.
[108] provides a more exhaustive overview of available techniques for
artistic editing of appearance, lighting, or material.

Figure 5.13: The framework by Schmidt et al. allows modifying the light transport
of the scene (left) by removing the caustics caused by the car, re-directing sunlight
passing through the windows, and altering the reflections in the mirror (middle).
Their interactive global illumination preview tool (right) suggests and visualizes
bundles of paths flowing through a selected region to aid manipulation. (Image
from Schmidt et al. [107]; used with permission.)

6
Enabling Technology

In this section we discuss two developments that have greatly helped
making path tracing a viable rendering technique for movies: physically
based rendering and denoising.

6.1 Physically based rendering

A prerequisite for path tracing is that physically realistic rendering is
acceptable. Superficially, there might seem to be an inherent conflict be-
tween targeting physical realism and “art directability”, i.e. the ability
to change every aspect of the light in the scene at the director’s whim.
However, it is very helpful to start with a physically based image and
then make targeted changes, instead of spending a lot of effort trying to
obtain a reasonably realistic look. Physically based rendering simplifies
VFX work to match rendered elements to real images and raises the
bar of visual quality. It gives richer, more plausible, consistent, and pre-
dictable results. A big effort to use realistic lights and surface materials
was made at ILM [113]; an example is shown in Figure 6.1. Unlike more
ad-hoc approaches, physically-based energy conserving shading models
hold up under a variety of lighting environments. The separation of

147

148 Enabling Technology

Figure 6.1: Iron Man with realistic materials illuminated by high dynamic range
illumination. (c© 2008 Marvel Entertainment.)

material description and rendering algorithm also gives more portable
assets and less scene-specific tweaking. The elimination of the need to
manually place fake “fill” or “bounce” lights to mimic the effects of
indirect diffuse illumination means less work to set up every scene.

An important contribution to making physically based rendering
accessible and widely used was the hugely influential Physically Based
Rendering book and PBRT renderer by Pharr and Humphreys [96].
(The first edition was printed in 2004, with updated and extended
editions in 2010 and 2016.)

Now that production rendering is physically based, we can more
easily transfer the academic research that has been done (and continues
to be done) in physical light transport simulation to practical movie
production.

6.2 Denoising

Traditionally, the Achilles’ heel of path tracing has been noisy images
and slow convergence (as shown in Figure 3.2). Despite importance

6.2. Denoising 149

sampling, Russian roulette, and many other useful Monte Carlo noise
reduction techniques, the error in each pixel is still proportional to
the inverse square root of the number of samples: four times as many
samples are needed to reduce the error by half. This convergence rate
means that noise is reduced quickly initially, but then is reduced more
and more slowly. Toward the end, waiting for an image to converge
from “nearly good enough” to “good enough” can feel like watching
paint dry (or, with a more technical term, has “diminishing returns”).
This is where denoising comes in: it can eliminate that dreadful last
wait.

A naive approach to denoising would be to blur the image uniformly,
or to apply a standard photo denoising filter. But in rendered images,
the amount of noise in the specular reflections can be very different
from the noise in diffuse reflections (so they should be filtered over
differing numbers of neighbor pixels), sharp texture details and object
edges should be preserved, moving and out-of-focus objects need special
treatment, etc. Fortunately the powerful and adaptive feature-guided
denoisers that have been developed lately can remove objectionable
noise from images without overblurring, eliminating the need to wait
for path tracing to converge to a “noise-free” image. Figure 6.2 shows
denoising on a frame from Finding Dory.

The denoiser is “feature-guided”, meaning that for each pixel, it
typically needs the average depth, surface normal, motion vector, sur-
face albedo, specular and diffuse reflection, as well as variance estimates
of each. This data can be written out by the renderer as separate im-
age channels along with the main image. The denoiser is then run as
a post-process. It can operate in two modes: either working on single
frames in isolation, or on an entire sequence at a time (enabling the
utilization of cross-frame image information). More details about mod-
ern denoising techniques can be found in the papers and course notes
of Rouselle et al. [105], Zimmer et al. [144], and Zwicker et al. [145].

150 Enabling Technology

Figure 6.2: A frame from Finding Dory before (top) and after (bottom) denoising.
The right column shows a close-up of both versions. (c© 2016 Pixar/Disney.)

7
Why Path Tracing and Why Now?

In this section we discuss the main reasons why—in our view—path
tracing has recently gained such popularity for movie rendering.

Path tracing is predictable, simple to learn, and simple to use under
tight CG and VFX movie production deadlines. It has fewer “knobs”
to tweak than traditional Reyes-based hybrid rendering methods. Path
tracing is also very general, runs in a single pass, is simpler to multi-
thread (under certain restrictions), and allows progressive rendering for
quick feedback. The main disadvantages are noisy images, slow conver-
gence, and large memory footprints. Most studios that have switched
to path tracing have had to invest substantially in expanding their
compute power, however, the reduction in man-hours outweighs the
increased hardware costs.

A prerequisite for path tracing to become widely used in movie ren-
dering was the development of efficient path-tracing methods to render
realistic-looking surface materials, hair, fur, volumes, and subsurface
scattering. (These are still areas of active research.)

Judicious use of efficient sampling techniques reduces image noise by
orders of magnitude; the integration of these techniques in path-tracing
renderers has been essential in providing the necessary performance

151

152 Why Path Tracing and Why Now?

improvements that have made path tracing a viable rendering method
for movies. Meanwhile, Moore’s law has provided ever more powerful
computers, with 4-, 8-, or 16-wide SIMD instructions and many-core
processors. This has allowed us to generate images of higher visual
complexity and resolution. The combination of better algorithms and
more powerful computers has made path tracing a viable rendering
solution, even with the extremely harsh “pixel perfect” requirements
in the movie industry.

For many years path tracing was rejected outright due to the noisy
images it produces. The noise is especially high in motion-blurred im-
ages, particularly around motion-blurred bright highlights. Some work-
arounds that have been used are to render without motion blur (not
viable when rendering visual effects to be composited with real images),
or to cut render times by only rendering every other or every third frame
and then interpolate the in-between images (using motion vectors or
optical flow). The advanced modern denoisers solve this problem.

Computers with larger memory allows us to render larger scenes,
but scene complexity in movie production tends to grow even faster
than the available memory. Path tracing inherits ray tracing’s advan-
tage of being able to use object instancing. Typical production scenes
would not fit in memory without instancing.

Previously, studios would often use one renderer for initial scene
layout and illumination setup, and another renderer for final frames. It
is more convenient, however, to have the same renderer do both. With
path tracing, the only difference between a quick preview image and a
final movie frame is the level of noise and the time it takes to render.

Most rendering algorithms can be made progressive by first ren-
dering low-quality images and then iteratively start over with higher
quality settings. But with path tracing it is possible to simply continue
the sample sequence in each pixel, thereby continually increasing the
quality without having to start over. If left to render, a noisy preview
image will progress to a low-noise final-quality image in a predictable
manner.

A very practical and useful aspect of path tracing is the ability
to write out (noisy) checkpoint images at regular intervals during ren-

153

dering, and later resume rendering from the last checkpoint. This fits
nicely in the typical studio workflow where a sequence of images is
rendered overnight for review the next morning. If these preliminary
images are approved—i.e. all geometry, textures, lighting etc. are as
they should be, but the images are still too noisy—then the rendering
can be resumed from where it left off, simply adding new samples to
each pixel.

8
Extensions and Challenges

The path tracing algorithm has been extended in various ways to deal
with complex and challenging light paths. In this chapter we give an
overview of these extensions and also mention some aspects that still
need improvement.

8.1 Bidirectional path tracing

Bidirectional path tracing was developed independently by Lafortune
and Willems [73], and Veach and Guibas [120]. The idea is to trace
paths not only from the eye but also from the light sources, and then
connect those paths. Figure 8.1 shows a subpath from the eye, a sub-
path from the light source, and all the potential full light transport
paths formed by connecting the vertices across the two subpaths with
shadow rays.

Bidirectional path tracing is advantageous for scenes dominated by
indirect illumination or with strong caustics. Figure 8.2 shows a box
illuminated by a small light source inside a wall sconce. Because the
sconce blocks much of the direct light, most of the illumination in the
scene is indirect. Unidirectional path tracing has a hard time finding

154

8.1. Bidirectional path tracing 155

image plane

scattering
medium

chrome glass

eye subpath

lig
ht s

ubpat
h

shadow
 connection

Figure 8.1: Bidirectional path tracing: paths from the eye and paths from light
sources; potential connections shown with dashed red lines.

the light source, resulting in a lot of noise, whereas bidirectional path
tracing explicitly traces paths from the light inside the sconce, and so
handles this situation much better. The two images show that for this
scene there is much lower noise with bidirectional path tracing than
with unidirectional path tracing for equal rendering time.

Figure 8.2: Unidirectional vs. bidirectional path tracing in a scene dominated by
indirect illumination. Equal time renderers (2048 vs. 600 samples per pixel).

156 Extensions and Challenges

In practical use, there is an unexpected bonus from bidirectional
path tracing: surface shader results (texture map lookups, procedural
texture evaluations, etc.) are reused for several combined paths. This
can give a nice speedup for the complex surface shaders typically em-
ployed in movie rendering.

A practical problem when bidirectional path tracing is used in com-
plex production scenes is that incoherent texture access patterns for
the light paths can cause texture cache thrashing. Ray differentials are
not as useful as for unidirectional path tracing: just because a light
path (photon) undergoes diffuse reflection (or specular reflection from
a highly curved surface) unfortunately doesn’t mean we can assign a
a large differential to it since the light path could subsequently hit a
surface point right in front of the eye. Even the recent work on covari-
ance tracing [8] for bidirectional path tracing only specifies the optimal
texture filter sizes after the light path has been traced and connected
to the eye path; it does not solve the question of optimal filter sizes
during light path tracing.

8.2 Metropolis

The Metropolis algorithm was introduced in a classic Monte Carlo pa-
per [85]. When applied to rendering, Metropolis sampling excels at
finding difficult paths from light sources to the eye, for example illumi-
nation from a neighboring room through a door that is only slighly ajar.
Once a viable path has been found, mutations of it are explored to dis-
cover similar light transport paths. Veach and Guibas [122] introduced
the Metropolis–Hastings variant [43] of the Metropolis algorithm to
rendering, and Pauly et al. [91] extended it to volume rendering. Kele-
men et al. [60] introduced the mutation strategy that is most popular
for Metropolis rendering. Recent improvements in Metropolis include a
gradient-domain approach [76, 79] that mostly follows image edges and
reconstructs the final image using a Poisson solver. (Kettunen et al. [63]
and Manzi et al. [80] showed that combining Monte Carlo pixel and gra-
dient estimates using Poisson reconstruction can also be done outside
the context of Metropolis using standard path tracing techniques.)

8.3. Vertex connection and merging 157

So far, Metropolis has not been used in movie production due to un-
predictable pixel color “pops” as new important paths are discovered,
making it hard to use for reliable interactive previews and difficult to
guarantee frame-to-frame consistency in a movie sequence. But per-
haps improved mutation strategies, such as those presented recently by
Hachisuka et al. [41] and Li et al. [77], can overcome these practical
limitations in the future.

8.3 Vertex connection and merging

Vertex Connection and Merging and Unified Path Sampling (which we
will refer to as VCM/UPS) are effectively identical techniques inde-
pendently developed by Georgiev et al. [33] and Hachisuka et al. [40],
respectively. VCM/UPS combines bidirectional path tracing and pro-
gressive photon mapping, and is particularly advantageous for specular-
diffuse paths and specular-diffuse-specular paths (i.e. caustics and spec-
ular reflections of caustics). Figure 8.3 shows a VCM/UPS rendering of
a caustic under a glass teapot and a specular reflection of the caustic.

Figure 8.3: VCM/UPS rendering of a caustic and its reflection.

For progressive rendering, there is typically one eye path and one
light path generated for each pixel in each iteration. These paths are
connected, and at the same time the vertices along the light paths are
stored in a photon map (which is used in the following iteration to
avoid reading and writing in a single photon map at the same time).

158 Extensions and Challenges

Figure 8.4: VCM/UPS rendering of refraction through a Fresnel lens. (Image cour-
tesy of Andrew Kensler.)

Figure 8.4 shows another example of VCM/UPS rendering: a Fres-
nel lens refracting light from a textured light source (left) forming a
projected image of the light source texture on the diffuse wall (right).

In practical use, VCM/UPS has the same problem as bidirectional
path tracing in complex textured scenes: the light paths are incoher-
ent, but it is hard to figure out path differentials that would safely
allow coarse texture lookups without blurring the caustics. Another
practical issue is that photon emission profiles and artistic light path
manipulations must match the evaluations used for eye paths.

The VCM/UPS idea has been extended to volumes. Křivánek et al.
[72] noted that sparse and dense volumes should be sampled differ-
ently to obtain least noise: point lookups [53] are best for dense vol-
umes, while beam lookups [49, 50] are best for thin volumes. Their
method uses both point and beam lookups, and combines the results
with multiple importance sampling. They called the combined method
Unified Points, Beams, and Paths (UPBP). UPBP can efficiently ren-
der all volume effects, but its particular strength is crepuscular rays,
volume caustics, and specular reflections of volume caustics. Figure 8.5
shows two images rendered with UPBP: the first image is an illustra-
tion from the original research paper, the second image was rendered
using RenderMan’s UPBP implementation.

8.3. Vertex connection and merging 159

Figure 8.5: UPBP images of volumes with very different optical densities. (Luxo
image: c© 2016 Pixar.)

9
Discussion and Conclusion

Quite a few different methods have been used for rendering CG movies
and visual effects over the past decades. The rendering community is
now focusing on path tracing since it provides a unified framework and
a simple single-pass workflow, it is suited both for quick previews and
final-frame quality images, it can handle volumes, subsurface scatter-
ing, hair, fur, and other challenging cases, it scales reasonably well to
large-scale multithreaded execution, and its Achilles’ heel of noisy im-
ages and slow convergence has been mitigated with advanced denoising
techniques.

More information about how to implement a path tracer (and di-
dactic source code) can be found in the excellent PBRT book [96] or on
the Mitsuba web page [48]. More details about path tracing in movie
production can be found in the notes and slides for the recent SIG-
GRAPH course [61].

Several rendering teams have developed (or are in the process of
developing) GPU-based path tracers. GPUs have immense computa-
tional power, but have lagged behind CPUs in the available memory
and also require a different algorithm execution style than CPUs. With
the huge computational complexity of movies, it will be interesting to

160

161

see which architecture wins. One possible outcome is that these archi-
tectures will merge over the next decade, in which case this becomes a
moot point.

We look forward to seeing future improvements to path tracing,
including solutions to the obstacles and challenges we have outlined
in Chapter 8. One pleasant consequence of the movie industry moving
to path tracing (and physically based rendering in general), is that
the time gap between new academic research and use in the movie
industry continues to shrink. Our hope is that this trend will continue to
everyone’s benefit, driving more rapid evolution of path tracing research
with immediate practical usage.

Acknowledgements

Many thanks to Alexander Keller and Luca Fascione for organizing the
2015 SIGGRAPH course “The path tracing revolution in the movie in-
dustry” that inspired this survey, and to Brian Curless for suggesting
that we should write it. Thanks to our current and former colleagues
in Pixar’s RenderMan team, Disney Research Zürich, and Dartmouth
College for their support. Thanks to Brent Burley, Mark VandeWetter-
ing, Chris Kulla, Cliff Ramshaw, Christophe Hery, Philippe Leprince,
Charlie Kilpatrick, David Laur and Wayne Wooten for detailed sug-
gestions on how to improve the structure, contents, and readability of
this paper. Also thanks to the image copyright holders for allowing us
to use the movie images, and to the following people for helping us ob-
tain images and the required permissions: Steve May, Tony Apodaca,
Christophe Hery, Andrew Kensler, Stephen Friedman, Brent Burley,
Dayna Meltzer, Philippe Leprince, Damien Fagnou, Eric Tabellion,
Andrew Pearce, Chris Kulla, Erik Strauss, Luca Fascione, and Karl
Ludwig.

162

References

[1] Attila Áfra, Carsten Benthin, Ingo Wald, and Jacob Munkberg. Lo-
cal shading coherence extraction for SIMD-efficient path tracing on on
CPUs. In Proceedings of High Performance Graphics, 2016.

[2] Timo Aila and Samuli Laine. Understanding the efficiency of ray traver-
sal on GPUs. In Proceedings of High Performance Graphics, 2009.

[3] John Amanatides and Andrew Woo. A fast voxel traversal algorithm
for ray tracing. In Proceedings of Eurographics, pages 3–10, 1987.

[4] Anthony Apodaca and Larry Gritz. Advanced RenderMan: Creating
CGI for Motion Pictures. Morgan Kaufmann, 2000.

[5] James Arvo and David Kirk. Particle transport and image synthesis.
Computer Graphics (Proceedings of SIGGRAPH), 24(4):63–66, 1990.

[6] Ronen Barzel. Lighting controls for computer cinematography. Journal
of Graphics Tools, 2(1):1–20, 1997.

[7] Laurent Belcour, Cyril Soler, Kartic Subr, Nicholas Holzschuch, and
Frédo Durand. 5D covariance tracing for efficient defocus and and mo-
tion blur. ACM Transactions on Graphics, 32(3):31, 2013.

[8] Laurent Belcour, Ling-Qi Yan, Ravi Ramamoorthi, and Derek Nowrou-
zezahrai. Antialiasing complex global illumination effects in path-space.
Technical Report 1375, University of Montreal, 2015.

[9] Michael Bunnell. Dynamic ambient occlusion and indirect lighting. In
Matt Pharr, editor, GPU Gems 2, pages 223–233. Addison-Wesley Pub-
lishers, 2005.

163

164 References

[10] Brent Burley. Extending the Disney BRDF to a BSDF with integrated
subsurface scattering. In ‘Physically Based Shading in Theory and Prac-
tice’ SIGGRAPH Course, 2015.

[11] Matt Jen-Yuan Chiang, Benedikt Bitterli, Chuck Tappan, and Brent
Burley. A practical and controllable hair and fur model for production
rendering. Computer Graphics Forum (Proceedings of Eurographics), 35
(2):275–283, 2016.

[12] Matt Jen-Yuan Chiang, Peter Kutz, and Brent Burley. Practical and
controllable subsurface scattering for production path tracing. In SIG-
GRAPH Tech Talks, 2016.

[13] Kenneth Chiu, Peter Shirley, and Changyaw Wang. Multi-jittered sam-
pling. In Graphics Gems IV, chapter V.4, pages 370–374. Academic
Press, 1994.

[14] Per Christensen. Point-based approximate color bleeding. Technical
Report 08-01, Pixar Animation Studios, 2008.

[15] Per Christensen and Dana Batali. An irradiance atlas for global illu-
mination in complex production scenes. Rendering Techniques (Pro-
ceedings of the Eurographics Symposium on Rendering), pages 133–141,
2004.

[16] Per Christensen and Brent Burley. Approximate reflectance profiles for
efficient subsurface scattering. Technical Report 15-04, Pixar Animation
Studios, 2015.

[17] Per Christensen, David Laur, Julian Fong, Wayne Wooten, and Dana
Batali. Ray differentials and multiresolution geometry caching for dis-
tribution ray tracing in complex scenes. Computer Graphics Forum
(Proceedings of Eurographics), 22(3):543–552, 2003.

[18] Per Christensen, Julian Fong, David Laur, and Dana Batali. Ray tracing
for the movie ‘Cars’. In Proceedings of IEEE Symposium on Interactive
Ray Tracing, pages 1–6, 2006.

[19] Per Christensen, George Harker, Jonathan Shade, Brenden Schubert,
and Dana Batali. Multiresolution radiosity caching for global illumina-
tion in movies. In SIGGRAPH Tech Talks, 2012.

[20] Andrew Clinton and Mark Elendt. Rendering volumes with microvoxels.
In SIGGRAPH Tech Talks, 2009.

[21] Michael Cohen and John Wallace. Radiosity and Realistic Image Syn-
thesis. Academic Press, 1993.

References 165

[22] W. A. Coleman. Mathematical verification of a certain Monte Carlo
sampling technique and applications of the technique to radiation trans-
port problems. Nuclear Science and Engineering, 32(1):76–81, 1968.

[23] Robert Cook. Stochastic sampling in computer graphics. ACM Trans-
actions on Graphics, 5(1):51–72, 1986.

[24] Robert Cook, Thomas Porter, and Loren Carpenter. Distributed ray
tracing. Computer Graphics (Proceedings of SIGGRAPH), 18(3):137–
145, 1984.

[25] Robert Cook, Loren Carpenter, and Edwin Catmull. The Reyes im-
age rendering architecture. Computer Graphics (Proceedings of SIG-
GRAPH), 21(4):95–102, 1987.

[26] R. Cranley and T. Patterson. Randomization of number theoretic meth-
ods for multiple integration. SIAM Journal on Numerical Analysis, 13:
904–914, 1976.

[27] Carsten Dachsbacher, Jaroslav Křivánek, Miloš Hašan, Adam Arbree,
Bruce Walter, and Jan Novák. Scalable realistic rendering with many-
light methods. Computer Graphics Forum, 33(1):88–104, 2014.

[28] Eugene d’Eon and Geoffrey Irving. A quantized-diffusion model for
rendering translucent materials. ACM Transactions on Graphics (Pro-
ceedings of SIGGRAPH), 30(4):56:1–56:14, 2011.

[29] Eugene d’Eon, Steven Marschner, and Johannes Hanika. Importance
sampling for physically-based hair fiber models. In SIGGRAPH Asia
Technical Briefs, 2013.

[30] Philip Dutré, Kavita Bala, and Philippe Bekaert. Advanced Global Il-
lumination. A K Peters Ltd., second edition, 2005.

[31] Christian Eisenacher, Gregory Nichols, Andrew Selle, and Brent Burley.
Sorted deferred shading for production path tracing. Computer Graph-
ics Forum (Proceedings of the Eurographics Symposium on Rendering),
32(4):125–132, 2013.

[32] M. Galtier, S. Blanco, C. Caliot, C. Coustet, J. Dauchet, M. El Hafi,
V. Eymet, R. Fournier, J. Gautrais, A. Khuong, B. Piaud, and G. Terrée.
Integral formulation of null-collision Monte Carlo algorithms. Journal
of Quantitative Spectroscopy and Radiative Transfer, 125:57–68, 2013.

[33] Iliyan Georgiev, Jaroslav Křivánek, Tomas Davidovic, and Philipp
Slusallek. Light transport simulation with vertex connection and merg-
ing. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia),
31(6), 2012.

166 References

[34] Iliyan Georgiev, Jaroslav Křivánek, Toshiya Hachisuka, Derek Nowrou-
zezahrai, and Wojciech Jarosz. Joint importance sampling of low-order
volumetric scattering. ACM Transactions on Graphics (Proceedings of
SIGGRAPH Asia), 32(6), 2013.

[35] Andrew Glassner. Principles of Digital Image Synthesis. Morgan Kauf-
mann, 1995.

[36] Leonhard Grünschloß. QMC sampling source code in C++, 2012.
http://gruenschloss.org.

[37] Diego Gutierrez, Henrik Wann Jensen, Wojciech Jarosz, and Craig Don-
ner. Scattering. In SIGGRAPH Asia Courses, 2009.

[38] Ralf Habel, Per Christensen, and Wojciech Jarosz. Photon beam diffu-
sion: a hybrid Monte Carlo method for subsurface scattering. Computer
Graphics Forum (Proceedings of the Eurographics Symposium on Ren-
dering), 32(4):27–37, 2013.

[39] Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. Progres-
sive photon mapping. ACM Transactions on Graphics (Proceedings of
SIGGRAPH Asia), 27(5), 2008.

[40] Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. A
path space extension for robust light transport simulation. ACM Trans-
actions on Graphics (Proceedings of SIGGRAPH Asia), 31(6), 2012.

[41] Toshiya Hachisuka, Anton Kaplanyan, and Carsten Dachsbacher. Mul-
tiplexed Metropolis light transport. ACM Transactions on Graphics
(Proceedings of SIGGRAPH), 33(4), 2014.

[42] Johannes Hanika, Marc Droske, and Luca Fascione. Manifold next event
estimation. Computer Graphics Forum (Proceedings of the Eurographics
Symposium on Rendering), 34(4):87–97, 2015.

[43] W. K. Hastings. Monte Carlo sampling methods using Markov chains
and their applications. Biometrika, 57(1):97–109, 1970.

[44] Paul Heckbert. Adaptive radiosity textures for bidirectional ray tracing.
Computer Graphics (Proceedings of SIGGRAPH), 24(4):145–154, 1990.

[45] Christophe Hery and Ravi Ramamoorthi. Importance sampling of re-
flections from hair fibers. Technical Report 12-11, Pixar Animation
Studios, 2012.

[46] Christophe Hery and Ryusuke Villemin. Physically based lighting at
Pixar. In ‘Physically Based Shading’ SIGGRAPH Course, 2013.

[47] Homan Igehy. Tracing ray differentials. Proceedings of SIGGRAPH, 33:
179–186, 1999.

References 167

[48] Wenzel Jakob. Mitsuba: Physically based renderer, 2010.
http://www.mitsuba-renderer.org.

[49] Wojciech Jarosz, Matthias Zwicker, and Henrik Wann Jensen. The beam
radiance estimate for volumetric photon mapping. Computer Graphics
Forum (Proceedings of Eurographics), 27(2):557–566, 2008.

[50] Wojciech Jarosz, Derek Nowrouzezahrai, Iman Sadeghi, and Hen-
rik Wann Jensen. A comprehensive theory of volumetric radiance esti-
mation using photon points and beams. ACM Transactions on Graphics,
30(1):5:1–5:19, 2011.

[51] Henrik Wann Jensen. Realistic Image Synthesis using Photon Mapping.
A K Peters Ltd., 2001.

[52] Henrik Wann Jensen. Global illumination using photon maps. In Ren-
dering Techniques (Proceedings of the Eurographics Workshop on Ren-
dering), pages 21–30, 1996.

[53] Henrik Wann Jensen and Per Christensen. Efficient simulation of light
transport in scenes with participating media using photon maps. Pro-
ceedings of SIGGRAPH, 32:311–320, 1998.

[54] Henrik Wann Jensen, Steve Marschner, Marc Levoy, and Pat Hanra-
han. A practical model for subsurface light transport. Proceedings of
SIGGRAPH, 35:511–518, 2001.

[55] Henrik Wann Jensen, Per Christensen, Toshi Kato, and Frank Suykens.
A practical guide to global illumination using photon mapping. In SIG-
GRAPH Courses, 2002.

[56] Stephen Joe and Frances Y. Kuo. Constructing Sobol’ sequences with
better two-dimensional projections. SIAM Journal on Scientific Com-
putation, 30:2635–2654, 2008.

[57] Jim Kajiya. The rendering equation. Computer Graphics (Proceedings
of SIGGRAPH), 20(4):143–150, 1986.

[58] H. Kalli and E. Cashwell. Evaluation of three Monte Carlo estimation
schemes for flux at a point. Technical Report LA-6865-MS, Los Alamos
Scientific Laboratory, 1977.

[59] Malvin Kalos and Paula Whitlock. Monte Carlo Methods. John Wiley
and Sons, 1986.

[60] Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc
Csonka. A simple and robust mutation strategy for the Metropolis
light transport algorithm. Computer Graphics Forum (Proceedings of
Eurographics), 21(3):531–540, 2002.

168 References

[61] Alexander Keller, Luca Fascione, Marcos Fajardo, Per Christensen, Jo-
hannes Hanika, Christian Eisenacher, and Greg Nichols. The path-
tracing revolution in the movie industry. In SIGGRAPH Courses, 2015.

[62] Andrew Kensler. Correlated multi-jittered sampling. Technical Report
TM-13-01, Pixar Animation Studios, 2013.

[63] Markus Kettunen, Marco Manzi, Miika Aittala, Jaakko Lehtinen, Frédo
Durand, and Matthias Zwicker. Gradient-domain path tracing. ACM
Transactions on Graphics (Proceedings of SIGGRAPH), 34(4), 2015.

[64] Alan King, Christopher Kulla, Alejandro Conty, and Marcos Fajardo.
BSSRDF importance sampling. In SIGGRAPH Tech Talks, 2013.

[65] Claude Knaus and Matthias Zwicker. Progressive photon mapping:
a probabilistic approach. ACM Transactions on Graphics, 30(3), 2011.

[66] Donald E. Knuth. The Art of Computer Programming, volume 2. Ad-
dison Wesley, 3rd edition, 1998.

[67] Craig Kolb, Don Mitchell, and Pat Hanrahan. A realistic camera model
for computer graphics. Proceedings of SIGGRAPH, 29:317–324, 1995.

[68] Thomas Kollig and Alexander Keller. Efficient multidimensional sam-
pling. Computer Graphics Forum (Proceedings of Eurographics), 21(3):
557–563, 2002.

[69] Janne Kontkanen, Eric Tabellion, and Ryan Overbeck. Coherent out-of-
core point-based global illumination. Computer Graphics Forum (Pro-
ceedings of the Eurographics Symposium on Rendering), 30(4):1353–
1360, 2011.

[70] Christopher Kulla and Marcos Fajardo. Importance sampling tech-
niques for path tracing in participating media. Computer Graphics
Forum (Proceedings of the Eurographics Symposium on Rendering), 31
(4):1519–1528, 2012.

[71] Jaroslav Křivánek, Pascal Gautron, Greg Ward, Henrik Wann Jensen,
Eric Tabellion, and Per Christensen. Practical global illumination with
irradiance caching. In SIGGRAPH Courses, 2008.

[72] Jaroslav Křivánek, Iliyan Georgiev, Toshiya Hachisuka, Petr Vévoda,
Martin Šik, Derek Nowrouzezahrai, and Wojciech Jarosz. Unifying
points, beams, and paths in volumetric light transport simulation. ACM
Transactions on Graphics (Proceedings of SIGGRAPH), 33(4), 2014.

[73] Eric Lafortune and Yves Willems. Bi-directional path tracing. In Pro-
ceedings of Compugraphics, pages 145–153, 1993.

References 169

[74] Eric Lafortune and Yves Willems. Rendering participating media with
bidirectional path tracing. Rendering Techniques (Proceedings of the
Eurographics Workshop on Rendering), pages 91–101, 1996.

[75] Samuli Laine, Tero Karras, and Timo Aila. Megakernels considered
harmful: wavefront path tracing on GPUs. In Proceedings of High Per-
formance Graphics, 2013.

[76] Jaakko Lehtinen, Tero Karras, Samuli Laine, Miika Aittala, Frédo Du-
rand, and Timo Aila. Gradient-domain Metropolis light transport. ACM
Transactions on Graphics (Proceedings of SIGGRAPH), 32(4), 2013.

[77] Tzu-Mao Li, Jaakko Lehtinen, Ravi Ramamoorthi, Wenzel Jacob, and
Frédo Durand. Anisotropic Gaussian mutations for Metropolis light
transport through Hessian-Hamiltonian dynamics. ACM Transactions
on Graphics (Proceedings of SIGGRAPH Asia), 34(6), 2015.

[78] Tom Lokovic and Eric Veach. Deep shadow maps. In Proceedings of
SIGGRAPH, pages 385–392, 2000.

[79] Marco Manzi, Fabrice Rousselle, Markus Kettunen, Jaakko Lehti-
nen, and Matthias Zwicker. Improved sampling for gradient-domain
Metropolis light transport. ACM Transactions on Graphics (Proceed-
ings of SIGGRAPH Asia), 33(6), 2014.

[80] Marco Manzi, Markus Kettunen, Miika Aittala, Jaakko Lehtinen, Frédo
Durand, and Matthias Zwicker. Gradient-domain bidirectional path
tracing. Computer Graphics Forum (Proceedings of the Eurographics
Symposium on Rendering), 34, 2015.

[81] Stephen Marschner, Henrik Wann Jensen, Mike Cammarano, Steve
Worley, and Pat Hanrahan. Light scattering from human hair fibers.
ACM Transactions on Graphics (Proceedings of SIGGRAPH), 22(3):
780–791, 2003.

[82] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number genera-
tor. ACM Transactions on Modeling and Computer Simulation, 8(1):
3–30, 1998.

[83] Johannes Meng, Johannes Hanika, and Carsten Dachsbacher. Improv-
ing the Dwivedi sampling scheme. Computer Graphics Forum (Proceed-
ings of the Eurographics Symposium on Rendering), 35(4):37–44, 2016.

[84] Nick Metropolis. The beginning of the Monte Carlo method. Los Alamos
Science (special issue), pages 125–130, 1987.

170 References

[85] Nick Metropolis, Arianna Rosenbluth, Marshall Rosenbluth, Augusta
Teller, and Edward Teller. Equations of state calculations by fast com-
puting machines. Journal of Chemical Physics, 21:1087–1091, 1953.

[86] Don Mitchell. Spectrally optimal sampling for distribution ray tracing.
Computer Graphics (Proceedings of SIGGRAPH), 25(4):157–164, 1991.

[87] Jan Novák, Andrew Selle, and Wojciech Jarosz. Residual ratio tracking
for estimating attenuation in participating media. ACM Transactions
on Graphics (Proceedings of SIGGRAPH Asia), 33(6), 2014.

[88] Derek Nowrouzezahrai, Jared Johnson, Andrew Selle, Dylan Lacewell,
Michael Kaschalk, and Wojciech Jarosz. A programmable system for
artistic volumetric lighting. ACM Transactions on Graphics (Proceed-
ings of SIGGRAPH), 30(4), 2011.

[89] Art Owen. Monte Carlo variance of scrambled net quadrature. SIAM
Journal on Numerical Analysis, 34:1884–1910, 1997.

[90] Steven Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared
Hoberock, David Luebke, David McAllister, Morgan McGuire, Keith
Morley, Austin Robison, and Martin Stich. OptiX: A general purpose
ray tracing engine. ACM Transactions on Graphics (Proceedings of
SIGGRAPH), 29(4), 2010.

[91] Mark Pauly, Thomas Kollig, and Alexander Keller. Metropolis light
transport for participating media. Rendering Techniques (Proceedings
of the Eurographics Workshop on Rendering), pages 11–22, 2000.

[92] Leonid Pekelis, Christophe Hery, Ryusuke Villemin, and Junyi Ling. A
data-driven light scattering model for hair. Technical Report 15-02,
Pixar Animation Studios, 2015.

[93] Fabio Pellacini, Kiril Vidimče, Aaron Lefohn, Alex Mohr, Mark Leone,
and John Warren. Lpics: a hybrid hardware-accelerated relighting en-
gine for computer cinematography. ACM Transactions on Graphics
(Proceedings of SIGGRAPH), 24(3):464–470, 2005.

[94] Ken Perlin and Eric Hoffert. Hypertexture. Computer Graphics (Pro-
ceedings of SIGGRAPH), 23(3):253–262, 1989.

[95] Matt Pharr and Pat Hanrahan. Geometry caching for ray-tracing dis-
placement maps. Rendering Techniques (Proceedings of the Eurograph-
ics Workshop on Rendering), pages 31–40, 1996.

[96] Matt Pharr and Greg Humphreys. Physically Based Rendering: From
Theory to Implementation. Morgan Kaufmann, 2nd edition, 2010.

References 171

[97] Matt Pharr, Craig Kolb, Reid Gerschbein, and Pat Hanrahan. Render-
ing complex scenes with memory-coherent ray tracing. Proceedings of
SIGGRAPH, 31:101–108, 1997.

[98] Matthias Raab, Daniel Seibert, and Alexander Keller. Unbiased global
illumination with participating media. InMonte Carlo and Quasi-Monte
Carlo Methods 2006, pages 591–606. Springer, 2008.

[99] Michal Radziszewski, Krzysztof Boryczko, and Witold Alda. An im-
proved technique for full spectral rendering. Journal of WSCG, 17(1-3):
9–16, 2009.

[100] Jonathan Ragan-Kelley, Charlie Kilpatrick, Brian Smith, Doug Epps,
Paul Green, Christophe Hery, and Frédo Durand. The Lightspeed auto-
matic interactive lighting preview system. ACM Transactions on Graph-
ics (Proceedings of SIGGRAPH), 26(3), 2007.

[101] Ravi Ramamoorthi, John Anderson, Mark Meyer, and Derek Nowrouze-
zahrai. A theory of Monte Carlo visibility sampling. ACM Transactions
on Graphics, 31(5), 2012.

[102] Bernhard Reinert, Tobias Ritschel, Hans-Peter Seidel, and Iliyan
Georgiev. Projective blue-noise sampling. Computer Graphics Forum,
35:285–295, 2015.

[103] Herbert Rief, A. Dubi, and Tov Elperin. Track length estimation applied
to point detector. Nuclear Science and Engineering, 87:59–71, 1984.

[104] Tobias Ritschel, Thomas Engelhardt, Thorsten Grosch, Hans-Peter Sei-
del, Jan Kautz, and Carsten Dachsbacher. Micro-rendering for scalable,
parallel final gathering. ACM Transactions on Graphics (Proceedings
of SIGGRAPH Asia), 28(5), 2009.

[105] Fabrice Rouselle, Marco Manzi, and Matthias Zwicker. Robust denois-
ing using feature and color information. Computer Graphics Forum
(Proceedings of Pacific Graphics), 32(7):121–130, 2013.

[106] Takafumi Saito and Tokiichiro Takahashi. Comprehensible rendering of
3-D shapes. Computer Graphics (Proceedings of SIGGRAPH), 24(4):
199–206, 1990.

[107] Thorsten-Walther Schmidt, Jan Novák, Johannes Meng, Anton Ka-
planyan, Tim Reiner, Derek Nowrouzezahrai, and Carsten Dachsbacher.
Path-space manipulation of physically-based light transport. ACM
Transactions on Graphics (Proceedings of SIGGRAPH), 32(4), 2013.

172 References

[108] Thorsten-Walther Schmidt, Fabio Pellacini, Derek Nowrouzezahrai, Wo-
jciech Jarosz, and Carsten Dachsbacher. State of the art in artistic edit-
ing of appearance, lighting, and material. Computer Graphics Forum,
35(1):216–233, 2016.

[109] Jorge Schwarzhaupt, Henrik Wann Jensen, and Wojciech Jarosz. Prac-
tical Hessian-based error control for irradiance caching. ACM Transac-
tions on Graphics (Proceedings of SIGGRAPH Asia), 31(6), 2012.

[110] Peter Shirley. Realistic Ray Tracing. A K Peters Ltd., 2000.
[111] Peter Shirley, Changyaw Wang, and Kurt Zimmerman. Monte Carlo

techniques for direct lighting calculations. ACM Transactions on Graph-
ics, 15(1):1–36, 1996.

[112] Helge Skullerud. The stochastic computer simulation of ion motion in a
gas subjected to a constant electric field. Journal of Physics D: Applied
Physics, 1(11):1567–1568, 1968.

[113] Ben Snow. Terminators and Iron Men. In ‘Physically Based Shading
Models in Film and Game Production’ SIGGRAPH Course, 2010.

[114] Jerome Spanier and Ely Gelbard. Monte Carlo Principles and Neutron
Transport Problems. Addison-Wesley, 1969.

[115] Kartic Subr, Derek Nowrouzezahrai, Wojciech Jarosz, Jan Kautz, and
Kenny Mitchell. Error analysis of estimators that use combinations of
stochastic sampling strategies for direct illumination. Computer Graph-
ics Forum (Proceedings of the Eurographics Symposium on Rendering),
33(4):93–102, 2014.

[116] Frank Suykens and Yves Willems. Path differentials and applications.
Rendering Techniques (Proceedings of the Eurographics Workshop on
Rendering), pages 257–268, 2001.

[117] László Szirmay-Kalos, Balázs Tóth, and Milán Magdics. Free path sam-
pling in high resolution inhomogeneous participating media. Computer
Graphics Forum, 30(1):85–97, 2011.

[118] Eric Tabellion and Arnauld Lamorlette. An approximate global illu-
mination system for computer generated films. ACM Transactions on
Graphics (Proceedings of SIGGRAPH), 23(3):469–476, 2004.

[119] Yusuke Tokuyoshi and Takahiro Harada. Stochastic light culling. Jour-
nal of Computer Graphics Techniques, 5(1):35–60, 2016.

[120] Eric Veach and Leonidas Guibas. Bidirectional estimators for light
transport. In Proceedings of the Eurographics Workshop on Rendering,
pages 147–162, 1994.

References 173

[121] Eric Veach and Leonidas Guibas. Optimally combining sampling tech-
niques for Monte Carlo rendering. Proceedings of SIGGRAPH, 29:419–
428, 1995.

[122] Eric Veach and Leonidas Guibas. Metropolis light transport. Proceed-
ings of SIGGRAPH, 31:65–76, 1997.

[123] Ryusuke Villemin and Christophe Hery. Practical illumination from
flames. Journal of Computer Graphics Techniques, 2(2):142–155, 2013.

[124] Jiři Vorba, Ondřej Karlik, Martin Šik, Tobias Ritschel, and Jaroslav
Křivánek. On-line learning of parameteric mixture models for light
transport simulation. ACM Transactions on Graphics (Proceedings of
SIGGRAPH), 33(4), 2014.

[125] Ingo Wald, Philipp Slusallek, and Carsten Benthin. Interactive dis-
tributed ray tracing of highly complex models. Rendering Techniques
(Proceedings of the Eurographics Workshop on Rendering), pages 274–
285, 2001.

[126] Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner.
Interactive rendering with coherent ray tracing. Computer Graphics
Forum (Proceedings of Eurographics), 20(3):153–164, 2001.

[127] Ingo Wald, Sven Woop, Carsten Benthin, Gregory Johnson, and Man-
fred Ernst. Embree: a kernel framework for efficient CPU ray tracing.
ACM Transactions on Graphics (Proceedings of SIGGRAPH), 33(4),
2014.

[128] Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael
Donikian, and Donald Greenberg. Lightcuts: a scalable approach to
illumination. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH), 24(3):1098–1107, 2005.

[129] Bruce Walter, Adam Arbree, Kavita Bala, and Donald Greenberg.
Multidimensional lightcuts. ACM Transactions on Graphics (Proceed-
ings of SIGGRAPH), 25(3):1081–1088, 2006.

[130] BruceWalter, Pramook Khungurn, and Kavita Bala. Bidirectional light-
cuts. ACM Transactions on Graphics (Proceedings of SIGGRAPH), 31
(4):59:1–59:11, 2012.

[131] Gregory Ward. Adaptive shadow testing for ray tracing. In Proceedings
of the Eurographics Workshop on Rendering, pages 11–20, 1991.

[132] Gregory Ward and Paul Heckbert. Irradiance gradients. In Proceedings
of the Eurographics Workshop on Rendering, pages 85–98, 1992.

174 References

[133] Gregory Ward, Francis Rubinstein, and Robert Clear. A ray tracing
solution for diffuse interreflection. Computer Graphics (Proceedings of
SIGGRAPH), 22(4):85–92, 1988.

[134] Greg Ward Larson and Rob Shakespeare. Rendering with Radiance: The
Art and Science of Lighting Visualization. Morgan Kaufmann, 1998.

[135] Turner Whitted. An improved illumination model for shaded display.
Communications of the ACM, 23(6):343–349, 1980.

[136] Alexander Wilkie, Sehera Nawaz, Marc Droske, Andrea Weidlich, and
Johannes Hanika. Hero wavelength spectral sampling. Computer Graph-
ics Forum (Proceedings of the Eurographics Symposium on Rendering),
33(4):123–131, 2014.

[137] Lance Williams. Pyramidal parametrics. Computer Graphics (Proceed-
ings of SIGGRAPH), 17(3):1–11, 1983.

[138] E.R. Woodcock, T. Murphy, P. Hemmings, and T. Longworth. Tech-
niques used in the GEM code for Monte Carlo neutronics calculations
in reactors and other systems of complex geometry. In Applications
of Computing Methods to Reactor Problems. Argonne National Labora-
tory, 1965.

[139] Sven Woop, Carsten Benthin, Ingo Wald, Gregory Johnson, and Eric
Tabellion. Exploiting local orientation similarity for efficient ray traver-
sal of hair and fur. In Proceedings of High Performance Graphics, 2014.

[140] Magnus Wrenninge. Production Volume Rendering: Design and Imple-
mentation. A K Peters Ltd/CRC Press, 2012.

[141] Magnus Wrenninge. Efficient rendering of volumetric motion blur us-
ing temporally unstructured volumes. Journal of Computer Graphics
Techniques, 5(1), 2016.

[142] Ling-Qi Yan, Chi-Wei Tseng, Henrik Wann Jensen, and Ravi Ra-
mamoorthi. Physically-accurate fur reflectance: modelling, measure-
ment and rendering. ACM Transactions on Graphics (Proceedings of
SIGGRAPH Asia), 34(6), 2015.

[143] Yonghao Yue, Kei Iwasaki, Bing-Yu Chen, Yoshinori Dobashi, and To-
moyuki Nishita. Unbiased, adaptive stochastic sampling for rendering
inhomogeneous participating media. ACM Transactions on Graphics
(Proceedings of SIGGRAPH Asia), 29(6), 2010.

References 175

[144] Henning Zimmer, Fabrice Rouselle, Wenzel Jakob, Oliver Wang, David
Adler, Wojciech Jarosz, Olga Sorkine-Hornung, and Alexander Sorkine-
Hornung. Path-space motion estimation and decomposition for robust
animation filtering. Computer Graphics Forum (Proceedings of the Eu-
rographics Symposium on Rendering), 34(4):131–142, 2015.

[145] Matthias Zwicker, Wojciech Jarosz, Jaakko Lehtinen, Bochang Moon,
Ravi Ramamoorthi, Fabrice Rouselle, Pradeep Sen, Cyril Soler, and
Sung-Eui Yoon. Recent advances in adaptive sampling and reconstruc-
tion for Monte Carlo rendering. In Eurographics STAR Reports, 2015.

	Introduction
	Illumination
	Direct and indirect illumination
	Indirect illumination types

	Path Tracing
	Origins of path tracing
	Simple path tracing
	Depth of field and motion blur
	Path tracing in movies

	Other Rendering Techniques: A Retrospective
	Reyes
	Ray casting
	Recursive ray tracing
	Distribution ray tracing
	Photon mapping
	Point-based global illumination
	Preview renderers

	Advanced Path Tracing
	Algorithmic improvements
	Hardware efficiency and parallel execution
	Beyond surfaces
	Flexibility

	Enabling Technology
	Physically based rendering
	Denoising

	Why Path Tracing and Why Now?
	Extensions and Challenges
	Bidirectional path tracing
	Metropolis
	Vertex connection and merging

	Discussion and Conclusion
	Acknowledgements
	References

