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Figure 1: From left to right: BRDF importance sampling, environment map importance sampling, and importance sampling of the
combination of BRDF and environment. With our new technique we can efficiently sample the product of the BRDF and the environment
map without evaluating the full product. Sampling the product results in a superior sampling distribution (shown in the right image)
compared with sampling the individual functions (shown on the left). 100 samples were used for each image. The BRDF is a measured
acrylic blue material, shown for a single normal and viewing direction, and the environment map is Grace cathedral. Sample points for
the product were generated in 0.1 milliseconds.

Abstract

We present a new technique for importance sampling pro-
ducts of complex functions using wavelets. First, we general-
ize previous work on wavelet products to higher dimensional
spaces and show how this product can be sampled on-the-
fly without the need of evaluating the full product. This
makes it possible to sample products of high-dimensional
functions even if the product of the two functions in itself
is too memory consuming. Then, we present a novel hierar-
chical sample warping algorithm that generates high-quality
point distributions, which match the wavelet representation
exactly. One application of the new sampling technique is
rendering of objects with measured BRDFs illuminated by
complex distant lighting — our results demonstrate how the
new sampling technique is more than an order of magnitude
more efficient than the best previous techniques.
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1 Introduction

In many areas of science, the integral of two or more com-
plex functions needs to be evaluated efficiently. In computer
graphics, we have the rendering equation [Kajiya 1986],
which contains a product of the incident lighting and the
material properties of a given object. To evaluate this inte-
gral it is common to use Monte Carlo sampling to sample
unknown elements of the integral such as visibility. Monte
Carlo sampling relies on random sampling of the integral,
and is a widely used method for evaluating complex func-
tions. Unfortunately, Monte Carlo methods are computa-
tionally costly, and to increase the efficiency, it is necessary
to include as much information about the integral as pos-
sible in the sampling process. For this purpose importance
sampling is a powerful technique. The goal of importance
sampling is to distribute samples according to the known
elements of the space being sampled in order to reduce the
variance due to these elements. In the case of the render-
ing equation, efficient techniques exist for distributing the
samples according to the reflection model being used, or the
incident lighting, but not according to both. In the case of
known complex lighting and sophisticated reflection models,
it would be much more powerful to distribute the samples
according to the product of both as shown in Figure 1, but
currently there is no efficient method for doing this.

In this paper, we introduce a novel method for impor-
tance sampling the product of two or more complex func-
tions. Our algorithm uses wavelets to represent the func-
tions under consideration. Given two functions represented
in the Haar wavelet basis, it has recently been shown that
the wavelet decomposition of the product can be directly
computed using tripling coefficients [Ng et al. 2004]. As a
first contribution, we generalize this theory to products of
higher dimensional spaces. Second, we introduce a novel hi-
erarchical sample warping scheme that can be folded into the
wavelet product evaluation. The new sampling scheme pro-
vides high-quality sample distributions as shown in Figure 1,
but more importantly it enables the sampling of a complex
product without the need for evaluating the full product.
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This makes the sampling very fast (it can be used on-the-
fly during rendering), and it makes it possible to sample
according to the product of high-dimensional functions for
which the actual product would take up too much space to
be practically useful. Our results demonstrate that the new
sampling technique provides superior sampling and quality
when rendering models with measured material properties
illuminated by complex distant high-dynamic range light-
ing.

2 Previous Work

In this section, we review previous work on importance sam-
pling in computer graphics. Most of the previous work uses
importance sampling in the context of the rendering equa-
tion [Kajiya 1986]:

L(x, ~ωo)=Le(x, ~ωo) +

Z
Ω

fr(x, ~ωi, ~ωo)Li(x, ~ωi) cos θid~ωi,

which is fundamental for rendering realistic images. Here, we
need to evaluate the product of the BRDF, fr, the incident
radiance, Li, and a cosine-term.

BRDF importance sampling is an important and com-
monly used technique for increasing the efficiency of ray
tracing based algorithms. Several important BRDF models
can be directly importance sampled, including the Phong
model [Shirley 1991], the Ward model [1992], and the
Lafortune model [1997]. See Pharr and Humphreys [2004]
for more examples. Complex BRDF models such as the
Torrance-Sparrow model cannot be analytically inverted and
require numerical approximations. Both the Ward model
and the Lafortune model have been used to approximate
measured BRDF data.

Other work has addressed the problem of importance sam-
pling measured BRDFs. Lalonde [1997] used a wavelet rep-
resentation of the BRDF and presented a novel importance
sampling scheme based on random sampling of the wavelet
tree. Similar methods were used in [Claustres et al. 2003;
Claustres et al. 2004]. Matusik [2003] also used wavelets
to represent BRDFs and he presented a numerical method
for sampling the BRDF data. Recently, Lawrence et al.
[2004] introduced a technique for sampling BRDFs based
on a factored representation. They represent the BRDF
in Rusinkiewicz’s parameterization [1998], which is compact
and compresses well, and their technique can be used for di-
rectly importance sampling a 4D BRDF efficiently. BRDF
importance sampling is an effective technique, but these
methods do not take into account the lighting in the scene,
and they become inefficient with complex lighting.

Environment map sampling is another powerful method for
rendering objects under complex lighting captured in a high-
dynamic range environment map [Debevec 1998]. LightGen
[Cohen and Debevec 2001], Agarwal et al. [2003], Kollig and
Keller [2003], and Ostromoukhov [2004] all resampled the en-
vironment map by placing pre-integrated directional lights
at the brightest locations. This is an efficient method for ren-
dering non-specular materials illuminated by environment
map lighting, but as the materials get increasingly specular
these methods need a very large number of lights to ade-
quately represent the environment map. Cabral [1987] and
Ramamoorthi and Hanrahan [2002] used spherical harmon-
ics to directly filter the environment map according to the
BRDF — these methods do not support efficient sampling,

and the spherical harmonics representation is efficient only
when the BRDF is smooth and non-specular.

Monte Carlo rendering has a long history in computer
graphics starting with the seminal work by Cook et al. [1984]
and Kajiya [1986]. There are numerous Monte Carlo tech-
niques for solving the rendering equation. See Dutré et al.
[2003] for an overview. Most Monte Carlo techniques use
the BRDF sampling methods or the environment map sam-
pling methods just described to solve the rendering equation.
Some methods such as path tracing [Kajiya 1986; Lafortune
and Willems 1995] and photon mapping [Jensen 2001] have
been extended to importance sampling of the product of
the BRDF and the lighting. Both approaches are based on
the use of a coarse representation combined with adaptive
sampling in order to evaluate the rendering equation. Their
efficiency is limited by the coarse representation and they
are too costly in the case of complex lighting and specular
BRDF models. Veach and Guibas [1995] presented a novel
technique for combining estimators in Monte Carlo methods
using multiple importance sampling. Multiple importance
sampling is a powerful method for addressing the situation
where either the lighting or the BRDF is complex, as it will
pick the best of the available sampling techniques. When
both lighting and the BRDF are complicated, multiple im-
portance sampling provides less of an advantage, as it cannot
account for the product of the two. It is likely to waste sam-
ples in regions with little or no influence on the final result.

Recently, Burke et al. [2004] presented a novel technique
for rendering objects with complex materials illuminated by
an environment map. Their technique uses importance sam-
pling of either the environment map or the BRDF and ap-
plies rejection sampling to discard samples if the product of
the BRDF and the lighting is not large enough to motivate
sampling. This helps reduce the number of samples, but the
method is very costly due to the rejection sampling scheme.
If both the BRDF and the lighting are complex, Burke et
al. reports that more than 90% of the samples are rejected,
requiring further evaluation of the functions to locate good
samples.

In contrast to the previous work our method is capable of
efficiently importance sampling the product of the lighting
and the BRDF. In the following sections we will describe
how this is done by using a compact wavelet representation
combined with a generalized wavelet product, and a novel
hierarchical sample warping scheme.

3 Overview

Figure 2 gives an overview of the elements of our new sam-
pling technique for the particular example of sampling the
product of an environment map and a BRDF. First, we take
a high-quality point distribution. Second, we perform a hier-
archical evaluation of the wavelet product. As this product
is evaluated, the point distribution is warped hierarchically
according to the evaluated product. The wavelet product is
only completed for regions with one or more samples. The
final output is a sample distribution that exactly matches
the product of the wavelets without the need of evaluating
the full product.

4 Wavelets and Wavelet Products

In this section, we first review the Haar basis notation, since
it is used throughout the paper. Other bases can be used
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Figure 2: This figure shows the main steps of our technique.
An initial point distribution is warped according to the wavelet
product of BRDF and environment map. For each pixel, a new
well-distributed sampling is computed, taking both BRDF and
environment map into account. The generated sample distribu-
tion will be different for two different pixels A and B, since the
BRDF changes across the surface.

as well, but the product tends to get much more complex.
The wavelet product in two dimensions is described in Sec-
tion 4.2. Finally, in Section 4.3, we present a new contribu-
tion: a generalized wavelet product, which works in higher
dimensions.

4.1 The Haar basis

For the normalized Haar basis, the one-dimensional mother
scaling function, φ(x), and the mother wavelet function,
ψ(x), are defined as [Mallat 1998; Stollnitz et al. 1996]:

φ(x) :=


1, for 0 ≤ x < 1
0, otherwise

, ψ(x) :=

8<: 1, for 0 ≤ x < 1/2
−1, for 1/2 ≤ x < 1

0, otherwise.

The normalized scaling and wavelet basis functions are:

φl
t(x) := 2l/2φ(2lx− t),
ψl

t(x) := 2l/2ψ(2lx− t),

where l is the level and t the translation of the functions. The
Haar basis is orthonormal, meaning that the inner product
of two basis functions is zero except when they are the same,
in which case the inner product is one.

Expanding a one-dimensional image, H, in the Haar basis
is described as:

H(x) = H0
0,0φ

0
0 +

X
l

X
t

Hl
t,1ψ

l
t =

X
i

HiΨi, (1)

where the second subscript for the basis coefficients, Hl
t,f , is

zero for the scaling function, and one for the wavelet basis
functions. Thus, H0

0,0 is the scaling coefficient, and Hl
t,1 are

the detail coefficients. The last step in Equation 1 shows
the shorthand notation that we will use, where l, t, and the
second subscript, indicating the type of basis function, have
been “baked” into a single vector parameter i, as done by Ng
et al. [2004]. Note that this notation generalizes to higher
dimensions, such as for two-dimensional images.

As can be seen in Equation 1, only a single scaling coef-
ficient plus scaling function are used. However, as shown in
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Figure 3: The 1D image (upper, left) is: [8, 10, 9, 5, 0, 0, 4, 4],
and its unnormalized (used here because it is simpler to display)
Haar representation is: [5, 3, 1,−2,−1, 2, 0, 0]. The image is then
reconstructed one level at a time as follows: [5]→ [5 + 3, 5− 3] =
[8, 2]→ [8 + 1, 8− 1, 2− 2, 2 + 2] = [9, 7, 0, 4] and so on.

Figure 3, the scaling coefficients at other levels are computed
as a part of the decompression process. The scaling coeffi-
cient for a certain level l and translation t holds the average
of all pixels under the support of the scaling function. This
is a key observation, also used by Lalonde [1997], that we
will use in Section 5. In the example figure, the two scaling
coefficients for, e.g., level 1 are 8 and 2.

It should also be noted that a good approximation is ob-
tained if only the n largest coefficients in Equation 1 are
kept. This provides lossy compression.

4.2 Two-Dimensional Wavelet Product

As a side result in their research on triple products, Ng
et al. [2004] showed that for a product G = E · F of two-
dimensional images, a wavelet representation ofG =

P
GiΨi

can be directly computed from the wavelet representations
of E =

P
EjΨj and F =

P
FkΨk, that is, without decom-

pressing them. We will briefly review the theory behind such
wavelet products here.

The wavelet product we want to compute is described by:

G = E · F ⇔
X

GiΨi =
“X

EjΨj

”
·
“X

FkΨk

”
(2)

Taking the inner product of Ψi with the equation above
yields the ith basis coefficient for G:

Gi =
X
j

X
k

CijkEjFk, where (3)

Cijk =

Z Z
Ψi(x)Ψj(x)Ψk(x)dx. (4)

The terms Cijk are called tripling coefficients, and the Ψ are
two-dimensional basis functions.

4.3 Generalized Wavelet Product

In this section, we will generalize Equation 4, in order to
compute the ith basis coefficient of the product, G = E · F ,
where G and E have n dimensions each, and F has m di-
mensions, and 0 < m ≤ n. Equation 4 and the related
Haar tripling coefficient theorem [Ng et al. 2004] only work
for n = m = 2. In the following, we assume that the non-
standard decomposition technique [Stollnitz et al. 1996] is
used.

For the generalized case, Equation 3 still holds, but the
computation of tripling coefficients (Equation 4) is differ-
ent and depends on m and n as shown below. Assume
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we have the following vectors x = (x1, x2, . . . , xn), x =
(x1, x2, . . . , xm), m ≤ n, and that we want to compute the
ith basis coefficient of G(x) = E(x) · F (x). The derivation
can be found in Appendix A, and the main result is summa-
rized in Equation 5.

Cijk =

Z
· · ·
Z

| {z }
n

Ψi(x)Ψj(x)Ψk(x)dx

=

mY
q=1

c
α(ijk,q) ×

nY
p=m+1

∆
α(ij,p) (5)

Here, c
α(ijk,q) is used to denote a one-dimensional tripling

coefficient, and the ∆
α(ij,p) is, what we call, a one-

dimensional non-standard coupling coefficient. The func-
tions α(ijk, q) and α(ij, q) pick out the relevant parameters
from i, j, and k for the q:th dimension. See again Ap-
pendix A for the details on notation, and on how to compute
the non-standard coupling coefficients for the Haar basis.

To be able to evaluate Equation 5, we need the following
theorem.

One-dimensional Haar Tripling Coefficient Theorem The
integral, c

α(ijk,q) , of three one-dimensional Haar basis func-
tions is non-zero if and only if the support of the basis func-
tions overlap and either of these two cases hold:

1. Two are identical basis functions, and the third basis
function, at level l, is either a scaling function sharing
their level, or the third basis function is at a strictly
coarser level, l ⇒ c

α(ijk,q) = ±2l/2.

2. There is one scaling function at level l1, and both the
other basis functions are at strictly coarser levels, l2 and
l3 ⇒ c

α(ijk,q) = ±2(l2+l3−l1)/2.

The proof of the theorem can be found in Appendix B. Ap-
plying this theorem twice to the two-dimensional case yields
the same results as the two-dimensional Haar tripling coef-
ficient theorem as expected.

Developing techniques for computing tripling coefficients
in higher dimensions in the same manner as Ng et al. [2004]
did for two dimensions appears to be time-consuming as each
dimension would probably need a separate derivation and
theorem. Instead, we have presented the fundamental re-
sult in Equation 5 together with the theorem above that
allows for product computations in any dimensions without
decompressing the wavelet images. In summary, the gener-
alized tripling coefficients are computed as a simple product
of one-dimensional tripling coefficients, and it has the same
sublinear properties as the triple product for lossy approxi-
mations.

5 Importance Sampling

Assume an n-dimensional wavelet-compressed function:

H =
X
i

HiΨi (6)

Sampling the wavelet requires computing the probabilities
of different regions of the wavelet tree. We define these re-
cursively such that the probabilities of the child regions at

each wavelet node sum to 1. Using the scaling coefficients
for a given region, the child probablities are defined as:

P l
i =

Hl
i,0P

tH
l
t,0

(7)

The simplest method of importance sampling a wavelet-
represented function would be to treat the wavelet as a de-
cision tree for hierarchical random thresholding. Previous
work on sampling wavelets have used this method [Lalonde
1997; Claustres et al. 2003]. Another technique could be
to ignore the hierarchical structure and randomly thresh-
old according to values of the squares at the finest level.
However, neither technique produces high quality point dis-
tributions, and thresholding according to the finest level
requires the computation of the full wavelet product. In
the following section, we present an alternative hierarchical
warping algorithm that rapidly produces high-quality multi-
dimensional sample distributions without having to evaluate
a full wavelet product.

5.1 Hierarchical Warping

Our hierarchical warping technique transforms a uniformly
distributed set of samples into a warped set of samples ac-
cording to the wavelet tree. The warping algorithm begins
at the coarsest level and proceeds recursively through each
level of the wavelet hierarchy. One level of our warping al-
gorithm in two dimensions is illustrated in Figure 5.

When warping multi-dimensional points, we consider each
dimension individually. Starting with the first dimension, we
split the input point set into two halves. For the following
dimension, we split each of these new point sets into two new
sets, and so on. The process can be thought of as building
a kD-tree of the sample points.

To get the correct distribution when splitting the point
set along a certain dimension, we need to compute the total
probability for each half of that dimension. These are simply
the sum of the child region probabilities within each half,
call these probabilities P l

i,x− and P l
i,x+, where P l

i,x+ = 1 −
P l

i,x−. To perform a split, we first divide the input sample
points about a splitting plane positioned so that the lower
set contains P l

i,x− fraction of the volume and the upper set

contains P l
i,x+. Next, both of these point sets are scaled

to fit back within the unit interval. The procedure is then
repeated independently on these two point sets, but along
the subsequent dimensions until all points have been warped
along each dimension.

At the completion of one level of n-dimensional warping,
the algorithm recurses on all of the child regions which have

Importance Maps Random Hammersley

Figure 4: Two example importance functions and 256 warped
samples using uniform random points and Hammersley points.
Our warping algorithm is able to preserve the quality of input
point set.
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Figure 5: Warping input points (a) according to one level of a wavelet-compressed importance map where the quadrant percentages
(b) are derived from the wavelet coefficients for the current region using Equation 7. The initial point set is first partitioned into two
rows with heights determined by their total probabilities (c) and then scaled to fit within the rows (d). Finally, each row is individually
divided horizontally according to the probabilities of its child regions (e) and the points are again scaled to fit within the regions to arrive
at the warped points for that level (f). The process repeats at step (a) for each child region using its allotted point set as input.
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Figure 6: Variance as a function of the number of samples used
for rendering a simple scene illuminated by St. Peters cathedral.
On the right are images rendered using 32 samples per pixel and
their corresponding variance images. The warping scheme tends
to preserve properties of the initial point distribution, hence the
variance with Hammersley points is significantly lower than with
uniform random points. Using 64 Hammersley points results in
less variance than using 512 random points.

at least one sample allocated. At each level of the hierarchi-
cal process, the expected number of points in each child re-
gion is proportional to the probability of that region. Hence,
by induction, once recursion terminates the overall distribu-
tion of the warped points follows the energy distribution in
the whole importance function.

Our warping algorithm is straightforward to use with low
discrepancy points as generated by quasi-Monte Carlo meth-
ods [Niederreiter 1992]. Figure 4 demonstrates the effect
that changing the input point set has on the quality of
the output distribution. Consequently, our warping tech-
nique allows for variance reduction during rendering by using
quasi-Monte Carlo sample points instead of uniform random
points. This is shown in Figure 6.

5.2 Rapidly Sampling Wavelet Products

It is important to note that our sample warping technique
only relies on the scaling coefficients at each level of the hi-
erarchy. As shown in Section 4.2 and 4.3, coefficients of a
wavelet product can be computed efficiently on-the-fly. In
the Haar basis, it is trivial to reconstruct the necessary scal-
ing coefficients from these wavelet coefficients. Hence, it is
possible to rapidly warp points according to a wavelet prod-
uct by computing product coefficients as needed.

In fact, our warping algorithm works particularly well for
wavelet products because if no samples are placed in a par-
ticular region we do not have to further evaluate the prod-
uct for that area. This gives significant savings because it

eliminates the need to compute coefficients for regions that
are not being sampled. This is particularly true in our con-
text where, for example, a highly specular BRDF is typically
close to zero for a large portion of the integration domain.

6 Rendering

In this section, we will describe the application of wavelet-
based importance sampling of products to the rendering of
scenes with general BRDFs under complex direct illumina-
tion. The equation for evaluating direct illumination (de-
rived from the rendering equation [Kajiya 1986]), is:

L(x, ~ωo)=

Z
Ω

fr(x, ~ωi, ~ωo)Li(x, ~ωi)v(x, ~ωi) cos θid~ωi.

In our implementation, we are considering illumination
Li(x, ~ωi) provided by a high-dynamic range environment
map, and we fold the cosine term into the BRDF and work
with the reflectivity, ρ(x, ~ωi, ~ωo). Therefore, a Monte Carlo
estimator for the above integral can be written as:

L̄(x, ~ωo)=
1

N

NX
i=1

ρ(x, ~ωi, ~ωo)Li(x, ~ωi)v(x, ~ωi)

p(~ωi)
. (8)

By representing the BRDF and the environment map as
wavelets, we can distribute samples according to their prod-
uct, H =

P
HiΨi. The probability associated with a sample

~ωi is expressed in terms of wavelet scaling coefficients as:

p(~ωi) = c
Hl

t,0

H0
0,0

, (9)

where Hl
t,0 is the scaling coefficient for the wavelet square

in which the sample lies, and c = 2nl/2 is a constant derived
from the normalized Haar wavelet decomposition, assuming
n-dimensional products.

Unbiased vs Biased Rendering We could use equation 8 to
directly render an unbiased image by sampling the BRDF,
environment map, visibility and divide by the sample prob-
abilities. However, by accepting a small bias introduced by
the wavelet approximation:

Hl
t,0 ≈ ρ(x, ~ωi, ~ωo)Li(x, ~ωi)/c, (10)

the rendering can be made significantly less noisy since two
of the terms, which are a major source of variance, cancel out
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in the division. Combining Equation 10 with Equations 8
and 9, we arrive at:

L̄(x, ~ωo)≈
H0

0,0

N

NX
i=1

v(x, ~ωi). (11)

The scaling coefficient H0
0,0 is already available, as it was

needed during the warping step, and we are using the fact
that it represents the pre-integrated value of the BRDF mul-
tiplied by the environment map. Thus, rendering is reduced
to simple sampling of visibility. Areas with no occlusion will
be noise-free since the pre-integrated value is known from the
wavelet multiplication. In shadows, noise is inevitable, but
since the samples are distributed according to the combina-
tion of the BRDF and the environment map, the sampling
quickly converges towards a noise-free result.

6.1 2D Wavelet Importance Sampling

We represent a general 4D BRDF reparameterized about
the reflected direction as in [Ramamoorthi and Hanrahan
2002]. This is stored as a 2D tabulation of 2D wavelets.
Since the environment map has to be represented in the same
coordinate space as the BRDF in order to perform a wavelet
product, we replicate the 2D environment re-centered about
an array of 2D directions. We found this representation more
appropriate than having a 6D BRDF and a 2D environment
map as in [Ng et al. 2004], since it stores less redundant
data. Furthermore, most scenes contain many BRDFs but
typically only one or a few environment maps.

With our representation, two of the dimensions overlap
between the environment map and the BRDF, allowing us to
perform wavelet importance sampling on the product in 2D.
We represent functions on the sphere in 2D as simple spher-
ical maps sampled over (θ, φ), but other parameterizations,
such as cube maps, would also work. Note that if a non-
uniform parameterization is used, the solid angle each pixel
represents must be taken into account. To prevent aliasing,
we use super-sampling when creating the wavelet represen-
tations.

To get a smooth result, we bilinearly interpolate between
the four nearest wavelets in both the environment map and
the BRDF. Compression is achieved by discarding wavelet
coefficients below a certain threshold. We handle color by
storing wavelet coefficients as RGB triplets instead of sin-
gle values. When sampling according to RGB wavelets, we
distribute samples according to the luminance and multiply
each sampled value by the normalized color.

6.2 4D Wavelet Importance Sampling

In addition to representing BRDFs as tabulated 2D wavelets,
we have done some initial experiments with a true 4D×2D
wavelet product using the theory in Section 4.3. Here, we
store the environment map as a regular 2D map, and work
with simple rotationally symmetric BRDFs represented as
4D functions in world-space. The first two dimensions spec-
ify the central BRDF direction, and the last two dimensions
represent outgoing light direction.

This technique allows us to distribute 4D sample points
according to the wavelet product as a preprocess, and elimi-
nates the need to perform on-the-fly wavelet products during
rendering. After warping, the wavelets need no longer to be
kept in memory, and the warped 4D points are stored in
a kD-tree with 2D keys and 2D values per key for efficient
range searching during rendering. At render time, we find

Structured 300 Structured 1000

Reference Wavelet product 100

Figure 7: Part of the Buddha rendered using structured impor-
tance sampling (without jittering) with 300 samples, 1000 sam-
ples, and wavelet sampling of the product using 100 samples per
pixel and a wavelet resolution of 128×128 . Even with a large
number of samples, structured importance sampling fails to cap-
ture some of the more subtle details in the lighting. See for ex-
ample the area between the model’s feet.

the n closest sample points in the first two dimensions, and
use the last two dimensions of these sample points as world-
space light sample directions. We also apply a weighting
kernel to the chosen samples based on the deviation from
the actual BRDF direction.

7 Results

This section demonstrates our results of the new sampling
technique. All results have been generated on a 3.4GHz PC.

The first example, shown in Figure 8, is a rendering of a
Buddha model with different measured BRDFs illuminated
by a high-dynamic range environment map. From left to
right, the selected BRDFs change from mostly diffuse to
mostly specular. All images have been rendered with 30
visibility samples based on the product of the BRDF and the
environment map. Note that the full range of BRDFs are
practically noise-free, even with this low number of samples.

Previous work on rendering objects illuminated by high-
dynamic range environment maps have focused on the sam-
pling of either the environment map or the BRDF. In Fig-
ure 9, we compare our method to structured importance
sampling [Agarwal et al. 2003]. We optimized the amount
of jittering in structured importance sampling to reduce
banding in the shadow, while avoiding excessive noise in
the glossy reflection. We also compare our method to
wavelet-based BRDF importance sampling, i.e., not using
the wavelet product.

The wavelet product sampling technique produces images
with low levels of noise at just 10–30 samples, while struc-
tured importance sampling needs 100 or more samples to
produce similar results. In particularly difficult cases, even
1000 samples are not enough to accurately capture glossy
effects (see Figure 7). BRDF importance sampling performs
relatively well for the glossy Buddha, but very poorly for
the diffuse floor, giving an overall quality worse than that
of structured importance sampling. Performing the wavelet
product sampling on-the-fly obviously adds some overhead.
With our current implementation it is only possible to use
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Figure 8: The Buddha model in Grace cathedral rendered with different measured BRDFs. From left to right: latex fabric, silver paint,
gold, blue metallic, brown wax, blue acrylic, green metallic, and copper. Wavelet importance sampling was performed on-the-fly, using
30 Hammersley samples per pixel. The BRDFs were stored with a wavelet sparsity of around 1.5%. The images were rendered in 53–66
seconds at resolution 400×800 .
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Figure 9: Wavelet importance sampling of the product compared to structured importance sampling of the environment map (Grace
cathedral) and to wavelet-based BRDF importance sampling with varying number of samples. From left to right: 1, 3, 10, 30, 60, 100
samples per pixel. The larger image on the left represents ground truth and was rendered using brute force ray tracing. The light
directions generated by structured importance sampling were jittered to avoid banding in the shadows. Note that structured importance
sampling does not work well with very few number of samples, whereas wavelet product sampling quickly gives a good approximation.
BRDF importance sampling works relatively well for the glossy Buddha, but very poorly for the diffuse floor. The rendering times for
structured importance sampling were between 4–103 seconds, and for wavelet product sampling between 15–205 seconds, using a wavelet
resolution of 64×64 . The variance plot in the lower left corner clearly shows that our algorithm outperforms the other two.

approximately half the number of samples for equal render-
ing times. As the number of samples grows, this difference
becomes smaller.

Figure 10 shows the effect of using a sparse wavelet repre-
sentation of the BRDF. We have found that for most mea-
sured BRDFs, a wavelet resolution of 64×64, and about 2%

of the wavelet coefficients are enough to produce render-
ings indistinguishable from reference images. This combined
with reparameterization, allows us to store general BRDFs
in around 300kB (resolution 16× 16× 64× 64) or in higher
resolution (32 × 32 × 128 × 128) using 5MB. The memory
usage could be further optimized, but it is not a major ob-
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0.5% 1.0% 2.0% 5.0%

Figure 10: Buddha with a measured BRDF (oxidized steel), ren-
dered with different levels of BRDF compression. From left to
right: 0.5%, 1%, 2%, and 5% sparsity. In practice, a sparsity of
1%–2% produces good results for a wide variety of materials.

Figure 11: Glossy dragon in Galileo’s tomb rendered using 30
samples per pixel. The left image was rendered using on-the-
fly 2D wavelet products and the right image used 4D wavelet
products as a pre-process. The right image rendered 2.1 times as
fast.

stacle at this point. The computation time for creating the
BRDFs is a few minutes, and is not included in the render-
ing times. For the pre-rotated lighting environment, we use
a denser sampling of 644 or 1284, as the lighting is typically
more rapidly varying. In our implementation, the wavelet
environment maps can take up to a couple of hours to cre-
ate, mainly due to extensive super-sampling.

Figure 11 compares a dragon scene rendered using sample
points warped on-the-fly by a tabulated set of 2D wavelet
products and the same scene rendered using sample points
warped as a pre-process by a full 4D×2D wavelet product.
Both versions used 30 samples per pixel, but since no wavelet
products were evaluated during render time with the 4D
version, it rendered a factor 2.1 times faster.

Figure 12 shows a complex scene with 12 different mea-
sured BRDFs applied to two car models, illuminated by the
eucalyptus grove light probe. This shows that with our tech-
nique, it is possible to render complex scenes under real-
istic lighting conditions with very few number of samples.
The sampling handles highly glossy materials equally well
as more diffuse ones.

8 Conclusions and Future Work

We have presented a new general tool for importance sam-
pling products of complex functions. Our technique is not
limited to a specific subset of functions, nor is it limited by
the dimensionality of the functions. As an example we used
the evaluation of the rendering equation, considering general
BRDFs under direct illumination by an environment map.
Wavelet importance sampling of the BRDF times the envi-
ronment map proved to give superior sample distributions,
enabling us to render essentially noise-free images using as
few as 30–100 samples per pixel.

There are many possible applications for wavelet impor-
tance sampling of products. For example, our technique
could be used for importance sampling of 4D surface light
fields [Miller et al. 1998; Lalonde and Fournier 1999] mul-

tiplied by general BRDFs, or even by 6D bidirectional tex-
ture functions [Dana et al. 1999]. Another new application
is importance sampling over the time domain for rendering
animations more efficiently. For example, the product of a
time-varying environment map and a BRDF could be used
to generate samples that are well distributed in both time
and space. We are confident our work will be useful in a
wide variety of problems involving importance sampling of
complex functions.

In the future, we are planning to apply wavelet importance
sampling to some of these problems, and further investigate
the effect of different parameters on the result. A deeper
more theoretical analysis of how the properties of the ini-
tial point distribution are affected by the warping would be
useful.
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A Multi-Dimensional Wavelet Product

In this appendix, we will show how to derive Equation 5.
Recall that we want to compute the ith basis coefficient of the
product, G = E ·F , where G and E have n dimensions each,
and F has m dimensions, and 0 < m ≤ n. Furthermore,
assume we have the following vectors x = (x1, x2, . . . , xn),
x = (x1, x2, . . . , xm), m ≤ n. For an orthonormal basis, the
ith basis coefficient of G(x) = E(x) · F (x) is computed by
projecting G onto the ith basis function:

Gi =

Z
· · ·
Z

| {z }
n

Ψi(x)G(x)dx =

Z
· · ·
Z

Ψi(x)E(x)F (x)dx

=

Z
· · ·
Z

Ψi(x)

0@X
j

EjΨj(x)

1A X
k

FkΨk(x)

!
dx

=
X
j

X
k

„
EjFk

Z
· · ·
Z

Ψi(x)Ψj(x)Ψk(x)dx

«
=
X
j

X
k

CijkEjFk, where

Cijk =

Z
· · ·
Z

| {z }
n

Ψi(x)Ψj(x)Ψk(x)dx. (12)

Note that Ψi and Ψj are n-dimensional basis functions, and
Ψk is an m-dimensional basis function. The above reasoning
works for an arbitrary orthonormal basis even though the fo-
cus of our work is on the normalized Haar basis. A crucial
insight to generalizing Haar wavelet products to higher di-
mensions is that higher dimension Haar basis functions are
separable. For example, in the two-dimensional case this
means:

Ψi = Ψl
t,f (x1, x2) =

8<: φl
t1(x1)ψ

l
t2(x2), if f = 01,

ψl
t1(x1)φ

l
t2(x2), if f = 10,

ψl
t1(x1)ψ

l
t2(x2), if f = 11.

(13)
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Here, the index i includes all information from l, t, and f .
Also, note that t = (t1, t2) is a vector of translations, and
f = (f1, f2) is an 2-bit vector that determines which combi-
nation of basis functions should be used. For n dimensions,
this generalizes to vectors of n elements. A n-dimensional
image, H, is then described as H =

P
iHiΨi (see Equa-

tion 1). To simplify notation, we introduce the following
function:

χ
α(i,q)(xq) :=


φl

tq
(xq), if fq = 0,

ψl
tq

(xq), if fq = 1,
(14)

where α(i, q) = (l, tq, fq), i.e., it picks out the parameters
related to the q:th dimension of i. Thus, our shorthand
for Equation 13 becomes Ψi(x1, x2) = χ

α(i,1)(x1)χα(i,2)(x2).
This reasoning generalizes to higher dimensions as well.

The n-dimensional Haar basis functions can be written
as products of one-dimensional scaling or wavelet functions:
Ψi(x) =

Qn
q=1 χα(i,q)(xq), where q is simply a dimension

index. This separability property is used below to prove that
the tripling coefficient from Equation 12 can be computed
as a product of one-dimensional integrals:

Cijk =

Z
· · ·
Z

| {z }
n

Ψi(x)Ψj(x)Ψk(x)dx

=

mY
q=1

0BBB@
Z
χ

α(i,q)(xq)χα(j,q)(xq)χα(k,q)(xq)dxq| {z }
1D tripling coefficient

1CCCA×
nY

p=m+1

0BBB@
Z
χ

α(i,p)(xp)χ
α(j,p)(xp)dxp| {z }

1D non-standard coupling coefficient

1CCCA
=

mY
q=1

c
α(ijk,q) ×

nY
p=m+1

∆
α(ij,p) . (15)

In the last line in the equation above, c
α(ijk,q) is used to

denote a one-dimensional tripling coefficient, and ∆
α(ij,p)

is, what we call, a one-dimensional non-standard coupling
coefficient. Similar to before, the functions α(ijk, q) and
α(ij, q) pick out the relevant parameters from i, j, and k for
the q:th dimension. For the Haar basis, ∆

α(ij,p) = 1 if the

corresponding two basis functions, identified by α(i, p) and
α(j, p), are exactly the same1. If the two basis functions are
overlapping and the finest of the basis functions is a scaling
function, then ∆

α(ij,p) = ±2(l1−l2)/2, where l1 and l2 are the
levels of the two involved basis functions and l1 < l2. The
sign is determined by the signs of the basis functions where
they overlap.

B Proof of 1D Haar Tripling Coefficient
Theorem

For this proof, we assume that the normalized Haar basis
is used, and for that the wavelet basis functions have van-
ishing integrals. In the following, support of the three basis
functions must overlap, otherwise c

α(ijk,q) = 0.

1This is the same case as for the standard coupling coefficient,
i.e., a Kronecker delta.

Case 1: All basis functions at the same level Since the
support of all basis functions at the same level are disjoint,
the three basis functions must share the same translation, t.
Due to orthonormality, the product of two identical basis
functions must be a constant function, 2l/2 × 2l/2 = 2l with
the same support as the terms in the product. The integral
of a constant function times the third basis function is zero if
the third basis function is a wavelet function due to vanishing
integrals of the wavelets. If the third basis function is a
scaling function, thus with height 2l/2, then c

α(ijk,q) = 2l ×
2l/2 × 2−l = 2l/2, where l is the level of the three basis
functions and 2−l is the width of the basis functions.

Case 2: Exactly two basis functions at the same level We
first assume that the basis functions sharing level are at a
finer level than the third basis function. The third function
will therefore be constant over the support of the two func-
tions sharing level. Thus, the two functions sharing level
need to be exactly the same due to orthonormality. Using
similar reasoning as for case 1, the tripling coefficient be-
comes c

α(ijk,q) = ±2l/2, where l is the level of the third basis

function (at a coarser level), and the sign is determined by
the sign of the third basis function where the finer functions
overlap. In all other cases, c

α(ijk,q) = 0.
Next, we assume that the basis functions sharing level are

at a coarser level than the third basis function. The product
of the two coarser basis functions will be constant over the
support of the finer basis function. Hence, due to vanishing
integrals, c

α(ijk,q) = 0, if the third basis function is a wavelet
function. If the third basis function is a scaling function,
then c

α(ijk,q) = ±2l1/2×2l2/2×2l3/2×2−l1 = ±2(l2+l3−l1)/2,
where l1 is the finest level, and l2 = l3 is the level of the basis
functions sharing level.

Case 3: All three basis functions at different levels Due to
orthonormality, the product of the two coarsest basis func-
tions must be a constant function ±2l2/2 × 2l3/2 over the
support of the finest basis function. Again, due to vanish-
ing integrals, c

α(ijk,q) = 0 if the basis function at the finest
level is a wavelet function. Using similar reasoning to case 2,
c

α(ijk,q) = ±2l1/2×2l2/2×2l3/2×2−l1 = ±2(l2+l3−l1)/2 when
the basis function at the finest level is a scaling function.
This concludes the proof.
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