
C
Density Estimation

DENSITY estimation is a common problem that occurs in many different fields. We may, for

instance, want to determine the likelihood of heart attack for a particular age group given

a large collection of medical reports. We may also be interested in the geographical distribution

of a particular group of people, using census reports or a telephone survey. Another application

could be in predicting the outcome of a natural phenomenon based on observations of its past

behavior, such as the eruption interval of a geyser. In the context of computer graphics, we may

also wish to determine the intensity of light in a medium based on the distribution of photons in

the scene. All of these problems are concerned with the same basic problem of density estimation.

Density estimation is a research area in statistics and has been studied extensively in

this field. Density estimation has also been used in the field of computer graphics [Zareski et al.,

1995; Shirley et al., 1995; Walter et al., 1997; Walter, 1998]. The volumetric photon mapping

technique developed in Chapter 8, as well as the original photon mapping method upon which

it is based [Jensen, 1996, 2001; Jensen and Christensen, 1998], can be thought of as a density

estimation process and relies on tools developed in statistical modeling.

In this chapter we provide a brief overview of the theory of density estimation as well

as review some of the available approaches. More in-depth introduction to these concepts can

be found in the classical text by Silverman [1986] as well as Scott [1992]. Other references in the

computer graphics literature include Dutré et al. [2006] and Walter [1998].

178



179

C.1 Introduction

In density estimation we are interested in determining an unknown function f , given only

random samples or observations distributed according to this function. More formally, the goal

of density estimation is to infer the probability density function, or PDF, from observations of a

random variable. We have already discussed the use of PDFs and random variables in Appendix A

with the goal of numerically integrating functions. Density estimation is concerned with a related,

but inverse, problem: given a set of random samples, determine what PDF was used to create

them.

Density estimation approaches can be broadly classified into two groups: parametric

density estimation and non-parametric density estimation.

Parametric Methods. Parametric methods make strict a priori assumptions about the form of

the underlying density function. For instance, a parametric approach may assume the random

variables have a Gaussian distribution or the PDF is a polynomial of a particular degree. Such

assumptions significantly simplify the problem, since only the parameters of the chosen family

of functions need to be determined. In the case of a normal distribution, the density estimation

process reduces to determining the mean µ and standard deviation σ of the sample points.

Non-Parametric Methods. Oftentimes it is not possible to make such strict assumptions about

the form of the underlying density function. Non-parametric approaches are more appropriate

in these situations. These techniques make few assumptions about the density function and

allow the data to drive the estimation process more directly. In the context of computer graphics,

non-parametric approaches are typically the most appropriate, and we will focus on these in the

remaining sections.

C.2 Histograms

The simplest form of density estimation is the histogram method. This approach subdi-

vides the domain into bins and counts the number of samples nb which fall into each bin. The
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local probability density is obtained by dividing the number of samples in each bin by the total

number of samples N and the bin width h. This can be expressed as

f̂ (x) = nb

N h
for xb ≤ x < xb+1, (C.1)

where xb and xb+1 are the extents of bin b, and h = xb+1 − xb . We use f̂ to denote a density

estimate of the probability density function f .

The histogram method has a number of advantages. It is easy to implement and provides

results which are straightforward to visualize and intuitive to interpret. Also, it is easy to show

that f̂ is a valid PDF since it is always non-negative and integrates to one over the entire domain.

However, histograms have many problems, which motivated the developed of more advanced

methods.

One issue with histograms is that the resulting density function is not smooth. In fact,

it has zero derivatives everywhere, except at the bin transitions, where its derivative is infinite.

This issue can be catastrophic in applications, such as clustering, which rely on following the

derivative to find local maxima. In computer graphics, this issue is not as extreme, but the

derivative discontinuities can lead to objectionable artifacts, which can be avoided with more

advanced techniques.

Another issue with histograms is that the choice of bin transition locations, even when

keeping h fixed, can significantly affect the resulting PDF. This extra degree of freedom is com-

pletely independent of the underlying data and is simply a side effect of the estimation method

itself.

Several approaches have been developed to address some of these concerns. Orthogonal

series estimation, discussed in the next section, directly addresses the issue of discontinuity. The

naïve estimator and all its generalizations come about by attempting to remove the choice of

absolute bin positions.
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C.3 Orthogonal Series Estimation

Histograms yield a single average value within each bin, which leads to discontinuities.

In order to construct smoother approximations of the underlying PDF, it is possible to directly

estimate a higher-order function within each bin. By choosing the functions at neighboring

bins to match at the transitions, we can further construct approximations of the PDF which are

differentiable everywhere.

To compute higher-order approximations, we decompose the PDF within each bin b as a

weighted sum of basis functions Ψb, j (x):

f̂ (x) =∑
j

fb, j Ψb, j (x). (C.2)

The fb, j terms are coefficients which scale the contribution of each basis function j within

each bin b. These are defined as the inner product of the density function f and the dual basis

functions Ψ̃b, j :

fb, j =
∫

f (x)Ψ̃b, j dx. (C.3)

The dual basis function Ψ̃b, j are obtained using an orthogonality constraint. Specifically, for any

fixed bin b the inner product of Ψ̃b, j with any of the basis functionsΨb, j should be:

∫
Ψ̃b, j (x)Ψb,k (x) dx = δ j ,k . (C.4)

The coefficients can be estimated from the random samples using a Monte Carlo estimate

of Equation C.3:

fb, j ≈
1

N

N−1∑
i=0

f (xi )Ψ̃b, j (xs)

pdf (xi )
(C.5)

≈ 1

N

N−1∑
i=0

Ψ̃b, j (xi ). (C.6)
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Relation to Histograms. In the case of a constant basis function within each bin, the orthogonal

series estimator reverts to the histogram method. In this case the single dual basis function for

bin b is

Ψ̃b(x) =
{

1
h if xb ≤ x < xb+1,

0 otherwise.
(C.7)

It is easy to see that this basis function results in the histogram estimator in Equation C.1.

C.4 Naïve Estimator

Another generalization of the histogram method, which Silverman [1986] calls the naïve

estimator, addresses the choice of bin locations. The main idea behind this method is to use the

estimation point to adaptively determine the bin locations, thereby eliminating it as an extra

parameter. This estimator can be written as:

f̂ (x) = nx

N 2h
, (C.8)

where nx is the number of sample points which fall within the interval [x−h, x+h). Comparing the

above estimator to Equation C.1 we see that it is equivalent to a histogram where the estimation

point x is used as the center of the bin, and the bin width is 2h. Therefore, the naïve estimator is

always globally a valid PDF, i.e., it is non-negative and integrates to one.

It can be informative to rewrite Equation C.8 by introducting the weighting function w :

w(t ) =
{

1
2 if |t | < 1,

0 otherwise.
(C.9)

Using this notation, we can express the naïve estimator as

f̂ (x) = 1

N h

N−1∑
i=0

w
( x −xi

h

)
, (C.10)

where xi are the data samples. In this form, it is easy to see that the naïve estimator places a

“box” of width 2h and height (2hN )−1 at each data point and sums up the contributions. This
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interpretation is useful in deriving the kernel estimator, which we discuss in the next section.

C.5 Kernel Estimator

Though the naïve estimator eliminates the problem of choosing the bin locations, it does

not address some of the other limitations of the histogram method. The kernel method generalizes

the naïve estimator to eliminate the discontinuous nature of the resulting PDF.

By examining Equation C.10 we observe that the reason for discontinuities is due to

our particular choice of weighting function w , which has zero derivatives and discontinuities at

|x| = 1. In fact, it is easy to show that the naïve estimator inherits all the differential properties

of the weighting function since it is a simple sum. We can therefore improve the smoothness of

the estimator by improving the smoothness of the weighting function. We accomplish this by

replacing w with a smooth kernel function K . Our only restriction is that K must integrate to one:

∫ ∞

−∞
K (t ) dt = 1. (C.11)

With this restriction in place, we can define the kernel estimator as

f̂ (x) = 1

N h

N−1∑
i=0

K
( x −xi

h

)
, (C.12)

where h controls the amount of smoothing and is called the window width or bandwidth of the

kernel. To make the notation more concise, it is often convenient to set Kh(t ) = (h−1)K (h−1t ) and

express the kernel estimator simply as

f̂ (x) = 1

N

N−1∑
i=0

Kh(x −xi ). (C.13)

Typically we will choose K to be a smooth, symmetric function, which has a strong

influence at x = xi and decreased influence as the distance x − xi increases. Some common

examples include the normalized Gaussian kernel, the bi-weight kernel, and the Epanechnikov

kernel [Silverman, 1986]. Analogous to our interpretation of the naïve estimator as a sum of
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“boxes” at the data point, the kernel estimator is a sum of smooth “bumps” at the data points. Also

note that if we use a constant kernel, then the kernel method reverts to the naïve estimator.

The kernel method can also be interpreted as a blurring process, or a convolution opera-

tion on the data points. If we consider the data points as Dirac delta impulses, δ, then the kernel

method can be written as

f̂ (x) = Kh(x)?

(
1

N

N−1∑
i=0

δ(x −xi )

)
(C.14)

=
∫ ∞

−∞
Kh(x)

(
1

N

N−1∑
i=0

δ(x −xi )

)
dx, (C.15)

= 1

N

N−1∑
i=0

Kh(x −xi ). (C.16)

C.6 Locally Adaptive Estimators

In developing all the estimators so far, we have ignored one important consideration.

The window width, or, in the case of the histogram the bin width, plays an important role in the

behavior of the resulting density function.

At a high level, the bandwidth determines the amount of smoothing that is performed on

the sample data. It is important to set this parameter properly. Choosing a value that is too small

will result in under-smoothing and erratic fluctuations in the estimator which are not present in

the original PDF. On the other hand, using a very large value may over-smooth the data, potentially

eliminating important features of the underlying PDF. In practice it is very hard to choose an

optimal bandwidth without knowing something about the density function itself.

More formally, this tradeoff can be expressed as trying to minimize the sum of the global

bias and variance of the estimator. As we increase the bandwidth, we are smoothing the true

PDF, which reduces variance but introduces bias. In contrast, if we decrease the bandwidth, we

decrease the bias but increase variance. When we need to choose a bandwidth parameter for the

whole domain of the data, a common technique is to try to minimize the mean integrated squared
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error:

MISE( f̂ ) = E
∫ [

f̂ (x)− f (x)
]2

dx, (C.17)

=
∫

V
[

f̂ (x)
]+β[

f̂ (x)
]2

dx, (C.18)

which is the sum of the integrated variance and the integrated squared bias. Computing the

MISE exactly requires information about the unknown true density f . However, since the density

estimator f̂ is a function of a random variable, it is itself a random variable. We can therefore

apply the tools from Appendix A to estimate the variance and the bias of f̂ .

Unfortunately, a single bandwidth may not be optimal for all regions of the domain. For

instance, a single bandwidth value may over-smooth features in high density regions and, at the

same time, under-smooth regions in the “tails” of the distribution where few samples are present.

Locally adaptive methods attempt to address this issue by allowing the bandwidth to change

across the domain of the PDF. We will consider two different approaches for adaptively modify the

kernel bandwidth [Jones, 1990]. The first class of techniques, called balloon estimators, vary the

bandwidth based on the evaluation point x. The second set of techniques, called sample-point

estimators, vary the bandwidth based on the data points xi .

C.6.1 Balloon Estimator

The general form of the balloon estimator is given by

f̂ (x) = 1

N h(x)

N−1∑
i=0

K

(
x −xi

h(x)

)
, (C.19)

= 1

N

N−1∑
i=0

Khx (x −xi ), (C.20)

where h(x) is the bandwidth as a function of x, the evaluation location.

The balloon estimator was introduced by Loftsgaarden and Quesenberry [1965] in the

form of the kth nearest neighbor estimator, which can be written in the form of Equation C.19

by using a constant kernel and setting h(x) = dk (x) where dk (x) returns the distance to the kth

nearest data point to x. In fact, Silverman [1986] refers to (a slightly more restricted version of)
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Equation C.19 as the generalized kth nearest neighbor estimator.

The balloon estimator unfortunately suffers from a number of inefficiencies, especially

in the univariate case. Firstly, the PDF derived using a balloon estimator will not, in general,

integrate to one over the entire domain. If a global estimate of the PDF is needed, then this

can be problematic. In computer graphics, however, this is not generally a major problem since

we typically only care about the pointwise behavior of the estimated density. Another problem

with the nearest neighbor estimator is that the bandwidth is a discontinuous function, and these

discontinuities manifest themselves directly in the resulting PDF. This is true even if the chosen

kernel is itself smooth. In computer graphics this can lead to mach banding and other visual

artifacts.

C.6.2 Sample-point Estimator

The second type of local bandwidth estimator is called the sample-point estimator. The

general form of the sample-point estimator is given by

f̂ (x) = 1

N

N−1∑
i=0

1

h(xi )
K

(
x −xi

h(xi )

)
, (C.21)

= 1

N

N−1∑
i=0

Khxi
(x −xi ). (C.22)

Note that the only difference to the balloon estimator in Equation C.19 is that the bandwidth h(xi )

is a function of the sample points xi and not the evaluation point x. The sample-point estimator

was first introduced by Breiman et al. [1977] under the name of the variable kernel method.

Just as in the regular kernel estimator, the sample-point estimator places a kernel at each

data point, but these kernels are allowed to vary in size from one data point to another. Typically,

the bandwidth of a data point is chosen based on the local density of samples in the vicinity. This

requires performing a pilot estimate to compute the local density at each data point and assign

the bandwidths.

Sample-point estimators do have a number of benefits over balloon estimators. Firstly,

since each kernel is normalized, the estimator itself is a valid PDF, which integrates to one.

Furthermore, unlike the balloon estimator, the sample-point estimator inherits all the differential
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properties of the kernel functions and can therefore be made fully continuious. Another practical

advantage of sample-point estimators is that the extent of each sample point is known before

density evaluation begins. This often allows for simpler and more efficient data structures to be

used during density evaluation. The beam radiance estimate developed in Chapter 8 exploits

exactly this property of sample-point estimators.


