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Figure 1: Top: error bound estimation on a test scene. We show the reference rendering (left), as well as the actual error (red) and estimated error bound
(green) at the three points (a,b,c) shown in the reference images. The specified confidence is 90%. Each iteration uses 15K photons. Bottom: rendering with
specified error thresholds. The rendering process is terminated once the error estimate reaches the specified threshold. Our conservative error bound predicts
the rate of convergence of the true average error automatically (log-log plot).

Introduction Estimating error is an important task in rendering.
For many predictive rendering applications such as simulation of
car headlights, lighting design, or architectural design it is import
to provide an estimate of the actual error to ensure confidence and
accuracy of the results. Even for applications where accuracy is not
critical, error estimation is still useful for improving aspects of the
rendering algorithm. Examples include terminating the rendering
algorithm automatically, adaptive sampling where the parameters of
the rendering algorithm are adjusted dynamically to minimize the
error, and interpolating sparsely sampled radiance within a given
error bound.
We present a general error bound estimation framework for global
illumination rendering using photon density estimation. Our method
estimates bias due to density estimation of photons, and variance due
to photon tracing. Our error bound estimation is robust for any light
transport configuration since it is based on progressive photon map-
ping (PPM). We demonstrate that our estimated error bound captures
error under complex light transport. Figure 1 shows that our error
bound estimation works well under complex illumination including
caustics. As a proof of concept of our error bound estimation, we
demonstrate that it can be used to automatically terminate rendering
without any subjective trial and error by a user. Our framework is
the first general error estimation framework for photon based ren-
dering methods that can handle complex global light transport with
arbitrary light paths and materials. Existing work is either based on
heuristics that do not capture error, or are limited to specific light
paths or materials. We believe that our work is the first step towards
answering the important question: “How many photons are needed
to render this scene?”.

Our Framework Unbiased Monte Carlo ray tracing algorithms
are often preferred for predictive rendering since the error bound
can be estimated based on variance. However, unbiased methods
are not robust in the presence of specular reflections or refractions
of caustics from small light sources, which can be often seen in
applications of lighting simulation (light bulbs, headlights etc). We
therefore use progressive photon mapping (PPM) [Hachisuka et al.
2008], which is a biased Monte Carlo algorithm that is robust under
these lighting conditions. Our error estimation framework estimates

the following stochastic error bound: P (−Ei < Li − L − Bi <
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, t(i, x) is the x percentile
of the t-distribution with degree i, Li is estimated radiance, Bi is
estimated bias, Vi is estimated variance, L is the correct radiance,
and 1− β is user-defined confidence of this stochastic bound. Using
this stochastic error bound, the user can simply specify their desired
confidence as 1 − β, and our framework can tell how far the current
estimated radiance is from the correct radiance without knowing L.
We estimate the bias as Bi ≈ 1

2
R2
i k2∆L [Silverman 1986], where

k2 is a constant derived from the kernel and Ri is the radius for
density estimation. We show how to apply this technique to the
progressive density estimation used in progressive photon mapping.
This equation uses the Laplacian of the unknown, correct radiance
∆L. We estimate this value using the Laplacian of the kernel, which
has been used in standard density estimation techniques. Although
the original PPM does not support smooth kernels that have a Lapla-
cian, we derive the necessary conditions for incorporating these
kernel functions within PPM. Using our kernel-based PPM, we can
estimate any order of derivatives including the Laplacian of radiance
in a consistent way, which has not been done in existing work and
would be useful for analysis of illumination.
Unfortunately, the standard procedure to estimate variance cannot
be used in biased methods. We therefore propose estimating vari-
ance using bias-corrected radiance Li −Bi, which also removes the
dependency between samples in PPM. The same framework can be
applied in a straight forward way for photon mapping or grid-based
photon-density estimation by simply estimating the Laplacian. The
advantage of using PPM is that the estimation of the Laplacian con-
verges to the correct Laplacian in the limit, not just an approximation.
That means that the entire framework is consistent except for the
approximation of bias.
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