
Using Particles to Sample and Control More Complex Implicit Surfaces

John C. Hart, Ed Bachta, Wojciech Jarosz, Terry Fleury
University of Illinois

{jch|bachta|wjarosz|tfleury}@uiuc.edu

Abstract

In 1994, Witkin and Heckbert developed a method for
interactively modeling implicit surfaces by simultaneously
constaining a particle system to lie on an implicit surface
and vice-versa. This interface was demonstrated to be ef-
fective and easy to use on example models containing a
few blobby spheres and cylinders. This system becomes
much more difficult to implement and operate on more com-
plex implicit models. The derivatives needed for the parti-
cle system behavior can become laborious and error-prone
when implemented for more complex models. We have de-
veloped, implemented and tested techniques for automatic
and numerical differentiation of the implicit surface func-
tion. Complex models also require a large number of pa-
rameters, and the management and control of these param-
eters is often not intuitive. We have developed adapters,
which are special shape-transformation operators that au-
tomatically adjust the underlying parameters to yield the
same effect as the transformation. These new techniques
allow constrained particle systems to sample and control
more complex models than before possible.

1 Introduction

Witkin and Heckbert [14] revolutionized implicit surface
modeling by using a particle system to both display and
control an implicit surface. Their treatment used a real func-
tion F : R3 ×Q → R over model spaceR3 and a contin-
uous parameter spaceQ. This real function yielded an im-
plicit surface as the solution pointsx such thatF (x,q) = 0
for a fixed, given vector of parametersq ∈ Q.

A particle pi constrained to the implicit surface ofF
such thatF (pi,q) = 0 is called afloater.This constraint is
enforced by setting its original velocitẏPi to a legal veloc-
ity ṗi by subtracting any illegal components normal to the
implicit surface

ṗi = Ṗi − F i
x · Ṗi + Fq · q̇ + φF i

F i
x · F i

x

F i
x. (1)

(Note that hereṖ denotes the desired velocity instead of
P [14].) These illegal components are due to either par-
ticle velocities (F i

x · Ṗi) or parameter velocities (Fq · q̇)
that change the resulting value ofF. Hence we need the
derivative ofF with respect to both its embeddingFx and
its parameterizationFq.

The constrained particle system displayed the implicit
surface with a collection of disks centered at the parti-
cles oriented according to the surface normal. These ori-
ented disks provide a usable and highly responsive display
of the underlying implicit surface, and also yield a quasi-
volumetric display of the surface that reveals interior struc-
ture in the gaps between disks. The visual edge noise cre-
ated by the disks can sometimes be distracting, but this can
be overcome by connecting the particles into a polygoniza-
tion using a topological guarantee [12].

Some floater particles can be selected as control parti-
cles, which means the implicit surface is constrained to pass
through these particles. Control particles can be dragged to
new locations, and the implicit surface deforms to accomo-
date its new position. This deformation occurs by changing
the parametersq of the implicit surface using the parameter
velocity

q̇ = Q̇−
∑

j

λjF j
q. (2)

The indexj is the index of the control particle, anḋQ is
the desired unconstrained parameter velocity. Theλj are
Lagrange multipliers found by solving the system∑

j

(
F i

q · F j
q

)
λj = F i

q · Q̇ + F i
x · ṗi + φF i. (3)

The desired parameter velocitẏQ is usually zero, such that
(2) and (3) dissipate control particle velocitiesṗ into pa-
rameter velocitieṡq.

Witkin and Heckbert [14] alluded to an object-oriented
implicit surface class hierarchy, where new implicit model
objects need to implementF, Fx, Fq and a bounding box (to
keep the particles from following a non-compact manifold
indefinitely). Most implicit modeling systems implement
the function, its gradient and a bounding box, so the only

1

new information needed is the derivative of the implicit sur-
face function with respect to its parameters.

The goal of the work described in this paper is to inte-
grate the particle system into a full-featured implicit surface
modeling system. Section 2 reviews some previous implicit
surface modeling systems. To our knowledge, no one has
yet implemented such an object hierarchy in a full-featured
implicit modeling system based on the control particle in-
terface.

We have developed such an object-oriented class hierar-
chy specifically for inclusion into a particle-based model-
ing system. Section 3 describes the flexibility of our system
that includes a large variety of implicit surface primitives
and operators.

Witkin and Heckbert [14] suggest (onceFq is imple-
mented) the application of particle-based interaction to
complex hierarchical implicit surface models is straight-
forward. In the process of implementing such a system
we have found several setbacks, specifically in implement-
ing and debugging the function derivativesFx and Fq,
and managing large numbers of parameters for manipulat-
ing complex composite implicit surface models, as demon-
strated by the 30+ parameters shown in Figures 1 and 2.

One of the challenges of implementing a full-featured
implicit surface representation for a particle-based modeler
is the development of the derivatives needed. The particle-
based modeler requires each primitive and operator to have
a derivative with respect to its embedding space and its pa-
rameters. Section 4 describes several methods available to
ease the programming of these derivatives.

Complex hierarchies of implicit operators and primi-
tives quickly grow to become overwhelming. Section 5
describes methods for modeling that use special opera-
tors called adapters that reparameterize a complex implicit
model. This reparameterization simplifies the modeling
process by providing more intuitive parameters to the user.

2 Other Complex Implicit Surface Modeling
Systems

This paper develops a modeling system capable of creat-
ing complex models of a wide variety of implicit primitives
and operators using a particle system for display and con-
trol. Several other modeling systems have been previously
developed to create complex implicit surface models, but
each of these system has been limited to a specific subset of
implicit primitives and operations.

Witkin and Heckbert [14] used a prototype implemen-
tion of a particle-based implicit surface modeler that proved
the concept. Their implementation was never released, and
only supported small collections of a few primitives, in-
cluding blobby spheres and cylinders. Pedersen [8] later
released a more robust, flexible and freely available particle

system based on (1) of floater particles for displaying im-
plicit surfaces, but it did not include an implementation of
(2) and (3) that provided the control particles needed to in-
teractively change the surface parameters. Stander and Hart
[12] later described how to use interval analysis and Morse
theory to connect surface constrained floater particles into
a polygonization. Their implementation was also a proof-
of-concept prototype that was never released. It was limited
to axis-aligned Gaussian ellipsoids, and the dynamic mesh
that connected the particles into a polygonization was very
fragile.

The Blob Tree integrated multiple implicit modeling
tools into a single scene description hierarchy for implicit
surface modeling [15]. The Blob Tree was based on
piecewise-polynomial blobby sphere primitives that blend
when placed in proximity to each other. The Blob Tree or-
ganized objects into groups and groups can be combined
with a smooth surface blend or a creased CSG operation.
The blend tree also supported other implicit surface opera-
tions, for example non-linear deformations.

The Hyperfun system supported collaborative model-
ing of implicit surfaces [1]. Hyperfun is based on R-
functions which generalize blending between primitives to
include non-blended CSG operations. Its components in-
clude a scene description hierarchy, a declarative language
for defining functions, new file formats for communicating
implicit surface descriptions, and integration of the results
into common graphics systems such as POVRay.

Implicit surfaces are also supported by the VTK toolkit
[10, 11]. These implicit surfaces could be used a sources
for volumetric “structured-points” data pipelines. These
pipelines can be made arbitrarily complex, and have been
used to model context geometry to aid in the visualization
of acquired volumetric data [9]. Implicit surface sources
are integrated into the VTK toolkit by defining the function
and its gradient, though the VTK tools typically sample the
source into a volume before performing any further process-
ing.

3 A General Implicit Object Model

Many previous implicit surface modeling systems have
focused only on a subset of the available implicit surface
models. Our goal is to design a general full-featured im-
plicit surface system that could support any implicit surface
representation or operation.

The Implicit class sits at the root of our im-
plicit surface hierarchy, and contains three key member
functions. The member functionproc (x) returns the
scalar resultF (x,q). The member functiongrad (x) re-
turns the 3-vector resultFx(x,q). The member function
procq (x,dq) puts the derivativeFq(x,q) into the vector
dq. Each of these functions assumesq is constant and held

2

Figure 1. A sample screen of our particle-based modeler directly manipulating a quartic surface. This
quartic surface has 35 continuous parameters shown on the right that can be entered individually or
selected to be set by the controller particle constraints.

Figure 2. The particle-based modeler directly manipulating a dumbell modeled using R-functions.
This composite surface has 34 continuous parameters shown on the right that can be entered
individually or selected to be set by the controller particle constraints.

3

within theImplicit as part of its internal state.
We provide member access to the continuous parameters

through an interface uniform across all classes derived from
Implicit . The member functiongetq (q) puts the cur-
rent parameters in vectorq, whereas the membersetq (q)
sets the current parameters to those in vectorq. This param-
eter access allows the particle system to query and adjust the
continuous parameters as necessary to apply the floater and
control particle constraints. The actual implementation of
a specific implicit object need not store its parameters in a
vector, and can provide additional specialized access meth-
ods to its parameters1.

We have also implemented implicit surface operators
(e.g. offset, scale, union, etc.). These operators affect the in-
puts and/or the outputs of one or more operand implicit ob-
jects. Thegetq andsetq functions for the operators place
the operator’s parameters at the beginning of the vector, and
follow them with the parameters of its operands. Hence, one
can access all of the parameters of a hierarchically-defined
implicit object through thegetq /setq interface of the root
operator object in the hierarchy.

4 Differentiation

One of the main obstacles in our implementation of a va-
riety of implicit surface models has been in the derivation,
implementation and debugging of derivatives of the func-
tions.

4.1 Operator-Level Automatic Differentiation

The derivatives of operators, namelygrad andprocq ,
are implemented using use the chain rule, eventually calling
grad andprocq of the operands. The operations can be
considered an arithmetic on implicit objects, which makes
the chain-rulegrad andprocq implementations a partial
form of automatic differentiation,

One could define arithmetic operations as Implicit op-
erators. For example, the operatorTimes implements the
functionFG as

Times::proc(x) {
return F->proc(x) * G->proc(x);

}
Times::grad(x) {

return F->grad(x)*G->proc(x) +
F->proc(x)*G->grad(x);

}

1For example, we have derived anAlgebraic class from Implicit that
provides access to thed3/6 + d2 + 11d/6 + 1 coefficients of a degreed
trivariate polynomial. The coefficients are returned sorted by degree, then
by x, y andz exponents. However, access to these coefficients is much
easier by providing the exponents ofx, y andz than providing a single
coefficient index.

Given a sufficient set of these arithmetic operations, one
could implement any implicit model. Implicit models con-
structed by composing these operators would have their dif-
ferential functions automatically defined, since these ob-
jects compute their own derivatives. However, such an im-
plementation would be cumbersome and inefficient.

Rather than implement high-level shape operators using
automatically differentiated low-level arithmetic operators,
we chose instead to automatically differentiate the high-
level shape operators. A good example is our implemen-
tation of an abstractBlend class. Our blend class assumes
the blend combines the isocontours of its operand implicit
objectsF andG [6]. The blend is thus defined by a real
bivariate functionh(f, g) of the valuesf, g returned by the
operands. The blend surface is thus implemented as

Blend::proc(x) {
return h(F->proc(x),G->proc(x));

}

Specific blends are derived from theBlend class, and
define the pure virtual functionh. The blobby model can
blend arbitrary implicit surfaces using the function

h(f, g) = T − e−f−a − e−g−b (4)

whereT, a andb control the “blobbiness” of the blend [4].
The superelliptical blend is given in this form as

h(f, g) =
(f − a)d

ad
+

(g − b)d

bd
− 1 (5)

wherea andb are continuous parameters controlling the ex-
tent of the blend and the discrete parameterd is the degree
of the blending function [6]. R-functions provide a contin-
uous neighborhood for CSG operations, and are given by

h(f, g) = (f + g + s
√

f2 + g2)(f2 + g2)d/2 (6)

where the discrete parameterss = ±1 differentiates be-
tween union and intersection, andd again provides a degree
of smoothness [7].

Using the chain rule, we define

Blend::grad(x) {
return hf(F->proc(x),G->proc(x))*F->grad(x) +

hg(F->proc(x),G->proc(x))*G->grad(x);
}

using the partial derivative methodshf and hg . Thus,
classes derived fromBlend need not implementproc ,
grad andprocq , but must implement the simpler method
h and its partial derivativeshf andhg .

4.2 Code-Level Automatic Differentiation

Given aproc implementation, another technique for au-
tomatically generating the derivativesgrad andprocq is

4

to apply the automatic differentiation method to theproc
procedure source code. Computational differentiation is an
automatic differentiation applied to algorithms by declaring
some variables as dependent and others as independent, and
synthesizing the source code necessary to yield the deriva-
tives of the dependent variables with respect to the inde-
pendent variables. For example, recent tools exist (ADOL-
C,ADIC) that differentiate C language source code [5, 3].
Performing automatic differentiation at compile time yields
faster derivatives than automatically differentating at run
time.

4.3 Numerical Differentiation

We can also use numerical techniques to evaluate the
derivatives. Forward differencing of the spatial derivative
is implemented as

Fx(x,q) =

 F (x + εe0,q)− F (x,q),
F (x + εe1,q)− F (x,q),
F (x + εe2,q)− F (x,q)

 (7)

whereei is a unit vector in theith dimension direction. Us-
ing this notation, the parameter derivative can be similarly
derived

Fq(x,q) = (. . . , F (x,q + εei)− F (x,q), . . .) . (8)

We have found that the constrained particle system re-
mains stable even when numerical versions ofFx andFq

are used. The symbolicFx runs about four times as fast
as the numericalFx because the forward differencing im-
plementation calls the implicit surface function four times.
Similarly, the symbolicFq implementation is|q|-times
faster than its numerical version.

The virtual methods grad and procq of our
Implicit object default to the forward differences ap-
proximations. Hence, we can add a new implicit surface
model into our library as a black-box by implementing the
methodproc . This task is a less daunting than derivingFq

by hand, as has been previously suggested [14].

5 Parameterization

A second problem with using particles to manipulate
complex implicit surface models is the management of the
parametersq of the implicit surface model. This problem
can be decomposed into two specific issues. The first issue
is the conceptual disconnection between an object’s intu-
itive parameters (such as location and orientation) and its
actual parameters (such as the coefficients of an algebraic).
The second issue is that there are often an overwelmingly
large number of free parameters, even for a moderately
complex implicit surface model.

One problem we have found is that it is difficult to trans-
late the ellipsoid

F (x, y, z, q0, . . . , q9) = q4x
2 + q5xy + q6y

2 +
q7xz + q8xy + q9z

2 +
q1x + q2y + q3z + q0. (9)

using the control particles. We have the ability to select
which parameters the control particles affect, but identify-
ing which of the ten quadric coefficients control translation
is not intuitive.

In order to translate the ellipsoid byo = (ox, oy, oz),
we need to apply the domain transformationF (x− ox, y −
oy, z − oz,q). Evaluating (9) and collecting terms shows
that translation does not affect the parametersq4 through
q9, but affectsq0 throughq3 as

q0 ← q0 + q4o
2
x + q5oxoy + q6o

2
y +

q7oxoz + q8oyoz + q9o
2
z +

q1ox + q2oy + q3oz, (10)

q1 ← q1 − 2q4ox − q5oy − q7oz, (11)

q2 ← q2 − q5ox − 2q6oy − q8oz, (12)

q3 ← q3 − q7ox − q8oy − 2q9oz. (13)

Enabling only these four coefficients to be changed by the
control particles actually causes the entire ellipsoid to de-
form instead of translate because (2) and (3) dissipate par-
ticle velocity evenly among the parameter velocities. The
velocities of the ellipsoid parameters due to translation are
in fact q̇ = (q1ox + q2oy + q3oz + q4o

2
x + q5oxoy + q6o

2
y +

q7oxoz + q8oyoz + q9o
2
z,−2q4ox − q5oy − q7oz,−q5ox −

2q6oy − q8oz,−q7ox − q8oy − 2q9oz, 0, 0, 0, 0, 0, 0).

5.1 Adapters

We solve this problem with the construction of a special
kind of operator called an adapter. Whereas operators are
designed to remain in the model, adapters are temporary
and are used to control the parameters of a model during
interactive editing.

An operator creates its parameter vector from its param-
eters and the parameters of its operands. This assumes that
the operator’s parameters are independent of the operands’
parameters (e.g. the radius of an offsetting operation). The
parameters of an adapter are assumed to be related to a sub-
set of the parameters of its operands. The parameter vector
of the adapter contains only the parameters of the adapter,
and ignores the parameters of the adapter’s operands.

For example, the adapterMover is defined by

Mover::proc(x) { return F->proc(x - o) }

whereF is the operand ofMover ando is an offset vec-
tor. The parameters specific toMover consist only of the

5

offset vector. IfMover was an ordinary operand, then its
parameter vectorq would beo catenated with whatever pa-
rameters operand objectF may have. AssumingF has been
sufficiently parameterized, the additional components toq
offered by the offset vectoro would be redundant.

SinceMover is an adapter, we mask all of its operand’s
parameters, such thatMover::procq() returns onlyo.
This restricted parameter vector allows the constrained par-
ticle system to move an object using a single control parti-
cle. But in order for the object to remain in its new location,
the adapter must remain attached. One can imagine a model
becoming quite complex with adapters every time a subset
of the model needs to be positioned.

We can remove an adapter if its parameters are set to
its identity configuration, (zeroed in the case ofMover).
Hence we need a way of transferring changes in parameters
in the adapter to parameters in the adapter’s operand.

An adapter implements some deformation functionD :
R3 → R3. We can apply the deformationD to the implicit
surface ofF (x,q0) as a domain transformation, yielding
the implicit surface ofF (D−1(x),q0). We need to find a
new set of parametersq1 such that

F (D−1(x),q0) = F (x,q1) ∀x ∈ R3. (14)

The adapter functionD has its own set of parameters
qD. (In theMover example,qD = o). Let the parameters
of F be denotedqF . We can use the JacobiandqF /dqD to
find how changes inqD affectqF . But this Jacobian would
need to be derived and implemented to interface between
every adapter and everyImplicit primitive and operator
in the modeling system.

Equations (2) and (3) provide a more general solution.
We construct a collection of control particles and apply the
deformationD to them, which causes the effect of the dis-
tortion to be applied to the original parameters ofF.

We create a special array of particlespi. Even though
each particle constrains the surface to pass through a three-
dimensional point, the constraint restricts only one degree
of freedom, since the particle may freely move across the
two degrees of freedom along the surface. Hence, the num-
ber of particlesn in the array should be|qF |. We assume
that |qD| << |qF | andF is flexible enough to find the so-
lution of a much less flexible deformationD.

We then solve a variation of(3) specifically for process-
ing the effect ofD into the parameters ofF,∑

j

(
F i

q · F j
q

)
λj = F i

x ·(D(pi)−pi)+φ(F i−F (pi
0,q0)).

(15)
The resulting Lagrangian multipliersλj provide the solu-
tion as

q̇F = −
∑

j

λjF j
q. (16)

We have assumed no desired parameter velocity (Q̇ = 0).
Equation 15 has a slightly different feedback term that

allows F (pi) to be fixed to an arbitrary value, instead of
just zero as was the case in (3). This feedback term makes
sure the values at the particles do not drift away from their
original values, which are found by evaluatingF at the pre-
deformation particle locationspi

0. Hence we can place par-
ticles anywhere in space to capture the field ofF instead of
just its implicit surface.

We sprinkle these particles randomly in space instead of
across the surface. The implicit surface ofaF is the same
as that ofF for anya 6= 0. Using particles on the surface
constrained toF = 0 could yield anaF result witha 6= 12.

5.2 Implementation

We implemented (15) and (16) in thesetq method of
the adapter. When a surface control particle is dragged, (2)
and (3) determine new parameters for the adapter’s defor-
mation through Euler integration ofq̇. These new adapter
parameters are then set by the particle system callingsetq .

The setq of the adapter performs the following algo-
rithm.

1. Set the state of its deformationD to use the parameters
from the parameter vectorq passed to it.

2. Use the deformationD to evaluate (15) and (16) to find
the resulting parameter velocityq̇F of its operandF.

3. Perform an Euler step on the velocityq̇F by adding
a fraction of it to the operand’s parameter vector re-
turned byF->getq , and store the result back in the
operand’s parameter vector viaF->setq .

Since the parameters have been passed from the adapter
to its operand, the adapter then returns its parameters to their
original state. Hence, when an adapter’s control particle
is moved on an implicit surface, the adapter’s parameters
remain fixed and its operand’s parameters change instead.
This is the primary difference between an adapter and an
operator in our modeling system.

5.3 Results

Figure 3 demonstrates this process on theMover
adapter applied to an ellipsoid that was originally placed
at the origin. We have placed the translation adapter on the
object and dragged the resulting composite object with a
single particle. The paremeters of the translation are au-
tomatically propagated to the parameters of the underlying
implicit ellipsoid primitive.

2This is also an issue when constructing implicit surfaces using radial
basis functions. One or more constraint points are placed inside or outside
the desired surface to indicate a desired interior or a desired local surface
orientation [13].

6

Figure 3. The effects of moving an ellipsoid by
the single yellow particle on the coefficients
of the quadric representation.

Careful examination of the parameters in Figure 3 re-
veals some numerical noise leaking intoq4, q5 andq6. This
is most likely due to numerical error from the Euler integra-
tion. These inaccuracies may also contain some discretiza-
tion error from the finite stochastic point-based sampling of
the effects of the distortion.

This numerical noise causes theMover operand to de-
form the ellipsoid as it translates. The feedback term is
designed to reduce this distortion, but it is difficult to use
this feedback term during the Euler integration because the
randomly-positioned field particles do not actually move
into their appropriate intermediate location as the param-
eter vector moves closer to the desired parameter vector. As
a result, our implementation worked best when we took a
large “predictor” step without feedback, followed by sev-
eral “corrector” steps containing only the feedback term.

6 Conclusion

We have developed a implicit surface representation that
is flexible enough to include a wide variety of different im-
plicit modeling primitives and operations. We have built our
system around a particle-based display and control system,
and have explored several method for easily programming
the derivatives needed for the particle dynamics and con-
straints.

We have also developed adapters which deform an im-
plicit surface but embed the deformation in the parameter
space of the implicit surface. These adapters provide the

user with more intutive modeling parameters during inter-
active manipulation, but do not increase the complexity of
the model.

6.1 The Implicit Modeling System

The implicit surface representation described in this pa-
per is a subset of our actual system. Our full system serves
as a base for our surface modeling research, and was de-
signed to include a wide variety of different surface mod-
els. Figure 4 (generated automatically byDoxygenand
dot) shows our present class hierarchy, demonstrating the
range of implicit surface representations this class supports.
Implicit surfaces are only one of the base representation
classes supported by the system.

Figure 4. A current snapshot of our Implicit
class hierarchy.

In the full system, our implicit objects include a second-
derivative Hessian matrix for interrogating the curvature of
the implicit surface. We plan to use the curvature to vary the
size of particles across the surface, such that areas of high
curvature receive many smaller particles. TheImplicit
class also includes interval extensions of many of the meth-
ods, to provide guarantees on properties over regions of
space. We also have developed a toolkit for interval-based
root finding and plan to implement topological polygoniza-
tion guarantees on a larger selection of implicit surfaces
than has previously before been accomplished [12].

Our goal for this system is to provide a publically-
available open-source common environment for implicit
surface research. The environment is available online at:

http://graphics.cs.uiuc.edu/projects/surface

7

The core of this representation was a group project of
a class on advanced surface modeling taught in the Fall
Semester 2000 at the University of Illinois. Each of the stu-
dents was assigned a component of the library to implement
as a project for the class. This format for a class project had
several advantages. The student projects were not discarded
at the end of class, which gives the students a stronger sense
of accomplishment. The student projects were also dis-
tinct, which encouraged cooperation and teamwork instead
of competition among the students. The interdependencies
among the components of this library meant that it was in
a student’s best interest to help any other student that might
be falling behind. This exercise provided production pro-
gramming experience in an environment similar to the one
many will find in their first jobs.

6.2 Future Work

The application of program differentiation tools on a
given code segment is itself a complex task. It would be
useful to develop a simpler subset of existing program dif-
ferentation tools specifically for automatically translating
proc methods intograd andprocq methods.

The ability to “flatten” chains of multiple operators into
a single operators is often employed in other hierarchical
models in computer graphics. Depending on the success of
implementations on implicit surfaces, it may be interesting
to reparameterize the interfaces of other shape representa-
tions.

We have implemented theMover adapter to verify the
derivations in Section 5. We are in the process of imple-
menting other adapters to perform deformations such as
scale, rotation, taper, twist and bend. Barr [2] introduced
the latter non-affine deformations, and it will be interest-
ing to see how well some implicits, such as high-degree al-
gebraics, can simulate the deformation effects within their
parameterizatons.

Implicit surfaces are stillslippery [14]. We have found
that it is much easier to “pull” a convex surface than to
“push” it. The slipperinessof the surface appears related
to the flow gradient of the surface in the direction of the
user-exerted force on a control particle. Constraining a con-
trol particle to a given position on the surface relative to
nearby features could reduce the slippery feel of this method
of modeling.

6.3 Acknowledgments

The core of our implicit surface library was coded by
CS497JCH students Ed Bachta, Lennie Brown, Nate Carr,
Jeff Decker, Bill Nagel and Steve Zelinka. Bill Lorensen,
Will Schroeder and Ross Whitaker provided valuable in-
sights into object oriented libraries from their experience

with the vtk project. This research is supported in part by
the NSF grant CCR-0196226 and the University of Illinois
Department of Computer Science.

References

[1] V. Adzhiev, R. Cartwright, E. Fausett, A. Ossipov, A. Pasko,
and V. Savchenko. Hyperfun project: a framework for col-
laborative multidimensional f-rep modeling.Proc. Implicit
Surfaces ’99, pages 59–69, Sept. 1999.

[2] A. H. Barr. Global and local deformations of solid primi-
tives. Computer Graphics, 18(3):21–30, July 1984.

[3] C. H. Bischof, L. Roh, and A. J. Mauer-Oats. ADIC: an
extensible automatic differentiation tool for ANSI-C.Soft-
ware: Practice and Experience, 27(12):1427–1456, 1997.

[4] J. F. Blinn. A generalization of algebraic surface drawing.
ACM Transactions on Graphics, 1(3):235–256, July 1982.

[5] A. Griewank, D. Juedes, H. Mitev, J. Utke, O. Vogel, and
A. Walther. ADOL-C: A package for the automatic differ-
entiation of algorithms written in C/C++.ACM Trans. Math.
Software, 22(2):131–167, June 1996.

[6] C. Hoffman and J. Hopcroft. Automatic surface genera-
tion in computer aided design.Visual Computer, 1:92–100,
1985.

[7] A. Pasko, V. Adzhiev, A. Sourin, and V. Savchenko. Func-
tion representation in geometric modeling: concepts, imple-
mentation and applications.Visual Computer, 11:429–446,
1995.

[8] H. K. Pedersen. imp. Source code available via im-
plicit.eecs.wsu.edu, 1997.

[9] W. Schroeder, W. Lorensen, and S. Linthicum. Implicit
modeling of swept surfaces and volumes.Proc. Visualiza-
tion ’94, pages 40–45, Oct. 1994.

[10] W. Schroeder, K. Martin, and W. Lorensen.The Visualiza-
tion Toolkit: An Object-Oriented Appriach to 3D Graphics.
Prentice Hall, Dec. 1997.

[11] W. J. Schroeder, K. M. Martin, and W. E. Lorensen. The
design and implementation of an object-oriented toolkit for
3d graphics and visualization.IEEE Visualization ’96, pages
93–100, Oct. 1996.

[12] B. T. Stander and J. C. Hart. Guaranteeing the topology of
an implicit surface polygonization for interactive modeling.
In Computer Graphics (Annual Conference Series), pages
279–286, Aug. 1997.

[13] G. Turk and J. O’Brien. Shape transformation using vari-
ational implicit functions.Computer Graphics (Proc. SIG-
GRAPH 99), pages 335–342, Aug. 1999.

[14] A. P. Witkin and P. S. Heckbert. Using particles to sample
and control implicit surfaces. InComputer Graphics (An-
nual Conference Series), pages 269–277, July 1994.

[15] B. Wyvill, E. Galin, and A. Guy. Extending the CSG
tree: Warping, blending and boolean operations in an im-
plicit surface modeling system.Computer Graphics Forum,
18(2):149–158, June 1999.

8

