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* In this talk we are interested in rendering scenes such as this one, where there is a strong 
connection between lighting that arrives at surfaces and lighting within participating media 
such as dust in the air or smoke
* In particular we are interested in efficiently computing the intricate indirect lighting arriving 
on the surfaces.
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• Irradiance Caching - Ward et al. ‘88
• Irradiance Gradients - Ward and 

Heckbert ‘92
• Radiance Caching - Křivánek et al. ’05
• Volumetric Radiance Caching - Jarosz et 

al. ‘08

(Ir)radiance Caching Methods
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* There has been a vast amount of work on how to compute indirect illlumination, enough to 
fill a whole course.
* A popular technique, which is most related to our work, is irradiance caching, which was 
originally developed in 1988, and has been subsequently improved.
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* The observation that ward made was that even though direct lighting may have sharp 
discontinuities, such as...
* If we just look at indirect irradiance, by handling direct lighting separately, it tends to have 
a very smooth appearance.
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* This makes it a perfect candidate for sparse sampling and interpolation.
* Irradiance caching computes indirect irradiance only at a sparse set of locations in the 
scene, and tries to interpolate these values as often as possible in order to gain efficiency.
* On average only about 1 out of every 50 pixels need to compute indirect lighting in this 
image



Previous Work

6

• Irradiance Caching - Ward et al. ‘88
• Irradiance Gradients - Ward and 

Heckbert ’92
• Radiance Caching - Křivánek et al. ’05
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• Irradiance Caching - Ward et al. ‘88
• Irradiance Gradients - Ward and 

Heckbert ‘92
• Radiance Caching - Křivánek et al. ’05

• Support caching on glossy surfaces
• Volumetric Radiance Caching - Jarosz et 

al. ‘08
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• Irradiance Caching - Ward et al. ‘88
• Irradiance Gradients - Ward and 

Heckbert ‘92
• Radiance Caching - Křivánek et al. ’05
• Volumetric Radiance Caching - Jarosz et 
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• Cache radiance within volume, 

compute radiance gradients. 
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* The limitations of the first three methods is that they do not account for participating 
media. They assume all surfaces are in a vacuum.
* This means we cannot effectively apply these gradient methods if the scene contains media
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(Ir)radiance Caching Methods

-Does not take into account occlusions

Thursday, 6 September 12

* On the other hand, our previous work computes gradients within participating media, and it 
is possible to trivially apply this to irradiance gradients by only integrating over the 
hemisphere, instead of the whole sphere.
* However, the drawback of our previous approach is that it does not take into account 
occlusions which can lead to significant interpolation artifacts in regions with occlusion 
changes.



Goal

• Compute accurate gradients 
of irradiance on surfaces in 
the presence of participating 
media AND occlusions.
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* Our goal is to fill this gap in previous work and compute accurate gradients of irradiance on 
surfaces in the presence of participating media AND occlusions.
* We are only interested in computing a translational gradient, since rotational gradients are 
not effected by participating media.
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* To see why this is in fact an important problem which is not adequately handled by 
previous methods, lets consider the classic Cornell box both with and without media.
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Participating Media
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* Irradiance caching with gradients can very effectively compute the indirect illumination if no 
media is present.
* However, since the gradient formulation does not account for media, significant artifacts 
appear if we apply these gradient computations when media is present
* The reason for this is that these scenes invalidate a major underlying assumption of 
irradiance gradients, which is, that surfaces are embedded within a vacuum.
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* Irradiance caching with gradients can very effectively compute the indirect illumination if no 
media is present.
* However, since the gradient formulation does not account for media, significant artifacts 
appear if we apply these gradient computations when media is present
* The reason for this is that these scenes invalidate a major underlying assumption of 
irradiance gradients, which is, that surfaces are embedded within a vacuum.
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* Using the techniques described in our paper, in the same amount of time, we are able to 
compute a much more accurate gradient which allows for higher quality interpolation.
* A key thing to note here is that the actual cache point locations are identical between these 
two images, just the gradient computation is changed.
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* Using the techniques described in our paper, in the same amount of time, we are able to 
compute a much more accurate gradient which allows for higher quality interpolation.
* A key thing to note here is that the actual cache point locations are identical between these 
two images, just the gradient computation is changed.
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* In order to compute these gradients, we must first understand the behavior of light in the 
presence of media.
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* The radiance, L, arriving at any location x along a ray can be expressed using the volume 
rendering equation.
* but at a high-level the meaning is pretty simple.
* In the presence of participating media, the radiance is the sum of two terms:
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* the right-hand term incorporates lighting arriving from a surface
* before reaching the eye, this radiance must travel through the medium and so is attenuated 
by a transmission term
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media radiance
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* the left-hand term integrates the scattering of light from the medium along the whole 
length of the ray



object

�⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⇤⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⇥

x xs

� s

0

Volume Rendering Equation

21

media radiance

Thursday, 6 September 12

* the left-hand term integrates the scattering of light from the medium along the whole 
length of the ray
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* the main quantity that is integrated, Li, is inscattered radiance
* This represents the amount of light that reaches some point in the volume (from any other 
location in the scene), and then subsequently scatterers towards the eye
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* as this scattered light travels towards the eye it is also dissipated by extinction through the 
medium
* this computation is very expensive and there has been a lot of work on how to solve this 
problem efficiently



Contribution
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• Compute translational gradients of 
irradiance in the presence of media
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• Compute translational gradients of 
irradiance in the presence of media
• Absorbing media
• Emissive/scattering media
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• Compute translational gradients of 
irradiance in the presence of media
• Absorbing media
• Emissive/scattering media

• Higher quality irradiance interpolation
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* Irradiance is simply the integral of the cosine weighted radiance over the hemisphere
* Since we decomposed the definition of radiance as radiance coming from surfaces and 
radiance coming from the media, we can perform the same decomposition on the 
hemispherical integral.
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* Irradiance is simply the integral of the cosine weighted radiance over the hemisphere
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* Since the total irradiance is the sum of two terms, the total irradiance gradient is just the 
sum of two gradient terms.
* The right hand term is the gradient due to surface irradiance and the left is the gradient 
due to media irradiance.
* In the remainder of the talk I will describe how we compute the two irradiance values and 
their corresponding gradients.
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* Since the total irradiance is the sum of two terms, the total irradiance gradient is just the 
sum of two gradient terms.
* The right hand term is the gradient due to surface irradiance and the left is the gradient 
due to media irradiance.
* In the remainder of the talk I will describe how we compute the two irradiance values and 
their corresponding gradients.
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* Since the total irradiance is the sum of two terms, the total irradiance gradient is just the 
sum of two gradient terms.
* The right hand term is the gradient due to surface irradiance and the left is the gradient 
due to media irradiance.
* In the remainder of the talk I will describe how we compute the two irradiance values and 
their corresponding gradients.
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* Given the definition of the surface irradiance, we can estimate it by performing a stratified 
Monte Carlo integration.
* This involves subdividing the hemisphere of directions into a number of strata, or cells, and 
sampling the radiance using a jittered sample within each cell.
* The irradiance is just the sum of all the radiance samples weighted by their cell area and 
the cosine term.
* This is exactly the approach used by standard irradiance caching techniques.
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* We can compute the translational gradient of this estimate by using the product rule within 
the summation.
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* Computing the gradient therefore involves estimating how the cell areas change due to a 
translation
* This term is what Ward and Heckbert derived
* Our contribution is additionally taking into account a gradient of the cell radiance.
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* Computing the gradient therefore involves estimating how the cell areas change due to a 
translation
* This term is what Ward and Heckbert derived
* Our contribution is additionally taking into account a gradient of the cell radiance.
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* Computing the gradient therefore involves estimating how the cell areas change due to a 
translation
* This term is what Ward and Heckbert derived
* Our contribution is additionally taking into account a gradient of the cell radiance.
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* In participating media, the surface radiance is the product of two terms, so its gradient can 
be computed using the product rule.
* We recently published a method at TOG which derives the necessary expressions for 
computing the gradient of the transmittance.
* The gradient of cell radiance was ignored by all previous methods. This implies that all 
these methods (including radiance caching for glossy surfaces) assumed that all surfaces 
visible during final gather are Lambertian surfaces in a vacuum.
* By incorporating this term we can not only account for participating media, but also get the 
added benefit of being able to handle glossy indirect reflectors.
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* In participating media, the surface radiance is the product of two terms, so its gradient can 
be computed using the product rule.
* We recently published a method at TOG which derives the necessary expressions for 
computing the gradient of the transmittance.
* The gradient of cell radiance was ignored by all previous methods. This implies that all 
these methods (including radiance caching for glossy surfaces) assumed that all surfaces 
visible during final gather are Lambertian surfaces in a vacuum.
* By incorporating this term we can not only account for participating media, but also get the 
added benefit of being able to handle glossy indirect reflectors.
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* In participating media, the surface radiance is the product of two terms, so its gradient can 
be computed using the product rule.
* We recently published a method at TOG which derives the necessary expressions for 
computing the gradient of the transmittance.
* The gradient of cell radiance was ignored by all previous methods. This implies that all 
these methods (including radiance caching for glossy surfaces) assumed that all surfaces 
visible during final gather are Lambertian surfaces in a vacuum.
* By incorporating this term we can not only account for participating media, but also get the 
added benefit of being able to handle glossy indirect reflectors.
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* The way this derivation can be interpreted visually, is that we start with a hemispherical 
sampling around some point x



Hemispherical Sampling
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* We now know the radiance coming from each cell, and the distance to the surface within 
each cell, which results in a discretization of the visible environment.
* In order to compute the gradient of irradiance, we consider how the contribution from each 
cell will change as we move the point x along the tangent plane.
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* Moving the point will result in the cell areas changing due to occlusions from neighboring 
surfaces (shown in grey).
* Additionally, the radiance coming from each cell may change due to changes in extinction 
(shown in red).
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* To validate this gradient formulation we visualized the gradients within this simple 
synthetic scene, which contains a ground plane, an occluding block, and a polygon reflecting 
indirect light. The whole scene is embedded within an absorbing medium. 
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* We can visualize the irradiance on the ground plane.
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* We can also compute a ground truth solution to the gradient by performing finite 
differences along the ground plane.
* In these visualizations the absolute value of the x component of the gradient is shown in 
red and the y component is shown in blue. And we compute the gradient per-pixel
* This unfortunately suffers from significant noise.
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* We can improve the quality by taking 10 times as many samples, and this starts to reveal 
the structure of the true gradient, however it is not a practical approach since it is very 
expensive
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* Using our approach, we can match the behavior of this gradient, with less noise, and using 
only 1/10th of the number of samples.
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* If we were to compute the gradient using the original Ward and Heckbert formulation, the 
results are significantly different than the finite difference gradients.
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Why is the Ward & Heckbert gradient darker?

Our Method Ward and Heckbert
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* If we look at these side by side we can immediately see that the Ward and Heckbert version 
is darker.
* For Ward & Heckbert, the radiance has an inverse squared falloff
* In participating media, which our gradients take into account, the radiance has a sharper 
falloff since it is also attenuated by transmittance.
* This leads to a higher gradient value.
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This is frame 352 from the Patterson film taken on October 20, 1967. It is the most famous picture of bigfoot ever taken.
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- Cannot use the same gradient formulation
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* I’ll describe the process of computing the media irradiance gradient at a high level using 
this 2D example
* the details of this process are in the paper.
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* An individual cell in this case samples the medium at multiple steps using ray marching.
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* An individual cell in this case samples the medium at multiple steps using ray marching.
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* In order to compute the contribution to the gradient for each cell, we interpret these 
samples as radiance come from multiple shells of different radius
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* In order to compute the contribution to the gradient for each cell, we interpret these 
samples as radiance come from multiple shells of different radius
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* We also want to handle occlusions from neighboring surfaces, like in the Ward and Heckbert 
formulation
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Media Irradiance 
Gradient
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* To compute the gradient contribution of each cell, we determine how each shell may be 
occluded by surfaces.
* The rate of occlusion depends on the distance to the “shell,” and the distance to the 
neighboring surface causing the occlusion (shown in blue) 
* This means that shells in front of neighboring surfaces do not get occluded with 
translation, and shells past surfaces get occluded faster with increased distance.
* The media irradiance gradient can be thought of as applying the Ward and Heckbert 
gradient formulation to estimate the change in occlusion individually for each of these shells 
of increasing radius.
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* To compute the gradient contribution of each cell, we determine how each shell may be 
occluded by surfaces.
* The rate of occlusion depends on the distance to the “shell,” and the distance to the 
neighboring surface causing the occlusion (shown in blue) 
* This means that shells in front of neighboring surfaces do not get occluded with 
translation, and shells past surfaces get occluded faster with increased distance.
* The media irradiance gradient can be thought of as applying the Ward and Heckbert 
gradient formulation to estimate the change in occlusion individually for each of these shells 
of increasing radius.
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Scattering Medium
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* Using a modification of the previous scene, we can validate the correctness of our media 
irradiance gradients.
* In this case, we use a scattering media, and a point light source.
* The scene is constructed in a way where all lighting on the ground plane has first scattered 
within the medium.



Per-Pixel Irradiance 
Gradient
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(Finite Differences 10X)
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* We compute a ground truth gradient using finite differences
* Even with a very large number of samples the finite difference gradient suffers from 
significant noise



Per-Pixel Irradiance 
Gradient
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(Our Method)
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* The gradients estimated using our method match the behavior of the true gradient but have 
significantly less noise using only 1/10th of the number of samples



Per-Pixel Irradiance 
Gradient
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(Ward and Heckbert)
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* The Ward and Heckbert gradient formulation again significantly differs from the true 
gradient since it does not take into account media scattering.



Per-Pixel Irradiance 
Gradient
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Why is the Ward & Heckbert gradient darker?

Our Method Ward and Heckbert
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* In addition to having a different structure, it is also overall darker.
* This is because for Ward & Heckbert, all radiance is assumed to come from the surface past 
the medium.
* and since the gradient is inversely proportional to the distance, this underestimates the 
gradient.
* By comparing the gradients along a single scanline



Per-Pixel Irradiance 
Gradient
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Why is the Ward & Heckbert gradient darker?

Our Method Ward and Heckbert
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* In addition to having a different structure, it is also overall darker.
* This is because for Ward & Heckbert, all radiance is assumed to come from the surface past 
the medium.
* and since the gradient is inversely proportional to the distance, this underestimates the 
gradient.
* By comparing the gradients along a single scanline
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Gradient Comparison
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* we see that our method (shown in blue) matches the ground truth, whereas Ward and 
Heckbert gradients (shown in red) significantly differ from this



Extrapolated Irradiance
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Our Method Ward and Heckbert
Same cache points
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Gradient Comparison
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• In a scene with no walls, Ward & 
Heckbert would estimate 0 gradients!

y

x

y

x
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* This test scene is actually constructed to give the original Ward & Heckbert gradient a 
helping hand.
* If we removed the box and the walls then Ward & Heckbert’s formulation would incorrectly 
estimate a 0 gradient everywhere, which would be of no benefit for interpolation.



Convergence
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Results
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• Rendered at 1K horizontal resolution
• On an Intel Core 2 Duo 2.4 GHz PC
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Smoky Cornell Box
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(8:14)
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Smoky Cornell Box
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Our Method
(8:14)

Ward and Heckbert
(8:10)
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Beam through Window
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Our Method
(3:25)

Ward and
Heckbert

(3:17)
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* still based on stochastic sampling, so there may still be errors (e.g., on the floor), not as 
bad as previous methods



Disco Ball
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(10:33)
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* All illumination on the ground plane has first scattered in the medium.



Disco Ball
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Our Method
(10:33)

Ward and Heckbert
(10:30)
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Future Work
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• Error metric
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Future Work
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• Error metric

• Radiance gradients
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Future Work
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• Error metric

• Radiance gradients

• Radiance gradients in participating media
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Conclusion

• Accurate irradiance gradients for scenes 
with media and occlusions

• Can be applied to the irradiance 
caching algorithm for higher quality 
interpolation
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Thank You
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