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Radiance Caching for Participating Media
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In this article we present a novel radiance caching method for efficiently rendering participating media using Monte Carlo ray tracing. Our method handles all

types of light scattering including anisotropic scattering, and it works in both homogeneous and heterogeneous media. A key contribution in the article is a

technique for computing gradients of radiance evaluated in participating media. These gradients take the full path of the scattered light into account including

the changing properties of the medium in the case of heterogeneous media. The gradients can be computed simultaneously with the inscattered radiance

with negligible overhead. We compute gradients for single scattering from lights and surfaces and for multiple scattering, and we use a spherical harmonics

representation in media with anisotropic scattering. Our second contribution is a new radiance caching scheme for participating media. This caching scheme

uses the information in the radiance gradients to sparsely sample as well as interpolate radiance within the medium utilizing a novel, perceptually based error

metric. Our method provides several orders of magnitude speedup compared to path tracing and produces higher quality results than volumetric photon mapping.

Furthermore, it is view-driven and well suited for large scenes where methods such as photon mapping become costly.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism

General Terms: Algorithms, Performance, Theory

Additional Key Words and Phrases: Global illumination, gradients, irradiance caching, Monte Carlo ray tracing, participating media, ray marching, rendering,

spherical harmonics

ACM Reference Format:

Jarosz, W., Donner, C., Zwicker, M., and Jensen, H. W. 2008. Radiance caching for participating media. ACM Trans. Graph. 27, 1, Article 7 (March 2008),

11 pages. DOI = 10.1145/ 1330511.1330518 http://doi.acm.org/10.1145/1330511.1330518

1. INTRODUCTION

Rendering participating media, such as clouds, fire, water, or the
atmosphere, has been studied extensively in the computer graphics
community. We refer to the excellent survey by Cerezo et al. [2005]
for a comprehensive overview of the state of the art in this field.
Pioneering contributions include the work of Kajiya and von Herzen
[1984] and Rushmeier and Torrance [1987].

The most general techniques are based on various forms of
stochastic path tracing and Monte Carlo integration [Pattanaik and
Mudur 1993; Lafortune and Willems 1996; Pauly et al. 2000].
Path tracing is attractive because it is straightforward to include
anisotropic phase functions and scattering from surfaces, but it suf-
fers from noise and it is very computationally intensive for all but
the simplest scenes.

Several recent techniques make particular assumptions about the
medium being rendered in order to gain efficiency. Stam [1995]
and Jensen et al. [2001] assume the material is homogeneous and
has high scattering albedo, while Premoze et al. [2004] assume it
is tenuous and strongly forward scattering. Sun et al. [2005] render
single scattering in real time, but without shadowing effects. Our
method makes no assumptions about the properties of the medium
being rendered. It handles isotropic, anisotropic, homogeneous and
heterogeneous media of arbitrary albedo.
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Photon maps [Jensen and Christensen 1998], at the cost of intro-
ducing bias, provide an elegant solution that improves the efficiency
of path tracing. However, photon mapping can be inefficient when
large parts of the volume do not contribute much to the rendered
view. The car scene shown in Figure 10 is particularly problem-
atic for photon mapping as it shows a dense participating medium
with a large extent and many light sources. Our caching approach is
similar in spirit to volumetric photon mapping in that we store and
reuse illumination information in the volume. However, our method
is view-driven and concentrates samples where the illumination is
most important to the eye.

Irradiance caching [Ward et al. 1988] is a view-driven technique
for computing global illumination on surfaces. It works by storing
a sparse set of samples of the incident illumination on surfaces in
the scene, and interpolating between these samples. This idea is
improved by including gradient information at the sample points
to reduce interpolation artifacts [Ward and Heckbert 1992; Arvo
1994]. Krivanek et al. [2005] and Annen et al. [2004] have also
used spherical harmonics to represent the full incident hemisphere
of radiance as well as the gradient.

Computing the gradient of incident or reflected illumination is of
interest for applications other than irradiance caching. Holzschuch
and Sillion [1995, 1998] derive radiosity gradients for error estima-
tion in finite element methods for global illumination. Igehy [1999]
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Li = Ls + Lm contributes to Lmcontributes to Ls
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Fig. 1. Radiance in participating media is computed by our method using

a combination of ray marching and random walk sampling. We split the

computation of inscattered radiance into single scattering, Ls , and multiple

scattering, Lm , terms.

derives ray differentials for antialiasing specular reflections. Durand
et al. [2005] and Ramamoorthi et al. [2007] develop general frame-
works to analyze local change in reflected radiance, which may have
wide applicability for practical problems. However, none of these
techniques take into account participating media, which is the focus
of our work.

In this article, we present a method for computing, caching, and
reusing estimates of the radiance within a participating medium. To
estimate the contribution of a sample location, we derive expres-
sions for the gradients of the full path of inscattered light within a
medium including the effect of changing properties of the medium
in the case of heterogeneous media. Our radiance caching scheme
uses the information in the radiance gradients to sparsely sample
and interpolate radiance within the medium. To interpolate radi-
ance we use exponential extrapolation, which is superior to simple
linear extrapolation due to the exponential attenuation within par-
ticipating media. We demonstrate the caching scheme in a Monte
Carlo ray tracing system for scenes containing homogeneous and
heterogeneous media as well as isotropic and anisotropic scattering.

2. RADIATIVE TRANSFER IN PARTICIPATING
MEDIA

Light transport in participating media is described by the Radiative
Transport Equation (RTE) [Chandrasekar 1960]. The integral form
of the RTE for a nonemissive medium is:

L(x, �ω) =
∫ s

0

Tr (x↔xt )σs(xt )Li (xt , �ω) dt +
Tr (x↔xs)L(xs, �ω), (1)

where L(x, �ω) describes the radiance that reaches x from direction
�ω, s is the depth of the medium to x from direction �ω, xt = x − t �ω
with t ∈ (0, s), and xs = x − s �ω is a point on a surface past the
medium (see Figure 1). The transmittance, Tr , is defined as

Tr (x′↔x) = e−τ (x′↔x), (2)

where the optical thickness, τ , is given by:

τ (x′↔x) =
∫ x

x′
σt (x) dx . (3)

We denote the scattering and absorption coefficients by σs and σa ,
and σt = σa + σs is the extinction coefficient.

The first term in Equation (1) represents radiance scattered within
the medium and the second term is radiance entering at the backside
of the medium. The inscattered radiance is given by

Li (x, �ω) =
∫

�4π

p(x, �ω′, �ω)L(x, �ω′) d �ω′, (4)

where p is the normalized phase function describing the angular
distribution of scattered radiance at a point x. We ignore the radiance
emitted by the volume as it is trivial to compute.

To compute the inscattered radiance within participating media
we use Monte Carlo ray tracing based on a combination of ray
marching and random walk sampling. We use ray marching to nu-
merically integrate the radiance value seen directly by the observer,

L(x, �ω) ≈
(

S−1∑
t=0

Tr (x↔xt )σs(xt )Li (xt , �ω)�t

)
+

Tr (x↔xs)L(xs, �ω), (5)

where �t is the length of each segment along the ray and x0, . . . , xs

are the sample points for each segment (x0 is the point where the ray
enters the medium and xs is a point on a surface past the medium).

The most expensive part to compute in Equation (5) is the in-
scattered radiance Li , because it involves integrating over all paths
that carry radiance from any other point in the scene to the current
sample point along the eye ray. Therefore, we focus on the efficient
computation of this term. To make the computation more practical,
we divide the inscattered radiance into two components,

Li (x, �ω) = Ls(x, �ω) + Lm(x, �ω), (6)

where Ls represents single and Lm multiple scattering respectively.
The single scattering term represents radiance that undergoes a

single scattering event along its path from a surface to the eye.
Surfaces include light sources and any other surface that reflects
light due to direct or indirect illumination. Single scattering may be
formulated as an integration over the sphere, or over all surfaces.

The multiple scattering term integrates radiance that scatters at
least once in the medium before it reaches x. This implies that
the path from the surface to the eye includes multiple scattering
events. Incident radiance due to multiple scattering is more difficult
to evaluate than single scattering, as it leads to a recursive integral.

The distribution of inscattered radiance is often smooth in large
parts of the participating medium. We take advantage of this property
by caching radiance at a sparse set of locations, and using extrapo-
lation to evaluate the radiance at nearby points in the medium. We
show that results without visible errors are achievable with rela-
tively few cached values, resulting in large speedups compared to
Monte Carlo ray tracing without caching. Furthermore, the use of
caching does not limit the type of media that can be rendered, and
our method can easily be incorporated into existing Monte Carlo
ray tracers.

We improve the efficiency of the cache by not only storing the
value of scattered radiance at each cache point, but also storing its
gradient with respect to translation of the point. The gradient is
used to estimate the local smoothness and to improve the accuracy
of extrapolation of cached values. In the following, we explain two
separate methods: one to compute the single scattering contribution
and its gradient (Section 3), and another to compute the multiple
scattering contribution and its gradient (Section 4). Finally, we detail
how to use these quantities in a practical radiance caching algorithm
for participating media in Section 5.
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Fig. 2. Computing the single scattering radiance and gradient (a, b) and multiple scattering radiance and gradient (c, d). For single scattering we distribute

samples x′ on the area of the light source. The gradient ∇Ls is computed w.r.t. translating the evaluation point x. For multiple scattering we distribute samples

x′ by generating random walk-paths starting at x. The gradient ∇Lm is computed by considering the translation of x and the paths as a whole.

3. SINGLE SCATTERING

In this section, we describe how to compute the single scattering
radiance Ls at a position x and its gradient ∇Ls with respect to x.
The derivation of the gradient is more convenient if we write Ls as
an integral over the surfaces of the scene, instead of the standard
integral over the sphere:

Ls(x, �ω) =
∫

A
p(x, �ω′, �ω) Lr (x′→x)

V (x′→x) H (x′→x) dx′, (7)

where A denotes surface area and �ω′ points from x′ towards x. We
illustrate our notation in Figure 2a. The term Lr (x′→x) represents
the reduced radiance. It is given by the product of the radiance
leaving a surface at x′ towards x and the transmittance through the
medium:

Lr (x′→x) = Tr (x′↔x) L(x′→x). (8)

We also include a visibility function V (x′→x), whose value is unity
if x′ is visible from x, otherwise it is zero. Finally, H is a geometry
term,

H (x′→x) =
�n(x′) · x−x′

‖x−x′‖
‖x − x′‖2

, (9)

due to the change of the integration variable. Note that negative
values of the dot product must be clamped to zero, but we omit this
in our notation.

The single scattering gradient follows directly from Equation (7),

∇Ls(x, �ω) =
∫

A
∇(pLr V H ) dx′

=
∫

A
(∇ p)Lr V H + p(∇Lr )V H

+ pLr (∇V )H + pLr V (∇ H ) dx′, (10)

where we omit the function arguments for brevity. The symbol ∇
always denotes a gradient with respect to x. Intuitively, the gradient
corresponds to the direction of maximum change of the scattered
radiance at x under an infinitesimal motion of x while keeping x′

fixed. This is illustrated in Figure 2b.
In the remainder of this section we examine the single scattering

computation in more detaiil. In Section 3.1 we discuss how to esti-
mate the single scattered radiance and gradient using Monte Carlo

integration and describe how to incorporate point light sources in
Section 3.2. Finally, we discuss the gradient of the reduced radiance
term in more detail in Section 3.3, while derivations for the gradi-
ents of the geometry term H , and the phase function p are in the
Appendix.

3.1 Monte Carlo Integration

We compute single scattering radiance values (Equation (7)) using
Monte Carlo ray tracing, which leads to the following formula:

Ls(x, �ω) ≈ 1

N

N∑
j=1

pLr V H

pdf (x′
j )

. (11)

Similarly, we use Monte Carlo estimation to evaluate the gradient
of single scattering radiance from Equation (10):

∇Ls(x, �ω) ≈ 1

N

N∑
j=1

(∇ p)Lr V H + p(∇Lr )V H + pLr V (∇ H )

pdf (x′
j )

.

(12)

The radiance and the gradient share many of the same terms and are
evaluated simultaneously.

Because the visibility function V is discontinuous, its “gradient”
is not taken into account. For the purposes of gradient computation
we currently assume constant visibility and discuss the implications
of this decision in Section 7.

Monte Carlo approximation relies on a set of samples x′
j that are

distributed on the surfaces of the scene according to a probability
density function pdf (x′). Surfaces include both area light sources
that emit light, and any other surface in the scene that may reflect
light.

To gather radiance emitted by area light sources we place samples
on their area. Our method allows the use of arbitrary light source
sampling techniques to optimize the sample distribution. To account
for radiance emitted by all other surfaces we distribute samples uni-
formly over the sphere of directions. Using the standard solid angle
to area conversion, uniform sampling on the sphere corresponds to
a distribution

pdf (x′) =
�n(x′) · x0−x′

‖x0−x′‖
‖x0 − x′‖2

, (13)

where �n(x′) is the surface normal at x′, and x0 is the location where
to compute the spherical distribution. Conceptually, x0 is indepen-
dent of the location x where we evaluate in-scattering. Although in
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Fig. 3. In heterogeneous media, the transmittance (a) between two points x and x′ is evaluated using ray marching with a step size �x and a random offset ξ .

Within each step the extinction coefficient of the medium is assumed to be constant. Our gradient computation not only takes into account the local properties

of the medium at x, but also the changing properties along the whole segment between x and x′. For single scattering, (b), we compute the gradient w.r.t.

translation of x as x′ is kept fixed. For multiple scattering, (c), the gradient is computed as both endpoints are translated.

practice x0 and x usually coincide, pdf (x′) does not depend on x.
Hence, it does not contribute to the gradient.

3.2 Point Lights

Even though Equation (7) is formulated with respect to surface area,
it is straightforward to incorporate point lights. We account for the
contribution of point lights to the Monte Carlo estimate of Ls by
adding the following summand to Equation (11):

Ls(x, �ω) += p	pTr V Hp, (14)

where 	p is the power of the light source and Hp describes the
light’s fall-off characteristics. For a uniform point light we have

H u
p (x′→x) = 1

‖x − x′‖2
.

For a Phong light the fall-off term is

H p
p (x′→x) =

(
�n(x′) · x−x′

‖x−x′‖

)s

‖x − x′‖2
,

where s is the Phong exponent.
The contribution of a point light to the single scattering gradient

is:

∇Ls(x, �ω) += 	p((∇ p)Tr Hp + p(∇Tr )Hp + pTr (∇ Hp)). (15)

The gradient ∇ Hp for uniform and Phong point lights is derived in
Appendix.

3.3 Reduced Radiance and Transmittance Gradient

For the sake of computing the gradient of the reduced radiance we
assume diffuse surfaces and light sources. In this case the gradient of
the surface radiance L(x′→x) with respect to x vanishes. However,
it is straightforward to account for general radiance distributions by
adding a term for ∇L . With this simplification, the gradient of the
reduced radiance is

∇Lr (x′→x) = L(x′→x)∇Tr (x′↔x),

and the gradient of the transmittance is

∇Tr (x′↔x) = −∇τ (x′↔x)Tr (x′↔x). (16)

Homogeneous Media. If the medium is homogeneous with
constant extinction coefficient σt then the optical thickness is

τ (x′↔x) = σt‖x − x′‖, (17)

and its gradient is

∇τ (x′↔x) = σt∇(‖x − x′‖). (18)

Heterogeneous Media. In a heterogeneous medium, to com-
pute optical thickness the extinction needs to be integrated as:

τ (x′↔x) =
∫ 1

0

σt (y(t))‖x′ − x‖ dt, (19)

where we have parameterized the line segment between x′ and x as
y(t) = x + t(x′ − x).

The corresponding gradient is

∇τ (x′↔x) =
∫ 1

0

∇(σt (y(t))‖x′ − x‖) dt. (20)

The optical thickness and its gradient can be expressed using
Monte Carlo integration as

τ (x′↔x) ≈ 1

N

∑
j

σt (y(t j ))‖x′ − x‖
pdf (t j )

, (21)

∇τ (x′↔x) ≈ 1

N

∑
j

∇(σt (y(t j ))‖x′ − x‖)

pdf (t j )
. (22)

We evaluate the two Monte Carlo integrals simultaneously using ray
marching with a fixed step size and a single random offset ξ (see
Figure 3).

At a high level, the evaluation of transmittance aggregates σt

along a line segment while its gradient aggregates the contribution
of ∇σt along the line segment. An important characteristic of this
gradient formulation is that it not only takes into account the local
properties at x, it also incorporates how the properties change along
the whole segment between x and x′. This implies that our gradient
computation contains meaningful information about how the trans-
mittance changes even when moving x out of the line connecting x
and x′.

3.4 Isotropic and Anisotropic Scattering

Isotropic Media. In isotropic media the phase function is a
constant p = 1/4π . Therefore, the scattered radiance and its gradi-
ent are independent of the outgoing direction �ω, and all terms that
include the gradient of the phase function ∇ p in Equations (12)
and (15) vanish.

Anisotropic Media. For anisotropic media the scattered radi-
ance is a function of the outgoing direction �ω, depending on the
shape of the phase function. As phase functions are smooth, we can
compute a compact representation of the directional radiance dis-
tribution. We use a spherical harmonic expansion, although other
spherical functions could be used. For each sample x′

j with a fixed

incident direction �ω′
j we compute the spherical harmonic expansion
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of the phase function

p(x, �ω′
j , �ω) ≈

M∑
k=1

c j,k yk(�ω), (23)

where yk are the spherical harmonic functions, and c j,k are the cor-
responding coefficients. We use a single index for the spherical
harmonics to simplify notation.

Applying this formulation to Equation (11) gives the following
expression for scattered radiance in anisotropic media:

Ls(x, �ω) ≈ 1

N

M∑
k=1

yk

N∑
j=1

c j,k Lr VH

pdf (x′
j )

. (24)

We apply the same projection mechanism to the gradient com-
putation. Derivations for the gradients of common phase functions
are available in the Appendix. We denote the spherical harmonic
expansion of the gradient of the phase function, as a function over
outgoing angle �ω, by

∇ p(x, �ω′
j , �ω) ≈

M∑
k=1

c′
j,k yk(�ω). (25)

This leads to the following expression for the gradient:

∇Ls (x, �ω)

≈ 1

N

M∑
k=1

yk

N∑
j=1

c′
j,k Lr V H + c j,k (∇Lr )V H + c j,k Lr V (∇ H )

pdf (x′
j )

.

(26)

4. MULTIPLE SCATTERING

In this section we describe how we calculate the multiple scattering
radiance Lm , and its gradient ∇Lm . We evaluate multiple scattering
using standard Monte Carlo path tracing and compute a Monte Carlo
estimate of the gradient of the path tracing integral.

The radiance due to multiple scattering is an integral of radiance
arriving from all other points within the participating medium. We
express this as

Lm(x, �ω) =
∫

�4π

∫ ∞

0

p(x, �ω′, �ω)Tr (x′↔x)σs(x′)

Li (x
′, �ω′)V (x′↔x) dr ′d �ω′, (27)

where we parametrize the integration domain using polar coordi-
nates (r ′, �ω′) centered at x so x′ = x − r ′ �ω′. The Li (x

′, �ω′) term is
the inscattered radiance at x′ towards x and needs to be evaluated
recursively. See Figure 2c for an illustration.

The gradient of multiple scattering is computed by differentiating
Equation (27) with respect to x:

∇Lm (x, �ω) =
∫

�4π

∫ ∞

0
p(x, �ω′, �ω)

∇(
Tr (x′↔x)σs (x′) Li (x

′, �ω′)V (x′↔x)
)

dr ′d �ω′.

Note that with the chosen parametrization the incoming and outgo-
ing directions do not change under translation of x so there is no
gradient term for the phase function. In homogeneous media, the
gradient of the transmittance vanishes. For the general case of het-
erogeneous media, the gradient of transmittance and optical thick-
ness are computed as in Equations (16) and (20). However, in the
multiple scattering case ‖x−x′‖ does not change under a translation
and so the ∇(‖x−x′‖) term vanishes. This is illustrated in Figure 3c.

4.1 Monte Carlo Integration

Just as with single scattering, we evaluate the radiance due to mul-
tiple scattering and its gradient using Monte Carlo integration. The
radiance is estimated by

Lm(x, �ω) ≈ 1

N

N∑
j=1

pTrσs Li V

pdf (r ′
j ) pdf (�ω′

j )
. (28)

In practice, at the first scattering event we evaluate this expres-
sion using N samples. In order to prevent exponential growth, all
subsequent scattering events use only one random sample. Hence,
Equation (28) forms the start of N random-walk paths through the
medium with the polar coordinates (r ′

j , �ω′
j ) as random variables. We

sample the radius according to

pdf (r ′
j ) = σt (x)e−σt (x)r ′

j . (29)

We distinguish between isotropic and anisotropic media when sam-
pling directions, discussed in more detail below.

The gradient ∇Lm(x, �ω) is also found using Monte Carlo
sampling:

∇Lm (x, �ω) ≈ 1

N

N∑
j=1

p ((∇Tr )σs Li V + Tr (∇σs )Li V + Tr σs (∇Li )V )

pdf (r ′
j ) pdf (�ω′

j )
.

(30)

Intuitively, the gradient captures the change in radiance as each
random-walk path is translated, as a whole, by an infinitesimal
amount. This is illustrated in Figure 2d. As with single scattering,
we currently ignore the change in the visibility term.

4.2 Isotropic and Anisotropic Scattering

Isotropic Media. For isotropic media we distribute the direc-
tions �ω′

j uniformly, that is, pdf (�ω′
j ) = 1/4π .

Anisotropic Media. For anisotropic media the multiple scat-
tered radiance depends on the outgoing direction �ω. As with the
single scattering contribution, we use spherical harmonics to rep-
resent the phase function p(x, �ω′, �ω), which leads to expressions
analogous to Equations (24) and (26). However, there is no term
for the gradient of the phase function in multiple scattering, as the
angle between path vertices does not change under a translation of
the whole path.

We apply importance sampling according to the phase function
at all but the first scattering event since the outgoing direction is
given by the direction to the previous path vertex. However, we
always sample the direction at the first scattering event uniformly.
The reason is that the outgoing direction �ω is not known a priori.
It will be determined only when the cache point is evaluated for a
certain view direction.

5. RADIANCE CACHING ALGORITHM

Using the groundwork laid out in the previous sections we now
describe a radiance caching method for participating media. Our
algorithm efficiently computes lighting within participating media
by sparsely sampling Ls and Lm and caching them for extrapolation.
In addition to computing single and multiple scattering separately as
described in Section 2, we separate our cache based on the expected
frequency content of the radiance values. Specifically, we maintain
distinct cache points for single scattering from lights, single scat-
tering from surfaces, and multiple scattering. We call these single
scattering, surface scattering, and multiple scattering cache points.
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This allows our system to sample low-frequency components more
sparsely.

The core algorithm for radiance caching in participating media is
as follows. For each point in the volume where we need to evaluate
inscattered radiance, we first query the cache for a set of usable
cache points. If we find any points, then we use the cached values
to extrapolate the radiance to this point as described in Section 5.3.
If there are no usable points, then we compute the radiance and its
gradient as described in Sections 3 and 4 and store these values in
the cache. The procedure is performed for all three caches. The total
inscattered radiance is the sum of the three contributions.

5.1 Cache Entry Storage

For efficient access to cache points, we use an octree. The data struc-
ture and lookup procedure is similar to previous work on surface
radiance caching techniques [Ward et al. 1988].

All cache entries store the inscattered radiance and its gradients
at a location in space, as well as a valid radius to later determine
if a cache entry is valid for extrapolation at a given query location.
Note that the inscattered radiance is the amount of light that leaves
a point in a particular direction; thus, we must store the radiance
over the full sphere of directions.

Isotropic Media. Since the inscattered radiance does not de-
pend on direction, each cache entry stores it using three scalar val-
ues, one for each color channel. In addition, we compute and store
the gradient for each channel separately for greater accuracy. The
total storage requirement for each isotropic entry is 16 floating point
numbers. In total, the size of an isotropic cache entry is 48 bytes,
though this could easily be reduced using an RGBE [Ward 1991] or
16-bit floating point representation [Kainz et al. 2006].

Anisotropic Media. In anisotropic media, each Monte Carlo
sample of the radiance has a different directional contribution that
depends on the shape of the phase function. Because phase functions
are generally smooth, we capture this directional dependence using
spherical harmonics as described in Section 3.

Our system supports storing spherical harmonic expansions to
an arbitrary number of coefficients. However, for scenes with area
lights and moderately anisotropic media (e.g., a Henyey-Greenstein
phase function with |g| < 0.6), we have found that using M = 9
coefficients in Equation (23) is sufficient to accurately represent
the inscattered radiance. Using 9 coefficients, the full RGB rep-
resentation of the inscattered radiance requires 27 coefficients.
Including the cache sample location and valid radius, this gives
28 floating point values, or 112 bytes per entry assuming 32-bit
values.

5.2 Valid Radius and Error Tolerance

Each cache point has a valid radius within which it is a candidate
for extrapolation. To compute this radius we have developed a per-
ceptually based error metric which adapts to the local smoothness
of the radiance field.

To estimate a valid radius for cache points we define the notion
of an “optimal radius.” The optimal radius for a cache point is the
largest radius such that the total relative L2 error over the extrap-
olated region is below some error threshold ε. More formally, if
L̂ x0

(x) is the radiance extrapolated from location x0 to x , then the

optimal radius is given by

Ropt (x) = max
r

⎛
⎜⎜⎝

∫
x∈�r

∣∣L(x) − L̂x0
(x)

∣∣ dx∫
x∈�r

L(x) dx

≤ ε

⎞
⎟⎟⎠ . (31)

We use the relative error because the human visual system is more
sensitive to contrast than absolute differences in intensity [Glassner
1995]. Solving for Ropt(x) during rendering would be impractical
since it requires knowledge of the true radiance within the valid
radius of any cache point. Our goal is therefore to devise an error
metric which approximates the optimal radius as closely as possi-
ble using only information already available from the Monte Carlo
samples at x.

The ratio of the radiance gradient to the radiance is a local measure
of the contrast. It is also equivalent to the log-space gradient of the
radiance:

∇ ln(L) = ∇L

L
. (32)

Making the valid radius inversely proportional to the magnitude of
the log-space gradient at x makes sense at an intuitive level: areas
where the radiance field has high contrast will be sampled more
densely than smoothly varying regions. Furthermore, using the log-
space gradient instead of the regular gradient means that the valid
radius computation is independent of the absolute intensity of the
lighting in the scene.

In our 1D test cases this approach matches the behavior of the
optimal radius well at many locations (see Figure 4). Unfortunately
the log-space gradient is a completely local quantity and can be a
bad predictor of the contrast in the surrounding area. Specifically,
the magnitude of the gradient can drop to zero, causing an infinite
valid radius. A zero gradient, or saddle-point, can naturally occur in
many situations, for example, between two lights. Using the Monte
Carlo samples, the reciprocal magnitude of the log-space gradient
can be expressed as:

L(x)

‖∇L(x)‖ =
∑

j L j (x)∥∥∥∑
j ∇L j (x)

∥∥∥ , (33)

where j represents the Monte Carlo samples over light sources (for
single scattering), surfaces (for surface scattering), and random-
walk paths (for multiple scattering). However, instead of using the
log-space gradient directly, we use a modified metric designed
to eliminate saddle-points. The valid radius of cache points is
computed as:

R(x) = ε

∑
j L j (x)∑

j

∥∥∇L j (x)
∥∥ , (34)

where ε is a user controlled global error tolerance parameter. By
summing over gradient magnitudes instead of gradient directions in
the denominator we prevent the introduction of infinite radii. In our
1D test cases this error metric matches the optimal radius remarkably
well (see Figure 4) and in practice produces very good cache point
distributions.

For colored media, we compute the valid radius for the three color
channels independently and use the minimum. In anisotropic media,
we use the zero-order spherical harmonic coefficients to compute
the radius.

In our implementation, the amount of error in the extrapolation is
controlled by the tolerance ε. A tolerance of 0 indicates that values
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Fig. 4. Experimental validation of our error metric as compared to a numerically computed optimal radius for a 1D scene with (a) two point lights of differing

strength and (b) 20 equal strength point lights. Though the log-space gradient matches the optimal radius of (a) in most situations, it produces infinite radii

where the gradient vanishes. These singularities become even more prominent with many light sources (b). In both cases, our perceptually based error metric

robustly approximates the optimal radius even in the presence of saddle points in the radiance field.

should never be cached or reused. Setting ε = 1 indicates that the
extrapolated radiance will be usable until it differs by about a factor
of 2 from the cached radiance value.

In areas that are occluded from all light sources, the radiance
due to direct illumination and its gradient are zero. This means that
the valid radius of the direct cache is undefined. To remedy this
problem, we also compute an unshadowed gradient for the single
scattering cache by assuming that all light sources are visible. We
then choose the smaller of the regular and the unshadowed radii as
the valid radius.

Finally, we set minimum and maximum radii for the cache
points in both world and screen space, and clamp gradients ac-
cording to standard techniques when using radiance caching tech-
niques [Křivánek et al. 2006].

5.3 The Extrapolated Radiance Estimate

Previous caching techniques for surfaces use constant or linear ex-
trapolation to approximate the radiance at a given location from a set
of cached points. Constant extrapolation reuses the value at a cache
entry for the new location, while linear extrapolation uses a constant
slope to extrapolate the radiance with distance. In participating me-
dia, however, light intensity falls off exponentially with distance. We
exploit this property in extrapolating the inscattered radiance from
cache points by exponentially extrapolating the cached values. We
have found that exponential extrapolation provides a smoother re-
construction of the radiance field than linear extrapolation.

Exponential Extrapolation. Exponential extrapolation is
equivalent to linear extrapolation in log-space. The radiance at a
point x is approximated from a set of cache points C whose valid
radii contain our query location by a weighted sum of extrapolated
radiance values:

L(x) ≈ exp

⎛
⎜⎜⎜⎝

∑
k∈C

(
ln(Lk) + ∇Lk

Lk
· (x − xk)

)
w (dk)

∑
k∈C

w (dk)

⎞
⎟⎟⎟⎠ , (35)

where Lk , ∇Lk , xk , and rk are the radiance, gradient, position, and
valid radius of cache point k respectively. The weighting function w
is a smooth cubic, w(d) = 3d2−2d3. We define dk = 1−‖xk−x‖/rk

so that the weighting function has the most influence at the cache

location, and this influence falls off smoothly to zero at the valid
radius.

Figure 5 compares constant, linear, and exponential extrapolation
in a 2D slice of a scene containing a point source in a participat-
ing medium. The images were rendered using the same cache point
locations, the only difference is the method used to extrapolate the
radiance. Constant extrapolation is clearly a poor choice for extrapo-
lation in participating media as it gives strong discontinuity artifacts
from the jumps between points, while linear extrapolation does a
somewhat better job at approximating the change in radiance. Expo-
nential extrapolation most precisely matches a reference solution,
with almost no visible artifacts, as it more closely approximates the
real change in radiance over distance.

6. RESULTS

We implemented the volumetric radiance caching algorithm in a
Monte Carlo ray tracer, and all our timings were made on an Intel
Core 2 Duo 2.4 GHz machine using only one core. We performed
comparisons between path tracing, radiance caching, and photon
mapping. Since each rendering technique has its own set of parame-
ters, we performed equal-time comparisons while hand-picking the
best parameters for each algorithm. All three methods make full
use of standard optimization techniques including Russian roulette,
stratification, and importance sampling where applicable. All im-
ages were rendered at 1K horizontal resolution with up to 16 samples
per pixel.

Figure 6 shows a series of images of a Cornell box filled with
smoke. We compare our method to path tracing for a variety of par-
ticipating media types. Render times range from around 1.5 minutes
for homogeneous media with isotropic scattering, to 7.5 minutes
in heterogeneous media with anisotropic scattering. In all four ex-
amples, path tracing exhibits significant noise for the same render
time. In the heterogeneous images the scattering properties are de-
fined procedurally using several octaves of noise [Ebert et al. 2002].
For anisotropic scattering, by projecting the full directional radi-
ance field onto spherical harmonics we are able to correctly reuse
cached values even for reflection rays on the mirror spheres. A
visualization of the radiance cache point locations from the homo-
geneous/isotropic image is shown in Figure 7.

Figure 8 shows a frame from an animation moving through light
beams in the Sponza atrium. In this scene all lighting is provided
using a single point light, so we do not cache single-scattering but
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heterogeneous media. All images were rendered at 1K × 1K with up to 16 samples per pixel and include single scattering from lights, single scattering from

surfaces, and multiple scattering. Render times are reported underneath each image with the number of cache points in the single, surface, and multiple scattering

caches in parenthesis. The zoomed insets provide equal-time comparison to path tracing. A visualization of the cache points used to render the far left image

is shown in Figure 7.

compute it directly. Computing multiple scattering is particularly
challenging in this scene and requires tracing thousands of paths
to estimate the inscattered radiance. Our caching method is able to
produce a noise-free result in 19 minutes. For walk-through style
animations where only the camera position changes, we are able to
reuse the radiance cache for subsequent frames, achieving an even
greater speedup. Sponza is an extremely difficult scene for photon
mapping. We tried performing an equal-time comparison to photon
mapping. However, even by using projection maps, tracing photons
for over 40 minutes produced less than 1K usable photons.

Figure 9 shows a frame from an animation of evolving smoke
which took less than 6 minutes to generate. In this scene each frame
is rendered using a separate cache. Our method is able to produce
flicker-free animations even when the cache is recomputed at each
frame. With the same render time the path tracing solution exhibits
visible noise, which flickers significantly when animated. For this
scene, we store about 9K cache points.

Figure 10 shows two cars on a foggy road. This scene has a
large extent, and is costly to render with methods such as photon
mapping. Here, our caching method fully exploits the smoothness
in the radiance across the scene. In the same render time we are able
to attain significant noise reduction compared to path tracing and a
smoother reconstruction than photon mapping using over 8 million
photons.

For all example scenes in this paper, a large portion of render
time is spent querying for cache points within the octree (typically
between one third and one half of total render time). This is due to
the large number of queries performed while ray marching through
the medium (in the millions) compared to the number of cache
points created (in the thousands). However, for the multiple scatter-
ing computation in our example scenes we trace between 2K and
8K random-walk paths. Due to this, it is important to note that com-
puting a new cache point takes about 100 to 1000 times longer than
querying within the octree.

7. DISCUSSION AND FUTURE WORK

Many promising avenues remain for combining the strengths of pho-
ton mapping and radiance caching. Since photon mapping does not
attempt to accelerate the computation of single scattering, radiance
caching could effectively accelerate this computation within a pho-
ton mapping renderer. Another promising extension is to use our
caching technique as a final gather pass for photon mapping. Cur-
rently, in highly scattering scenes with many occluders, a large num-
ber of multiple scattering rays are necessary using our method. The
density estimation in photon mapping provides a natural smooth-
ing, which could reduce the number of multiple scattering rays
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Fig. 7. The bottom row shows a visualization of the single, surface, and

multiple scattering cache points using the radiance cache from the homo-

geneous/ isotropic image in Figure 6. The top row shows the correspond-

ing extrapolated radiance components (the radiance from surfaces past the

medium is not included). For display purposes the multiple and surface scat-

tering images have been raised by 1 and 2 F-stops respectively.

Fig. 8. The Sponza atrium (top) with beams of light and multiple scat-

tering. With volumetric radiance caching, this scene renders in 19 minutes

using about 46K cache points and 79M cache queries. Sponza is notoriously

difficult for photon mapping: even using projection maps to direct photons

towards the windows, tracing photons for over 40 minutes results in less than

1K usable photons. The zoomed insets on the right provide an equal-time

comparison to path tracing. The bottom image visualizes the surface cache

using a horizontal cross section near the floor of the hallway. The camera

is located on the right looking towards the left. Note the concentration of

cache points near the brightly illuminated regions of the floor. The radiance

caching image was rendered at a horizontal resolution of 1K with up to 16

samples per pixel with error tolerances set at 0.5 and 0.01 for the surface and

multiple scattering caches respectively. For multiple scattering, our method

traces 512 random-walk paths per cache point.

necessary and improve the cached result. Furthermore, photon map-
ping is able to efficiently simulate multiple scattering in a variety
of scenes because it is well suited for detecting light paths diffi-
cult to sample from the eye. However, for smooth reconstruction a
large number of photons are required. Performing a final gather
would also reduce the necessary number of stored photons and
improve the reconstruction quality as compared to regular photon

Fig. 9. A still frame from an animation of heterogeneous smoke renders

in 5.8 minutes using 9K cache points and 8.2M cache queries. Our method

is able to produces flicker-free animation even when recomputing a new

cache for each frame. The highlighted region is shown zoomed-in on the

right providing an equal-time comparison to path tracing. Error tolerances

of 0.05, 1.0, and 1.0 were used for the single, surface, and multiple scattering

caches with 2K multiple scattering paths per cache point.

mapping. For isotropic media, final gather optimizations developed
for surfaces [Christensen 1999] could be extended for volumet-
ric final gather. Information from the photon map could also be
used in other ways, for instance, to provide an importance sam-
pling function for computing the direct and indirect inscattered
illumination.

One of the main challenges for our technique stems from ignoring
the visibility gradient. Due to this simplification, our error metric
is unable to adapt sample density at volumetric shadow boundaries,
forcing the user to set a lower global error tolerance to produce
artifact-free renderings. Incorporating the visibility gradient, both
for extrapolation and in the error metric, could significantly increase
quality while reducing render times. We plan to address this limita-
tion in future work.

Caching the radiance and gradient computation using spherical
harmonics is effective for moderately anisotropic scattering. For
highly directional scattering, this approach becomes less beneficial.
Since the cache points can potentially be reused from any viewing
direction our error metric does not account for the outgoing direction
when computing the valid radius. An alternate approach could be
to store radiance values in a 5D cache with associated outgoing
directions. Since in this case cache points would only be reused
for similar outgoing directions, importance sampling could be used
even at the first bounce for multiple and surface scattering. Such an
approach would benefit significantly from a full 5D error metric that
computes a valid radius independently for the spatial and angular
dimensions.

Although our method caches the results of integrating single and
multiply scattering, other expensive quantities could also be cached
to further improve performance. For scenes with a large visible ex-
tent and large image resolutions, cache queries dominate the render
time due to the repeated lookups necessary for integrating radiance
along eye rays. Caching the radiance integration along eye rays
could provide for efficient reuse of the whole radiance computation
from neighboring pixels, completely eliminating the eye integration
for a majority of the image.

Finally, the original surface irradiance caching algorithm could
be extended to account for the presence of participating media, and
coupled with our method. Since, however, there is no distance to
surfaces associated with volumetric cache points, this would be a
challenging undertaking. Also, the irradiance gradients would have
to account for the change in optical properties along a path as the
point moves on the surface, similar to our scattering gradients.
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Fig. 10. Two cars in a dense fog on a road illuminated by 60 lights. Our radiance caching method renders the cars scene (a) in 20.35 minutes using only

175K cache points and 27M cache queries. The multiple scattering computation traces 4K random-walk paths per cache point. The highlighted region is shown

zoomed-in providing an equal-time quality comparison between radiance caching (RC) and path tracing (PT). This scene has a large extent and is difficult to

render with methods such as photon mapping that compute scattering in the entire medium. In a contrast-enhanced, equal-time comparison to photon mapping

(b), artifacts remain in the homogeneous medium even after tracing 8M photons due to the large scene extent and many light sources. A horizontal cross section

of the single scattering cache points (c) as see from above. In this visualization the camera is located at the bottom looking up. Note the concentration of cache

points around the street lights and headlights near the camera. The images were rendered with a horizontal resolution of 1K with up to 16 samples per pixel

and the error tolerances were set at 0.25 and 0.75 for the single and multiple scattering caches respectively.

8. CONCLUSION

In this paper we have presented a new method for caching radiance
in the presence of participating media. The method is general and
adapts to scenes with arbitrary scattering and absorbing properties. It
works directly in both homogeneous and heterogeneous media, and
can handle both isotropic or anisotropic scattering. When rendering
anisotropic media, we compactly store the directional distribution
of the radiance using spherical harmonics. Our method caches both
single and multiple scattered radiance from light sources and sur-
faces, while providing significant gains in speed over traditional
Monte Carlo ray tracing techniques.

Volumetric radiance caching is founded on using the gradients of a
Monte Carlo formulation of radiative transport to accurately predict
the change in radiance throughout the scene. We have shown how
to compute these gradients, and also how to use them to extrapolate
the radiance to new locations. This, combined with an exponential
extrapolation technique that exploits the properties of light in a
medium, allow us to render high quality images of scenes with
a relatively small number of cache points. Caches produced by our
method handle complex illumination and can be later re-used for
animations.

APPENDIX: Single Scattering Gradients

Geometry Term. The gradients of the various geometry terms
are

∇ H (x′ → x) = ∇
(

�n · x − x′

‖x − x′‖
)

1

‖x − x′‖2
(36)

+ �n · x − x′

‖x − x′‖∇
(

1

‖x − x′‖2

)

∇ Hu
p (x′ → x) = ∇

(
1

‖x − x′‖2

)
(37)

∇ H p
p (x′ → x) = s

(
�n · x − x′

‖x − x′‖
)s−1

∇
(

�n · x − x′

‖x − x′‖
)

1

‖x − x′‖2

+
(

�n · x − x′

‖x − x′‖
)s

∇
(

1

‖x − x′‖2

)
(38)

where:

∇
(

�n · x − x′

‖x − x′‖
)

= �n
‖x − x′‖ − (�n · (x − x′))(x − x′)

‖x − x′‖3
(39)

∇
(

1

‖x − x′‖2

)
= −2(x − x′)

‖x − x′‖4
. (40)

Phase Function. In isotropic media the phase function is a con-
stant and its gradient vanishes. For anisotropic media, we focus on
the Henyey-Greenstein phase function pH G and the Schlick phase
function pS :

pHG(θ ) = 1 − g2

4π (1 + g2 − 2g cos θ )1.5
(41)

pS(θ ) = 1 − k2

4π (1 + k cos θ )2
. (42)

These phase functions are 1D, only depending on the cosine of
the angle between the incident and outgoing directions. We express
cos(θ ) in terms of �ω, x, and x′ as:

cos(θ ) = �ω · x − x′

‖x − x′‖ . (43)

The gradients of the phase functions with respect to x are then

∇ pHG(θ ) = 3g(1 − g2)

4π(1 + g2 − 2g cos θ )2.5
∇ cos θ (44)

∇ pS(θ ) = k(1 − k2)

2π(1 + k cos θ )3
∇ cos θ, (45)

where

∇ cos(θ ) = cos θ
x − x′

‖x − x′‖2
− �ω

‖x − x′‖ .
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