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Thursday, 6 September 12
e Thanks for the introduction, and thank you all for attending
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e |n this talk we are interesting in rendering scenes like the one shown here

e Unfortunately, most previous rendering techniques have difficulty with this type of scene [click] due
to the extremely complex light paths involved. [click]

e |n particular, each light source is modeled realistically using a collection of mirrors and lenses

e Hence, all the illumination you see is actually caustics [click]

e Furthermore, we have a heterogeneous medium. [click]

e |'ll describe our new Progressive Photon Beams approach which, by combining the efficiency of
photon beams with the convergence guarantees of progressive photon mapping, is able to handle
scenes like this quickly and accurately
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e The gold standard for rendering these types of scene is arguably computing unbiased, noise-free
images.

e Several algorithms exist, which are essentially variants of brute-force path tracing or Metropolis light
transport

e Though these methods are unbiased, [click] they are notoriously slow to converge to noise-free
images

e Another problem with these approaches [click] is their inability to handle certain types of light paths
robustly, in particular caustics or specular reflections/refractions of caustics. Hence, they would fall
apart on this disco scene
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e Methods such as volumetric photon mapping do not suffer from these problems [click]

e They typically produce high-quality results much faster than unbiased techniques [click]

e and is one of the few algorithms that is robust to caustic paths [click]

e However, photon mapping introduces bias.

e |t is consistent, though, which means that if we use an infinite number of photons, we will get the
correct solution.

e but, this is of little practical value since we obviously cannot store an unlimited number of photons.
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vy,

e Hachisuka et al. introduced a practical way to alleviate this memory constraint
e They introduced progressive photon mapping, which shows how to eliminate bias and noise
simultaneously in photon mapping without having to storing an unlimited number of photons
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e |[nstead of storing all photons needed to obtain a converged result [click]

e Photons are traced and discarded progressively [click]

e the rendered image is updated after each photon tracing pass [click]

® in such a way that the approximation converges to the correct solution in the limit.
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e |[nstead of storing all photons needed to obtain a converged result [click]

e Photons are traced and discarded progressively [click]

e the rendered image is updated after each photon tracing pass [click]

® in such a way that the approximation converges to the correct solution in the limit.
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e |[nstead of storing all photons needed to obtain a converged result [click]

e Photons are traced and discarded progressively [click]

e the rendered image is updated after each photon tracing pass [click]

® in such a way that the approximation converges to the correct solution in the limit.
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e |[nstead of storing all photons needed to obtain a converged result [click]

e Photons are traced and discarded progressively [click]

e the rendered image is updated after each photon tracing pass [click]

® in such a way that the approximation converges to the correct solution in the limit.
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e This past SIGGRAPH, we introduced a new technique for rendering participating media called photon
beams

e The central observation that we made is that volumetric photon mapping throws away a lot of
potentially useful information between the shooting stage and the density estimation stage

e |n particular, photon mapping traces random-walk paths from the light, and then stores the vertices
of these paths as photons

e \We made the observation that if we stored the entire path of the photons, and not just the
scattering locations, then we get a higher sampling density within the medium, and obtain higher
qguality renderings at virtually no extra cost.
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e |n practice, photon mapping effectively blurs each photon point into a small disc.

e On the other hand, [click] photon beams blurs each photon path into a thick line segment

e Now, even though beams produce higher quality results using less photons, the generated images
are still biased, since each beam is blurred with a finite width
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e Now, even though beams produce higher quality results using less photons, the generated images
are still biased, since each beam is blurred with a finite width
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e The goal of our paper is to combine the benefits of photon beams and progressive photon mapping
e We would like to use the more efficient photon beams approach but formulate a progressive
algorithm that will converge to the correct result [click]
e We call this combination: Progressive Photon Beams
e The end result is an efficient algorithm which: [click]
e is robust to complex light paths [click]
e converges to unbiased result in finite memory [click]
e handles heterogeneous media, and [click]
® supports progressive updates for interactive preview
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e We would like to use the more efficient photon beams approach but formulate a progressive
algorithm that will converge to the correct result [click]
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e At a high-level our approach proceeds similarly as previous PPM techniques.

e The main idea is to generate a sequence of render passes (one of which is shown here), where each
pass uses an independent collection of photon beams. The output of our algorithm is a running
average of the passes so far (which I'll show on the right).

e Since photon beams are biased, by definition, if we just averaged several independent passes, the
variance would diminish, but the final result would still be biased [click]
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e As a key step, we reduce the radii of the photon beams after each pass. Therefore each subsequent
image on the left has less bias but slightly more noise. We reduce the radii in such a way, however,
that as we add more passes the running average of these images converges to the correct solution.

e The question is, how quickly should we reduce the radii?

e A main contribution of this paper is to determine exactly how quickly we need to reduce the beams
radii so that we obtain convergence.
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e As a key step, we reduce the radii of the photon beams after each pass. Therefore each subsequent
image on the left has less bias but slightly more noise. We reduce the radii in such a way, however,
that as we add more passes the running average of these images converges to the correct solution.
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e A main contribution of this paper is to determine exactly how quickly we need to reduce the beams
radii so that we obtain convergence.
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e As a key step, we reduce the radii of the photon beams after each pass. Therefore each subsequent
image on the left has less bias but slightly more noise. We reduce the radii in such a way, however,
that as we add more passes the running average of these images converges to the correct solution.
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e As a key step, we reduce the radii of the photon beams after each pass. Therefore each subsequent
image on the left has less bias but slightly more noise. We reduce the radii in such a way, however,
that as we add more passes the running average of these images converges to the correct solution.

e The question is, how quickly should we reduce the radii?

e A main contribution of this paper is to determine exactly how quickly we need to reduce the beams
radii so that we obtain convergence.
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e As a key step, we reduce the radii of the photon beams after each pass. Therefore each subsequent
image on the left has less bias but slightly more noise. We reduce the radii in such a way, however,
that as we add more passes the running average of these images converges to the correct solution.

e The question is, how quickly should we reduce the radii?

e A main contribution of this paper is to determine exactly how quickly we need to reduce the beams
radii so that we obtain convergence.
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e As a key step, we reduce the radii of the photon beams after each pass. Therefore each subsequent
image on the left has less bias but slightly more noise. We reduce the radii in such a way, however,
that as we add more passes the running average of these images converges to the correct solution.

e The question is, how quickly should we reduce the radii?

e A main contribution of this paper is to determine exactly how quickly we need to reduce the beams
radii so that we obtain convergence.
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e The question is, how quickly should we reduce the radii?
e A main contribution of this paper is to determine exactly how quickly we need to reduce the beams
radii so that we obtain convergence.
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e The question is, how quickly should we reduce the radii?
e A main contribution of this paper is to determine exactly how quickly we need to reduce the beams
radii so that we obtain convergence.
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e |[n the remainder of the talk | will describe how we arrive at our algorithm [click]

e One of the key steps is to derive the necessary conditions for statistical convergence [click]

e Also, we introduce an efficient and unbiased new way to handle heterogeneous media with beams
[click]

e Finally, I'll discuss how our formulation allows for efficient implementation on either a CPU or GPU
[click]

e We also propose some usability improvements applicable to all ppm techniques and | encourage you
to look in the paper for these details.
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e One of the key steps is to derive the necessary conditions for statistical convergence [click]

e Also, we introduce an efficient and unbiased new way to handle heterogeneous media with beams
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e We also propose some usability improvements applicable to all ppm techniques and | encourage you
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e Even though photon beams are a generalization of photon mapping, we cannot directly re-use the
convergence analyses from progressive photon mapping directly for photon beams [click]

e The reason is that density estimation using beams is mathematically quite different than density
estimation using points

e \We need to analyze the necessary conditions for convergence in this more complicated case
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e Even though photon beams are a generalization of photon mapping, we cannot directly re-use the
convergence analyses from progressive photon mapping directly for photon beams [click]

e The reason is that density estimation using beams is mathematically quite different than density
estimation using points

e \We need to analyze the necessary conditions for convergence in this more complicated case
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e To accomplish this, we build off of the probabilistic framework developed by Knaus and Zwicker

e They showed that convergence in such a progressive algorithm can be achieved [click] by enforcing a
ratio of the variance between passes.

e Alpha is a user parameter between 0 and 1 which influences the bias/variance (as we will see later)

e Our task is to enforce such a variance ratio when the images are generated using photon beams

e Ultimately we are interested in determining how the radii of beams should shrink, so we need some
way to relate the variance of each pass to the radius of the beams
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e To accomplish this, we build off of the probabilistic framework developed by Knaus and Zwicker

e They showed that convergence in such a progressive algorithm can be achieved [click] by enforcing a
ratio of the variance between passes.

e Alpha is a user parameter between 0 and 1 which influences the bias/variance (as we will see later)

e Our task is to enforce such a variance ratio when the images are generated using photon beams

e Ultimately we are interested in determining how the radii of beams should shrink, so we need some
way to relate the variance of each pass to the radius of the beams
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= First, consider rendering each pass
using a single beam
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e Lets first consider render each pass using a single stochastically-generated beam, we will generalize
this later
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e |[n the paper, we show that under some reasonable assumptions: [click]

e The variance is inversely proportional to the radius of the beam. [click]

e More concretely, the variance increases linearly as we reduce the kernel radius r [click]

e On the other hand, we show that the opposite is true for bias: it is linearly proportional to the radius.
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e |[n the paper, we show that under some reasonable assumptions: [click]

e The variance is inversely proportional to the radius of the beam. [click]
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e On the other hand, we show that the opposite is true for bias: it is linearly proportional to the radius.
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e |n practice, each rendered pass will use many beams, each with their own radius.

e [n the original photon beams method, the radii are computed using photon differentials to adapt the
blurring across the scene

® |n our paper we show that we can easily generalize the one-beam case to allow for multiple beams.

e The only change that is necessary is that, for variance, the beam radius is replaced by the harmonic
mean of the beam radii

e For bias, the radius gets replaced by the arithmetic mean of the beam radii

e The high-level story remains the same, that variance is inversely proportional to the beam radii, and
bias is directly proportional to the radii
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blurring across the scene
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e For bias, the radius gets replaced by the arithmetic mean of the beam radii

e The high-level story remains the same, that variance is inversely proportional to the beam radii, and
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e Our ultimate goal is to derive a global radius reduction factor, which I'll denote with capital R

e R will start out at 1 in the first pass, and in each subsequent pass, the photon beams radii will be
scaled by this factor [click]

e \We can combine our desired variance ratio [click], with our relation between variance and radius to
obtain an expression [click] which dictates how the global scaling factor should change across passes
in order to obtain a convergent algorithm.

e This radius reduction factor is what allows our algorithm to, in theory, produce convergent results
across multiple passes.
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e Our ultimate goal is to derive a global radius reduction factor, which I'll denote with capital R

e R will start out at 1 in the first pass, and in each subsequent pass, the photon beams radii will be
scaled by this factor [click]

e \We can combine our desired variance ratio [click], with our relation between variance and radius to
obtain an expression [click] which dictates how the global scaling factor should change across passes
in order to obtain a convergent algorithm.

e This radius reduction factor is what allows our algorithm to, in theory, produce convergent results
across multiple passes.
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e To empirically validate this result, we ran the following experiment on this sphere caustic scene

e We first render a high-quality ground truth image

e Then, we run 1 thousand passes of our algorithm with three different settings for alpha

e We repeat this 10 thousand times

e Given these 30 million measurements, we can compute and plot the sample variance and bias at the
highlighted point A for each pass
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e To empirically validate this result, we ran the following experiment on this sphere caustic scene

e We first render a high-quality ground truth image
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e Given these 30 million measurements, we can compute and plot the sample variance and bias at the
highlighted point A for each pass



Empirical Validation

Variance|Pass; 1] 1+1

Variance|Pass;| P+ o

Thursday, 6 September 12

e Given our theoretical variance ratio, the variance of each pass should in theory looks like this.

e When alpha is set to be low, the variance of each pass increases quickly. This corresponds to
reducing the radii more rapidly

e |n contrast, when alpha is set high, the variance of each pass should increase slowly.

e When we plot the sample variance from the data we gathered in our experiment, we see, by using
our radius reduction factor, we method strongly agrees with the theoretical prediction.

e More importantly, we are interested in the variance of the running average of the passes

e The theoretical model predicts the following behavior

e Which again, our empirical results confirm.

e Lastly, our theoretical model can also predict the bias of each pass, as well as the bias of the average.

e |n theory, the bias should also converge to zero as we increase the number of passes, and we see
here that our empirical data strongly agrees with this prediction.

e We see that when alpha is between 0 and 1 both the variance and the bias of the running average
converge to zero as predicted by our model. Also, the alpha parameter allows the user to control the
relative reduction of bias vs reduction of variance in the average.
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e Given our theoretical variance ratio, the variance of each pass should in theory looks like this.

e When alpha is set to be low, the variance of each pass increases quickly. This corresponds to
reducing the radii more rapidly

e |n contrast, when alpha is set high, the variance of each pass should increase slowly.

e When we plot the sample variance from the data we gathered in our experiment, we see, by using
our radius reduction factor, we method strongly agrees with the theoretical prediction.

e More importantly, we are interested in the variance of the running average of the passes

e The theoretical model predicts the following behavior

e Which again, our empirical results confirm.

e Lastly, our theoretical model can also predict the bias of each pass, as well as the bias of the average.

e |n theory, the bias should also converge to zero as we increase the number of passes, and we see
here that our empirical data strongly agrees with this prediction.

e We see that when alpha is between 0 and 1 both the variance and the bias of the running average
converge to zero as predicted by our model. Also, the alpha parameter allows the user to control the
relative reduction of bias vs reduction of variance in the average.
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e Given our theoretical variance ratio, the variance of each pass should in theory looks like this.

e When alpha is set to be low, the variance of each pass increases quickly. This corresponds to
reducing the radii more rapidly

e |n contrast, when alpha is set high, the variance of each pass should increase slowly.

e When we plot the sample variance from the data we gathered in our experiment, we see, by using
our radius reduction factor, we method strongly agrees with the theoretical prediction.

e More importantly, we are interested in the variance of the running average of the passes

e The theoretical model predicts the following behavior

e Which again, our empirical results confirm.

e Lastly, our theoretical model can also predict the bias of each pass, as well as the bias of the average.

e |n theory, the bias should also converge to zero as we increase the number of passes, and we see
here that our empirical data strongly agrees with this prediction.

e We see that when alpha is between 0 and 1 both the variance and the bias of the running average
converge to zero as predicted by our model. Also, the alpha parameter allows the user to control the
relative reduction of bias vs reduction of variance in the average.
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e Given our theoretical variance ratio, the variance of each pass should in theory looks like this.

e When alpha is set to be low, the variance of each pass increases quickly. This corresponds to
reducing the radii more rapidly

e |n contrast, when alpha is set high, the variance of each pass should increase slowly.

e When we plot the sample variance from the data we gathered in our experiment, we see, by using
our radius reduction factor, we method strongly agrees with the theoretical prediction.

e More importantly, we are interested in the variance of the running average of the passes

e The theoretical model predicts the following behavior

e Which again, our empirical results confirm.

e Lastly, our theoretical model can also predict the bias of each pass, as well as the bias of the average.

e |n theory, the bias should also converge to zero as we increase the number of passes, and we see
here that our empirical data strongly agrees with this prediction.

e We see that when alpha is between 0 and 1 both the variance and the bias of the running average
converge to zero as predicted by our model. Also, the alpha parameter allows the user to control the
relative reduction of bias vs reduction of variance in the average.
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e Given our theoretical variance ratio, the variance of each pass should in theory looks like this.

e When alpha is set to be low, the variance of each pass increases quickly. This corresponds to
reducing the radii more rapidly

e |n contrast, when alpha is set high, the variance of each pass should increase slowly.

e When we plot the sample variance from the data we gathered in our experiment, we see, by using
our radius reduction factor, we method strongly agrees with the theoretical prediction.

e More importantly, we are interested in the variance of the running average of the passes

e The theoretical model predicts the following behavior

e Which again, our empirical results confirm.

e Lastly, our theoretical model can also predict the bias of each pass, as well as the bias of the average.

e |n theory, the bias should also converge to zero as we increase the number of passes, and we see
here that our empirical data strongly agrees with this prediction.

e We see that when alpha is between 0 and 1 both the variance and the bias of the running average
converge to zero as predicted by our model. Also, the alpha parameter allows the user to control the
relative reduction of bias vs reduction of variance in the average.
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e Given our theoretical variance ratio, the variance of each pass should in theory looks like this.

e When alpha is set to be low, the variance of each pass increases quickly. This corresponds to
reducing the radii more rapidly

e |n contrast, when alpha is set high, the variance of each pass should increase slowly.

e When we plot the sample variance from the data we gathered in our experiment, we see, by using
our radius reduction factor, we method strongly agrees with the theoretical prediction.

e More importantly, we are interested in the variance of the running average of the passes

e The theoretical model predicts the following behavior

e Which again, our empirical results confirm.

e Lastly, our theoretical model can also predict the bias of each pass, as well as the bias of the average.

e |n theory, the bias should also converge to zero as we increase the number of passes, and we see
here that our empirical data strongly agrees with this prediction.

e We see that when alpha is between 0 and 1 both the variance and the bias of the running average
converge to zero as predicted by our model. Also, the alpha parameter allows the user to control the
relative reduction of bias vs reduction of variance in the average.
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e Given our theoretical variance ratio, the variance of each pass should in theory looks like this.

e When alpha is set to be low, the variance of each pass increases quickly. This corresponds to
reducing the radii more rapidly

e |n contrast, when alpha is set high, the variance of each pass should increase slowly.

e When we plot the sample variance from the data we gathered in our experiment, we see, by using
our radius reduction factor, we method strongly agrees with the theoretical prediction.

e More importantly, we are interested in the variance of the running average of the passes

e The theoretical model predicts the following behavior

e Which again, our empirical results confirm.

e Lastly, our theoretical model can also predict the bias of each pass, as well as the bias of the average.

e |n theory, the bias should also converge to zero as we increase the number of passes, and we see
here that our empirical data strongly agrees with this prediction.

e We see that when alpha is between 0 and 1 both the variance and the bias of the running average
converge to zero as predicted by our model. Also, the alpha parameter allows the user to control the
relative reduction of bias vs reduction of variance in the average.
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e \We can now use our algorithm to render participating media in a progressive fashion [click]

e The first step is just standard photon beam tracing, the only change is that we scale the beam radii
by the global factor Ri, which starts at 1 [click]

e |[n the second step, we render the image by tracing random paths through each pixel, and evaluating
the radius along each ray using beams [click]

e \We then average the image with our previous results, and display this running average [click]

e Finally, we reduce the scaling factor, and repeat

e Note that this is just a simple loop around standard photon beams

e Also, each iteration is in fact independent (it only needs knowledge of the pass number), [click] so
we can trivially parallelize this by farming out each pass to a different render node in a large cluster,
and average all the resulting images
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e \We can now use our algorithm to render participating media in a progressive fashion [click]

e The first step is just standard photon beam tracing, the only change is that we scale the beam radii
by the global factor Ri, which starts at 1 [click]

e |n the second step, we render the image by tracing random paths through each pixel, and evaluating
the radius along each ray using beams [click]

e \We then average the image with our previous results, and display this running average [click]

e Finally, we reduce the scaling factor, and repeat

e Note that this is just a simple loop around standard photon beams

e Also, each iteration is in fact independent (it only needs knowledge of the pass number), [click] so
we can trivially parallelize this by farming out each pass to a different render node in a large cluster,
and average all the resulting images
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e Now, lets turn to some practical details
e During rendering, to compute the contribution of each beam, we need to compute the transmittance
along the beam, as well as along the camera ray.
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e [n homogeneous media, transmittance can be computed analytically, and so the intensity of each
beam can be described using this exponential attenuation curve
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e The solution we proposed in the original photon beams paper was to use ray marching to handle
heterogeneous media [click]

e This is efficient since we can just ray march along each beam in the preprocess, cache this piecewise
linear transmittance approximation, and in constant-time evaluate the transmittance for any camera
ray/beam intersection during rendering [click]

e However, ray marching introduces additional bias!

e \We unfortunately cannot use our progressive theory with ray-marched transmittance since this
additional bias is not considered in our error analysis. [click]

e To obtain convergence in heterogeneous media, we need an unbiased transmittance estimator
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e \We unfortunately cannot use our progressive theory with ray-marched transmittance since this
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linear transmittance approximation, and in constant-time evaluate the transmittance for any camera
ray/beam intersection during rendering [click]

e However, ray marching introduces additional bias!

e \We unfortunately cannot use our progressive theory with ray-marched transmittance since this
additional bias is not considered in our error analysis. [click]

e To obtain convergence in heterogeneous media, we need an unbiased transmittance estimator
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e The solution we proposed in the original photon beams paper was to use ray marching to handle
heterogeneous media [click]

e This is efficient since we can just ray march along each beam in the preprocess, cache this piecewise
linear transmittance approximation, and in constant-time evaluate the transmittance for any camera
ray/beam intersection during rendering [click]

e However, ray marching introduces additional bias!

e \We unfortunately cannot use our progressive theory with ray-marched transmittance since this
additional bias is not considered in our error analysis. [click]

e To obtain convergence in heterogeneous media, we need an unbiased transmittance estimator
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e The solution we proposed in the original photon beams paper was to use ray marching to handle
heterogeneous media [click]

e This is efficient since we can just ray march along each beam in the preprocess, cache this piecewise
linear transmittance approximation, and in constant-time evaluate the transmittance for any camera
ray/beam intersection during rendering [click]

e However, ray marching introduces additional bias!

e \We unfortunately cannot use our progressive theory with ray-marched transmittance since this
additional bias is not considered in our error analysis. [click]

e To obtain convergence in heterogeneous media, we need an unbiased transmittance estimator



Unbiased Heterogeneous Transmittance

= Unbiased transmittance estimators exist

e [Woodcock et al. 1965]

e [Raab et al. 2008]

e [Yue et al. 2010]

e [Szirmay-Kalos et al. 2011]
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e Unbiased transmittance estimators do in fact exist [click]

e The problem is that they are slow and noisy

e and, they are not cache-able. Meaning, we cannot store some representation along each beam, and
quickly re-evaluate during rendering like we did with ray marching
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e [Woodcock et al. 1965]
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e [Yue et al. 2010]

e [Szirmay-Kalos et al. 2011]
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e Unbiased transmittance estimators do in fact exist [click]

e The problem is that they are slow and noisy

e and, they are not cache-able. Meaning, we cannot store some representation along each beam, and
quickly re-evaluate during rendering like we did with ray marching



Transmittance using Free-flight Distance
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e |f we want to compute the transmittance along the beam to some location y [click]

e The standard way to do this in an unbiased way is to generate a random free-flight propagation
distance [click], d (this can be done for both homogeneous media, and heterogeneous media using
something like woodcock tracking) [click]

® we can then estimate transmittance by comparing whether this distance is greater than or less than
the distance from x to y [click]

e Depending on where our random distance lands, we estimate transmittance as either O or 1

e Now, this is unbiased, but as | said, its also extremely noisy



Transmittance using Free-flight Distance
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e |f we want to compute the transmittance along the beam to some location y [click]

e The standard way to do this in an unbiased way is to generate a random free-flight propagation
distance [click], d (this can be done for both homogeneous media, and heterogeneous media using
something like woodcock tracking) [click]

® we can then estimate transmittance by comparing whether this distance is greater than or less than
the distance from x to y [click]

e Depending on where our random distance lands, we estimate transmittance as either O or 1

e Now, this is unbiased, but as | said, its also extremely noisy
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e |f we want to compute the transmittance along the beam to some location y [click]

e The standard way to do this in an unbiased way is to generate a random free-flight propagation
distance [click], d (this can be done for both homogeneous media, and heterogeneous media using
something like woodcock tracking) [click]

® we can then estimate transmittance by comparing whether this distance is greater than or less than
the distance from x to y [click]

e Depending on where our random distance lands, we estimate transmittance as either O or 1

e Now, this is unbiased, but as | said, its also extremely noisy
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e |f we want to compute the transmittance along the beam to some location y [click]

e The standard way to do this in an unbiased way is to generate a random free-flight propagation
distance [click], d (this can be done for both homogeneous media, and heterogeneous media using
something like woodcock tracking) [click]

® we can then estimate transmittance by comparing whether this distance is greater than or less than
the distance from x to y [click]

e Depending on where our random distance lands, we estimate transmittance as either O or 1

e Now, this is unbiased, but as | said, its also extremely noisy
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e |f we want to compute the transmittance along the beam to some location y [click]

e The standard way to do this in an unbiased way is to generate a random free-flight propagation
distance [click], d (this can be done for both homogeneous media, and heterogeneous media using
something like woodcock tracking) [click]

® we can then estimate transmittance by comparing whether this distance is greater than or less than
the distance from x to y [click]

e Depending on where our random distance lands, we estimate transmittance as either O or 1

e Now, this is unbiased, but as | said, its also extremely noisy
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e |f we want to compute the transmittance along the beam to some location y [click]

e The standard way to do this in an unbiased way is to generate a random free-flight propagation
distance [click], d (this can be done for both homogeneous media, and heterogeneous media using
something like woodcock tracking) [click]

® we can then estimate transmittance by comparing whether this distance is greater than or less than
the distance from x to y [click]

e Depending on where our random distance lands, we estimate transmittance as either O or 1

e Now, this is unbiased, but as | said, its also extremely noisy



Transmittance using Free-flight Distance

= Compute n distances, average: T,.(x,y) ~ 2
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e To improve the quality, you can simply repeat this a number of times: compute several distances (in
this case I’'m using 5) and then just count how many of those distances propagated past our pointy



Transmittance using Free-flight Distance

m Perform this for each ray/beam intersection?
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e The problem is that we have to do this for every ray/beam intersection, and there may be [click]
thousands of these for a single beam, so repeating this for each intersection would be completely
impractical



Transmittance using Free-flight Distance

m Perform this for each ray/beam intersection?
= Slow!
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e The problem is that we have to do this for every ray/beam intersection, and there may be [click]
thousands of these for a single beam, so repeating this for each intersection would be completely
impractical



Transmittance using Free-flight Distance

= Store n distances, re-evaluate: T.(x,y) = %
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e To arrive at our efficient solution, we make the observation that once we have computed several
random distances for some location y, we can also re-evaluate the transmittance at arbitrary
locations along the beam, by simply counting how many samples fell before and how many after our
evaluation locationy

e Hence, we can compute these propagation distances once for each beam, and cache them with the
beams for evaluation during rendering



Transmittance using Free-flight Distance

= Store n distances, re-evaluate: T.(x,y) = g
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e To arrive at our efficient solution, we make the observation that once we have computed several
random distances for some location y, we can also re-evaluate the transmittance at arbitrary
locations along the beam, by simply counting how many samples fell before and how many after our
evaluation locationy

e Hence, we can compute these propagation distances once for each beam, and cache them with the
beams for evaluation during rendering



Transmittance using Free-flight Distance

m Step-approximation to transmittance
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e This effectively stores a piece-wise constant step-approximation to the transmittance with each
beam

e This has the convenience of the ray marching solution, since we can compactly cache it and quickly
re-evaluate, but additionally it is unbiased.
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e To confirm that this [click]
e we used this technique to compute transmittance for a number of media configurations [click]

e where the transmittance can be computed analytically
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e To confirm that this [click]

e we used this technique to compute transmittance for a number of media configurations [click]
e where the transmittance can be computed analytically
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e To confirm that this [click]
e we used this technique to compute transmittance for a number of media configurations [click]
e where the transmittance can be computed analytically
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e |f we use just 4 propagation distances, we get a pretty course approximation of the transmittance



Transmittance Validation
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e However, since the method is unbiased, by just performing this independently for each pass, we can
reduce the error of the approximation



Transmittance Validation
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e which is guaranteed to converge to the correct solution with more passes



Algorithm (Heterogeneous)
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e \We use this approach to handle heterogeneous media

e This requires modifying our base algorithm in two simple ways: [click]

e During photon tracing, we compute and store several propagation distances with each beam [click]

e Similarly, before we start rendering, we compute and store several propagation distances for each
pixel in the image

e \We repeat these extra steps with different random numbers in each pass to ensure convergence



Algorithm (Heterogeneous)
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e \We use this approach to handle heterogeneous media

e This requires modifying our base algorithm in two simple ways: [click]

e During photon tracing, we compute and store several propagation distances with each beam [click]

e Similarly, before we start rendering, we compute and store several propagation distances for each
pixel in the image

e \We repeat these extra steps with different random numbers in each pass to ensure convergence



Algorithm (Heterogeneous)
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+ Compute/store n-step transmittance
with each beam
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+ Compute/store n-step transmittance for
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e \We use this approach to handle heterogeneous media

e This requires modifying our base algorithm in two simple ways: [click]

e During photon tracing, we compute and store several propagation distances with each beam [click]

e Similarly, before we start rendering, we compute and store several propagation distances for each
pixel in the image

e \We repeat these extra steps with different random numbers in each pass to ensure convergence



Results & Implementation

= 3 implementations:
e GPU-only OptiX ray-tracer
e GPU-only rasterization
e General: Hybrid CPU/GPU
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e To show that our approach can easily be applied to different computing platforms, we demonstrate
our results using three different implementations.



Results & Implementation

e GPU-only OptiX ray-tracer
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e Firstly, we implemented the technique on the GPU using NVIDIA’s OptiX ray-tracing framework
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scene courtesy of Bruce Walter
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e We ran our algorithm on the BumpySphere scene which we used in our original photon beams
paper.

e This is a deformed refracting sphere filled with a homogeneous medium, such as amber for instance

e With a thousand beams per pass the scene renders interactively, and quickly converges to a crisp
solution in a matter of seconds

e Here the user can manipulating the light source direction or change the camera’s view and the
algorithm quickly converges



Results & Implementation

e GPU-only OptiX ray-tracer

Thursday, 6 September 12

e |n a ray-tracing framework, we need to intersect all camera rays with all beams
e This is easily the most expensive part of the algorithm



Results & Implementation

e GPU-only rasterization
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e |n a ray-tracing framework, we need to intersect all camera rays with all beams

e This is easily the most expensive part of the algorithm

e To make this more efficient, we can render the directly-visible beams as axial-billboards using
rasterization on the GPU.
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e |n this ocean scene, beams are generated, refracted at the ocean surface, and rasterized entirely on
the GPU
e |f we limit the number of beams per pass we can easily scale from real-time results, to interactive

results, all the way to reference quality results if we let the algorithm converge over the course of a
few seconds.



Results & Implementation

e General: Hybrid CPU/GPU
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e Our most complex results are rendered in a general implementation which uses a combination of
the CPU and GPU.

e We use the rasterization optimization | just mentioned to offload directly-visible media computation
onto the GPU, while handling secondary reflections and refractions off of surfaces using ray tracing
on the CPU



SOCCE R scene courtesy of Xin Sun
512x512
Line-space Gathering

e | B
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e Xin Sun kindly shared their Soccer scene with us, rendered here using their line-space gathering
algorithm

e For comparison, we also ran our algorithm on this scene, and additionally simulate multiple
scattering, which line-space gather does not support.




SOCCE R scene courtesy of Xin Sun

Line-space Gathering >12x512 Our Method

| ] 16 passes
7.5 seconds CPU+GPU
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e \We can obtain fast preview quality results from 16 passes, after about 7 and a half seconds




SOCCE R scene courtesy of Xin Sun

Line-space Gathering >12x512 Our Method

| ] 512 passes
73 min (CPU); 6.5 min (GPU) 61 seconds CPU+GPU
60 * evaluated on similar, but not identical systems
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e After 512 passes and about a minute of computation, our hybrid CPU+GPU renderer produces noise-
free results

® |n comparison, the performance reported by the line-space gathering paper is 73 minutes on the
CPU or 6.5 minutes on the GPU.




CARS

1280x720, Depth-of-Field
Pass 1

Homogeneous
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e |n the last three results | show the heterogeneous version on the bottom, and homogeneous version
at the top

e |n all these scenes, the light sources (such as the street lights and the headlights of the cars) are
encased in glass, which produce interesting and realistic angular variation in the lighting

e Note that the individual passes of heterogeneous media on the left show this swiss-cheese effect,

which is due to our piecewise-step transmittance representation, but this quickly converges to a
smooth result when averaged across passes.
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1280x720, Depth-of-Field
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e |n the last three results | show the heterogeneous version on the bottom, and homogeneous version
at the top

e |n all these scenes, the light sources (such as the street lights and the headlights of the cars) are
encased in glass, which produce interesting and realistic angular variation in the lighting

e Note that the individual passes of heterogeneous media on the left show this swiss-cheese effect,
which is due to our piecewise-step transmittance representation, but this quickly converges to a
smooth result when averaged across passes.
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1280x720, Depth-of-Field
Pass 4 Average of Passes 1..4
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e |n the last three results | show the heterogeneous version on the bottom, and homogeneous version
at the top

e |n all these scenes, the light sources (such as the street lights and the headlights of the cars) are
encased in glass, which produce interesting and realistic angular variation in the lighting

e Note that the individual passes of heterogeneous media on the left show this swiss-cheese effect,
which is due to our piecewise-step transmittance representation, but this quickly converges to a
smooth result when averaged across passes.
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1280x720, Depth-of-Field
Pass 8 Average of Passes 1..8
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e |n the last three results | show the heterogeneous version on the bottom, and homogeneous version
at the top

e |n all these scenes, the light sources (such as the street lights and the headlights of the cars) are
encased in glass, which produce interesting and realistic angular variation in the lighting

e Note that the individual passes of heterogeneous media on the left show this swiss-cheese effect,
which is due to our piecewise-step transmittance representation, but this quickly converges to a
smooth result when averaged across passes.
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1280x720, Depth-of-Field
Pass 16 Average of Passes 1..16
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e |n the last three results | show the heterogeneous version on the bottom, and homogeneous version
at the top

e |n all these scenes, the light sources (such as the street lights and the headlights of the cars) are
encased in glass, which produce interesting and realistic angular variation in the lighting

e Note that the individual passes of heterogeneous media on the left show this swiss-cheese effect,
which is due to our piecewise-step transmittance representation, but this quickly converges to a
smooth result when averaged across passes.
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Pass 32 Average of Passes 1..32
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e |n the last three results | show the heterogeneous version on the bottom, and homogeneous version
at the top

e |n all these scenes, the light sources (such as the street lights and the headlights of the cars) are
encased in glass, which produce interesting and realistic angular variation in the lighting

e Note that the individual passes of heterogeneous media on the left show this swiss-cheese effect,
which is due to our piecewise-step transmittance representation, but this quickly converges to a
smooth result when averaged across passes.
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e |n the last three results | show the heterogeneous version on the bottom, and homogeneous version
at the top

e |n all these scenes, the light sources (such as the street lights and the headlights of the cars) are
encased in glass, which produce interesting and realistic angular variation in the lighting

e Note that the individual passes of heterogeneous media on the left show this swiss-cheese effect,
which is due to our piecewise-step transmittance representation, but this quickly converges to a
smooth result when averaged across passes.
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e |n the last three results | show the heterogeneous version on the bottom, and homogeneous version
at the top

e |n all these scenes, the light sources (such as the street lights and the headlights of the cars) are
encased in glass, which produce interesting and realistic angular variation in the lighting

e Note that the individual passes of heterogeneous media on the left show this swiss-cheese effect,
which is due to our piecewise-step transmittance representation, but this quickly converges to a
smooth result when averaged across passes.
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1280x720, Depth-of-Field
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e |n the last three results | show the heterogeneous version on the bottom, and homogeneous version
at the top

e |n all these scenes, the light sources (such as the street lights and the headlights of the cars) are
encased in glass, which produce interesting and realistic angular variation in the lighting

e Note that the individual passes of heterogeneous media on the left show this swiss-cheese effect,
which is due to our piecewise-step transmittance representation, but this quickly converges to a
smooth result when averaged across passes.
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1280x720, Depth-of-Field
Pass 512 Average of Passes 1..512
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e |n the last three results | show the heterogeneous version on the bottom, and homogeneous version
at the top

e |n all these scenes, the light sources (such as the street lights and the headlights of the cars) are
encased in glass, which produce interesting and realistic angular variation in the lighting

e Note that the individual passes of heterogeneous media on the left show this swiss-cheese effect,
which is due to our piecewise-step transmittance representation, but this quickly converges to a
smooth result when averaged across passes.
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1280x720, Depth-of-Field
Pass 1024 Average of Passes 1..1024
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e |n the last three results | show the heterogeneous version on the bottom, and homogeneous version
at the top

e |n all these scenes, the light sources (such as the street lights and the headlights of the cars) are
encased in glass, which produce interesting and realistic angular variation in the lighting

e Note that the individual passes of heterogeneous media on the left show this swiss-cheese effect,
which is due to our piecewise-step transmittance representation, but this quickly converges to a
smooth result when averaged across passes.
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FLASHLIGHTS

1280x720, Depth-of-Field
Pass 1 Average of Passes 1..1
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e |n this flashlight scene, we again have light sources encased in glass and mirror elements
e Also note that we can trivially support depth-of-field since we are averaging over multiple passes
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1280x720, Depth-of-Field
Pass 2 Average of Passes 1..2
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e |n this flashlight scene, we again have light sources encased in glass and mirror elements
e Also note that we can trivially support depth-of-field since we are averaging over multiple passes
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1280x720, Depth-of-Field
Pass 4 Average of Passes 1..4

Thursday, 6 September 12

e |n this flashlight scene, we again have light sources encased in glass and mirror elements
e Also note that we can trivially support depth-of-field since we are averaging over multiple passes




FLASHLIGHTS

1280x720, Depth-of-Field
Pass 8 Average of Passes 1..8
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e |n this flashlight scene, we again have light sources encased in glass and mirror elements
e Also note that we can trivially support depth-of-field since we are averaging over multiple passes




FLASHLIGHTS

1280x720, Depth-of-Field
Pass 16 Average of Passes 1..16
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e |n this flashlight scene, we again have light sources encased in glass and mirror elements

e Also note that we can trivially support depth-of-field since we are averaging over multiple passes



FLASHLIGHTS

1280x720, Depth-of-Field
Pass 32 Average of Passes 1..32
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e |n this flashlight scene, we again have light sources encased in glass and mirror elements

e Also note that we can trivially support depth-of-field since we are averaging over multiple passes
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e |n this flashlight scene, we again have light sources encased in glass and mirror elements
e Also note that we can trivially support depth-of-field since we are averaging over multiple passes
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e |n this flashlight scene, we again have light sources encased in glass and mirror elements
e Also note that we can trivially support depth-of-field since we are averaging over multiple passes
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1280x720, Depth-of-Field
Pass 256 Average of Passes 1..256
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e |n this flashlight scene, we again have light sources encased in glass and mirror elements

e Also note that we can trivially support depth-of-field since we are averaging over multiple passes
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USER INTERACTION

Hybrid CPU/GPU Implementation
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e An important aspect of our algorithm is that it provides a quick interactive preview when
manipulating the scene, while rapidly converging to the ground-truth solution when the user lets go
of the mouse.




Limitations & Future Work
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e There are of course some limitations

e Firstly, photon beams are fantastic at reconstructing caustic light paths, but multiple scattering
effects can still be quite costly

e Also, though our approach is convergent with any alpha between 0 and 1, this is fixed for the entire
image, it might be possible to adapt alpha in different regions of the image to accelerate
convergence

e Our theory tells you how to reduce the radii if you want an unbiased image in the limit. However, an
interesting practical question is, if you know you only have a certain time budget, would this affect
the optimal reduction factor?

e Finally, though our transmittance estimator is unbiased, it also increases variance, especially in
dense media. It would be interesting to see if an unbiased but smoother estimator for transmittance
is possible.
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Practical Improvements: User Parameters

» Goal: single user parameter to
control bias/variance
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e Now, on the more practical side, our goal was to have a single parameter to control the bias/
variance tradeoff (as seen in the previous graphs) [click]

e However, in practice, the rate of convergence is influenced both by alpha, as well as the number of
photons shot per pass. Let me illustrate this
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e |f we shoot one photon beam per pass, this graph shows the radius reduction rate as a function of
the total number of stored photons

e Now, if we don’t change alpha and we store the same total number of beams, we would hope to
obtain basically identical results.

e With the standard approach, used by all previous PPM techniques, this is not the case
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e Since the radius reduction factor is applied at the granularity of the passes, the final image will look
significantly different if we decided to show incremental updates every 1 beam, every 10 beams, or
every 100 beams.

e \We make a very simple modifications which eliminates this problem
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e At the end of each pass, we apply a radius update for every stored beam.

e This means that regardless of the number of beams per pass, we obtain very similar results, so we
can choose the display frequency without worrying about modifying the other parameters.

e This makes it much more intuitive to scale the algorithm to different interactivity settings.



