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Abstract

We propose a system for painting large-scale murals of arbitrary input photographs. To that end, we choose spray paint, which
is easy to use and affordable, yet requires skill to create interesting murals. An untrained user simply waves a programmatically
actuated spray can in front of the canvas. Our system tracks the can’s position and determines the optimal amount of paint to
disperse to best approximate the input image. We accurately calibrate our spray paint simulation model in a pre-process and devise
optimization routines for run-time paint dispersal decisions. Our setup is light-weight: it includes two webcams and QR-coded cubes
for tracking, and a small actuation device for the spray can, attached via a 3D-printed mount. The system performs at haptic rates,
which allows the user – informed by a visualization of the image residual – to guide the system interactively to recover low frequency
features. We validate our pipeline for a variety of grayscale and color input images and present results in simulation and physically
realized murals.

Keywords: interactive spray painting, painting approximation.

1. Introduction

Spray paint is affordable and easy to use. As a result, large-
scale spray paint murals are ubiquitous and take a prominent
place in modern culture (see Ganz [1] for many examples). Spray
painters may cover large “canvases”, such as walls of build-
ings, with minimal scaffolding hassle, and the diffusive spray
allows spatially-graded color mixing on the fly. However, man-
ual creation of interesting spray paintings is currently restricted
to skilled artists. In addition, the large scale of the painting,
compared to the close-range spraying (from distances of 10–40
centimeters) makes it challenging to orient and precisely posi-
tion oneself for accurate spraying, forcing the artist to keep a
global vision while focusing on local changes.

Though traditional (e.g. inkjet) printing on large-format pa-
per is possible, it requires access to expensive non-standard
equipment. Further, depending on the target surface, it may be
impossible to attach paper or canvas. Paint provides a practical
alternative, and decidedly induces a certain aesthetic character.
Naïve solutions to assisted spray painting, such as procedural
dithering or half-toning, are tedious and do not take advantage of
the painter’s perceptual expertise: A human can easily tell which
important areas of an image need further detail. Non-interactive
systems inherently lack this ability, potentially wasting precious
painting time on unimportant regions. Stenciling is another ob-
vious candidate, but it necessitates quantization to solid colors
and may require many topologically complex stencils. Large-
scale murals would also require cumbersome large-scale stencils.
Finally, stencils do not necessarily inherit any aesthetics partic-
ular to spray painting: the same paintings could be made with
brushes or rollers.

Our solution is a “smart” spray can. From a high level, rather
than spraying a solid color, our can sprays a photograph (see
Figure 2). Our system tracks the position and orientation of the
spray can held by the user, who may be regarded as a cheap
alternative to a robotic arm. Our optimization then determines
on-the-fly how much paint to spray, or, more precisely, how long
to spray, and issues appropriate commands to an actuating device
attached to the spray can (see Figure 1). By simultaneously
simulating the spraying process, we visualize a residual image
that indicates to the user the locations on the mural that could
benefit from more painting (see Figure 3). We also monitor the
potential residual as well as the potential benefit for the current
spray can color. These properties are respectively the maximum
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Figure 1: Paint commands are transmitted via radio directly connected to a
servomotor actuating the spray nozzle. Two webcams track QR markers pasted
to a 3D-printed mount.
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Input image source: Flickr Creative Commons.

Figure 2: Our device and real-time optimization enables spray painting murals of any input photograph. We track the user’s movements and simulate the spraying
process to choose the optimal amount of paint to spray in order to best approximate the input image.

amount of error that can possibly be reduced by adding more
paint of the current color, and the expected effect of adding more
of the current color. When little progress can be made with
the current color, the user is prompted to switch color, and the
process is repeated until satisfaction.

We demonstrate the effectiveness of this process for a variety
of input images. We present physically realized paintings, as
well as simulated results. The physical murals validate that our
simulation matches reality and show that our model captures
the image content while preserving some of the spray paint
aesthetic.

2. Historical perspective and related work

Computer-aided painting is an old and well-studied subject
among both scientists and artists. Artist Desmond Paul Henry
unveiled his Henry Drawing Machine in 1962. This machine
created physical realizations of procedurally generated drawings.
One year later, Ivan Sutherland’s famous Sketchpad pioneered
interactive virtual interfaces for drawing and modeling. Now, the
modern frontier of research in computer-aided painting is more
specialized and spans a variety of interfaces and applications.

The e-David robot is an actuated arm that grips a paint brush
and applies paint to a physical canvas with human-like strokes
[2, 3]. The robot follows a predetermined sequence of strokes
which approximate an input grayscale image, with optional
dynamic updating of this sequence based on visual feedback

to account for inaccuracies. Other robotic art systems have
been developed, such as Yao’s Chinese painting robot [4] or
Paul the sketching robot [5]. None of these systems would be
appropriate for large-scale spray painting. In particular, using
a robotic arm is not an affordable option for the canvas size
we target. Artist Uri Lehni presented a spray painting system
comprised of an actuated spray can moving automatically across
the 2D span of a wall [6]. This fully automatic system is limited
to preprogrammed curves, creating line drawings with a single
color. Our interactive system utilizes the natural frequency range
of the spraying process when varying the distance of the can to
the canvas. This allows a better span of the color spectrum with
a small number of paint colors.

Another branch of research has focused on assisting novice
users in various artistic creation tasks: painting [7], drawing [8,
9], 2D manufacturing [10], sculpting [11, 12], architecture [13],
and airbrushing [14, 15]. These projects provide access to artistic
techniques to unskilled users without the ambition to train them.
Shilkrot and colleagues’ concurrent work presents an augmented
airbrush, allowing novice users to experience the art of spray
painting. Although our work shares a similar approach, our
system differs in many aspects. Shilkrot and colleagues designed
an expensive automated airbrush, whereas our device is a very
inexpensive, plug-and-play mechanism that can be mounted
on any standard spray can. While being more precise, their
magnetic tracking system would be challenging to adapt to the
scale of large murals. We instead use a vision-based tracking

Figure 3: For our physical experiments, the user waves our modified spray can before a 1.5 m2 canvas. The monitor to the left shows the potential residual for the
current color, as well as the spray can location, helping the user to position himself and to find areas to improve. See the accompanying video for a full painting
session.
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system, which proves reliable and represents a more affordable
option. On the other hand, their system is acting as a fail-safe to
assist novice users and potentially train them in the long term,
whereas in our system the user’s role is more passive.

A vast amount of previous research has dealt with creating
paintings virtually. We may separate these works into those that
apply a painterly rendering style to an existing image [16, 17, 18]
and those that simulate painting virtually to allow users to create
new images interactively. The latter group spans a variety of
painting styles: brush painting [19, 20, 21, 22], watercoloring
[23, 24], fluid jet (cf. Jackson Pollock) [25], ink splattering
[26], and – most relevant to our work – air brushing [27] and
spray painting [28]. Konieczny and Meyer’s airbrushing system
refashions a standard airbrush as an input device to a simulation
that faithfully replicates the airbrushing process virtually. Their
simulation interpolates splats between frames, similar to our
method or using infinitesimal spacing in Adober Photoshop’sr

brush tool. Our system works with a single paint color at a time,
so we do not require the more complicated Kubelka-Munk paint
mixing model, opting instead for a time-continuous form of the
alpha-compositing over operator [29].

An alternative to our continuous optimization might be to
lean on previous painterly rendering algorithms to build a dis-
crete set of paths, strokes or patches. In particular, we refer the
reader to Hertzmann’s survey on stroke-based rendering [30].
Image abstraction or segmentation techniques (e.g. DeCarlo and
Santella [31]) have been altered to design stencils fit for physi-
cal painting [32]. These methods inherently simplify the input
image, eliminating details and color gradients. The mosaics
of Hausner [33] or Kim and Pellacini [34] offer another beau-
tiful form of abstraction, but require significant planning and
organization compared to our computer-assisted spray painting.
Finally, none of these alternatives take advantage of the diffu-
sion process characteristic of spray paint, which we leverage, for
example, to blend gray tones from only black and white paint.

In engineering, there exist sub-fields of research devoted to
high-resolution simulation of the spray painting process, typi-
cally centered around electro-static sprays used in the automo-
tive industry [35, 36]. These models are far too complicated and
fine-grained for our needs. They simulate individual particles
with the goal of achieving constant paint film thickness across
optimized robotic painting paths [37, 38].

3. Method

The user will stand before a canvas (e.g. wall or sheet of pa-
per) and wave a programmatically actuated spray can equipped
with a wireless receiver. Running on a nearby computer, our
real-time algorithm determines the optimal amount of paint of
the current color to spray at the spray can’s tracked location.
Our run-time system can be broken down into four parts: 1)
physically actuating the spray can, 2) spray can tracking, 3)
simulating the spray process, and 4) optimizing the amount of
paint to spray. Additionally our system provides the user with
guiding feedback visualization in real time.
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Figure 4: Two webcams on tripods track QR markers on our device to determine
the spray nozzle position b and normal direction n.

3.1. Hardware and tracking

We use standard aerosol paint cans (65 mm diameter, 158 mm
height, 400 ml capacity) with replaceable plastic caps: clean caps
ensure consistent spray profiles. Spray caps are interchangeable,
and traditional spray paint artists may use a variety of caps with
different profiles: thin caps for details, wide caps for filling large
areas, and caps with anisotropic profiles for stylized strokes. We
found by experimenting that thin caps (specifically Montana
Colors’r 94 Cap) provide a good tradeoff in terms of resolution
and diffusiveness. However, nothing restricts our system to use
different caps, or paint cans. Therefore we provide additional
simulated results (see Figure 12 and supplemental material) to
show how other spray characteristics would spawn various artis-
tic styles in the final painting.

When a can is in use, we mount it inside a custom-designed,
3D-printed enclosure (see Figure 1). A servomotor sits directly
above the can’s nozzle so that a small plastic arm attached to
the rotor presses down on the nozzle when actuated. Though
the paint deposition of standard spray cans is dependent on the
amount of pressure applied to the nozzle, we found that this
is difficult to predict and instead treat the can as either off (no
pressure, arm up) or on (full pressure, arm down). Given the
tracked position and orientation of the nozzle and the current
status of the painting, our optimization will determine how much
paint to spray by determining whether or not to spray for a small
fixed time step.

We assume that the working canvas is a flat surface of
roughly 1 m × 1.5 m size. In our experiments, rather than scale
or move our setup to cover larger canvases, we subdivided input
images and paint each part on a large sheet of A0 paper (see Fig-
ure 2). We track the position of our device using two webcams
on tripods facing the canvas from the left and right side (see
Figure 4). The cameras are calibrated once using OpenCV1 by
placing a checkerboard reference image on the canvas. Mounted
in our enclosure, the nozzle of the spray can sits at a known
position and orientation with respect to two 3D-printed cubes
atop and below it. At run-time, we use the ArUcO2 library to

1http://opencv.org/
2http://www.uco.es/investiga/grupos/ava/node/26

3



track QR markers pasted to each face of the cubes. We take a
median across markers and cameras to compute a 3D position
and orientation of the spray nozzle. The cubes are rotated out
of phase by 45° to ensure that at least one marker is fully vis-
ible at any time. In practice, usually four markers are tracked
simultaneously with precision on the order of 5 mm and 1°.

Without loss of generality, let b ∈ R3 be the 3D position of
the spray nozzle so that |bz| is the orthogonal distance to the 2D
canvas (with z pointing towards the canvas, see Figure 4). By
construction, our system is invariant to rotations in the canvas
plane, thus we only need to know the outward normal direction
at the nozzle n ∈ R3. Since these change over time, we will use
x(t) to denote the quantity x at time t when necessary.

3.2. Spray painting simulation

Our optimization will decide whether or not to spray based
on the nozzle position b(t), direction n(t) and the current status
of the painting. Dynamically capturing the spray painted canvas
(e.g. with a third camera) is difficult and prone to error. The
painter and device would occlude much of the canvas, and,
more importantly, the region being sprayed. Further, quality
capturing would depend heavily on the camera and lighting
conditions. Instead we propose simulating the spray painting
process in tandem with the physical painting. This simulated
approximation of the physically realized painting may then be
used immediately in our optimization scheme.

We now derive a simple model for spray painting simulation
and then provide a calibration procedure to fit parameters which
best decrease its approximation error.

Given the spray nozzle position b(t), direction n(t) and a
duration of spraying ∆t, we would like to approximate the new
color at each point p = (px, py, 0) on the canvas. High-resolution
spray painting simulators model the spray process by simulating
individual particles or ray casting [39]. These methods would be
too costly for our real-time simulation, so instead we take this
discrete particle point of view as motivation for a continuous
approximation. Intuitively, imagine that each small region on
the canvas can only hold a fixed number of small paint particles.
For each new paint particle arriving, a current particle (with
a possibly different color) must be bumped out. This grossly
simplifies the paint mixing process. However, we observe that
since we spray only a single color at a time and spray paints dry
quickly that little to no complicated paint mixing occurs.

Let C(p, t) : R3 × R+ → R3 be the RGB color on the
canvas at position p and time t. Then our continuous particle
replacement policy may be formulated succinctly by writing the
new color at a position C(p, t + δt) as a linear blend between the
current color C(p, t) at that position and the current paint color
B ∈ R3:

C(p, t + δt) = C(p, t) + f (b(t),n(t); p)δt (B − C(p, t)) , (1)

where the blending factor f (b(t),n(t); p)δt is the spray paint
deposition profile f (paint density per second) integrated for
a small time change δt. Determined by the nozzle position
and direction, this integrated profile is the paint deposited at
a position on the canvas p during an infinitesimal amount of

time. For now, we assume f is known, and later we will discuss
calibrating to a given spray can to fit the necessary parameters.

In the limit as δt goes to zero, this blending formula becomes
a first-order ordinary differential equation:

∂C
∂t

(p, t) + f C(p, t) = f B, (2)

where we drop the arguments of f for brevity. Solving this
simple ODE for C reveals a continuous expression for the new
color:

C(p, t) = B + exp
(
−

∫ t

t0
f (u)du

)
(C(p, t0) − B) , (3)

where f (u) = f (b(u),n(u); p). The linear blending factor is now
an exponential corresponding to the accumulated deposition
profile since time t0.

What remains is a full description of the deposition profile f .
Previous methods have used 2D parabolic functions, bivariate
Gaussians or more complicated and general profiles [39, 40].
These models appear well justified for electro-static spray guns,
but we found that a radially symmetric 2D Gaussian is suffi-
ciently accurate and general for standard aerosol spray paints
(see Figure 5).

Let us first assume that the spray nozzle is directed perpen-
dicularly to the canvas, i.e. n = z = (0, 0, 1), then we may write
f as a 2D Gaussian:

f⊥(b,n; p) =
β

2πr2 exp
(
−
‖(p − b) × n‖2

2r2

)
(4)

where β is the average paint deposition amount, r is the standard
deviation or intuitively the “width” of the profile’s bell shape.
Both these parameters depend on the distance along the nozzle
direction |(p − b) · n|, which we dropped here for brevity’s sake.
In the next subsection we will present a calibration scheme to fit
β and r.

We can generalize this Gaussian model to allow an arbitrarily
tilted spray nozzle direction n. We bring the profile f⊥ in the
directional domain by dividing by the Jacobian with respect to
the angle between (p−b) and n. We then rotate the profile by the
spray nozzle tilt angle cos−1 (n · z), and bring everything back to
the spatial domain by multiplying by the Jacobian with respect
to the planar coordinates. These Jacobians, cos θ/‖p−b‖2 and its
reciprocal, account for the change of paint deposition depending
on the direction of an infinitesimal paint particle arriving on the
canvas. Our final, general spray paint deposition profile is:

f (b,n; p) = f⊥(b,n; p)
‖p − b‖3

|(p − b) · n|
|(p − b) · z|
‖p − b‖3

(5)

= f⊥(b,n; p)
|bz|

|(p − b) · n|
. (6)

Figure 6 demonstrates the range of behavior of our full spray
model.

3.3. Calibration
We need accurate estimates of the parameters in our spray

simulation model: namely, the color B for each spray paint can

4



|bz| = 10 cm
∆t = 200 ms

|bz| = 15 cm
∆t = 400 ms

|bz| = 20 cm
∆t = 500 ms

|bz| = 25 cm
∆t = 600 ms

|bz| = 10 cm
∆t = 500 ms

|bz| = 15 cm
∆t = 800 ms

|bz| = 20 cm
∆t = 1000 ms

|bz| = 25 cm
∆t = 1000 ms

|bz| = 10 cm
∆t = 700 ms

|bz| = 15 cm
∆t = 1000 ms

|bz| = 20 cm
∆t = 1000 ms

|bz| = 25 cm
∆t = 1000 ms

Figure 5: For each calibration sample we show the physical splat on the left half
and the analytically fitted splat on the right. Zooming reveals the particle dots on
the left and the smooth variations on the right. |bz | is the distance to the canvas
and ∆t the duration of spray actuation.

|bz| = 10 cm |bz| = 20 cm |bz| = 30 cm

∆t = 200 ms ∆t = 600 ms ∆t = 2 s

θ = 0◦ θ = 30◦ θ = 50◦

Figure 6: Left: Distance to the wall |bz | (top), spray duration ∆t (middle),
angle between n and z (bottom) affect our simulated spray pattern. Right: Our
approach correctly models that spray painting is order-dependent: compare
black-then-white to white-then-black.

and the Gaussian spray deposition profile height β and width r.
These parameters could be potentially derived from manufac-
turer specification tables listing colors, aerosol pressures, cap
diameters, etc. Instead of relying on proprietary information, we
devise a generic and efficient method to measure the parameter
values. The following calibration procedure is performed once
at the beginning of a painting session.

Firstly, each paint color B is measured by scanning a sample
canvas after a long spray. The parameters β and r depend on a

variety of factors – most notably the choice of cap and the spray
can pressure. However, we observe that they are largely consis-
tent across paint colors. Therefore, the following procedure is
simplified by assuming the spray paint color B is some degree
of black.

Using a level to ensure orthogonal spraying direction (see
Equation (4)), we position the spray can on a tripod at mea-
sured distances |bz| ∈ {10cm, 15cm, 20cm, 25cm}. We actuate
the spray can for given time intervals ∆t, using shorter times
for close distances and longer times for far. We scan each splat,
storing it in a function T(p) : R3 → R3. During calibration the
canvas is known to be blank (white) at time t0, so Equation (3)
reduces to:

C(p) = B + exp
(
−

∫ t

t0
f (u)du

)
(1 − B) (7)

= B + exp
(
−
β∆t
2πr2 exp

(
−
‖(p − b) × n‖2

2r2

))
(1 − B) .

Since the spray nozzle is fixed at a known distance |bz|, direction
n and the amount of spray time is accurately dispensed by our
actuating servomotor, the only unknowns are β and r (as well as
(bx, by) for each image, but the values do not directly matter). We
fit these values for each distance, by considering three scanned
images corresponding to the same distance but with different
spray durations ∆t. We minimize the squared difference between
our model and the scanned image summed over all scanned pixel
locations p from all three images:

argmin
β,r

∑
∆t

∑
p
‖C(p) − T(p)‖2. (8)

Starting from an approximated guess, we solve this nonlinear 2D
surface fitting problem by leveraging a Levenberg-Marquardt
optimizer with analytic gradients (computed from Equation (7)).
Despite the nonlinearity of the function, the fitting converges
in less than a minute. In Figure 5, we compare the scanned
splats with their fitted analytic counterpart. For each distance,
we obtain one β and one r. Repeating the procedure for four
different distances, we can extract the behavior of these two
functions as a function of distance. A linear representation
seems appropriate for both β and r, therefore we simply fit a
line (see Figure 7). These fits always show that spray deposition
rate decreases with distance and the radius increases. Intuitively,
these trends account for paint particles not arriving at the canvas
because of air resistance, gravity, etc.

As a verification, we also repeat this fitting procedure with
respect to duration rather than distance. However, we see nearly
constant fits and therefore do not consider β and r dependent on
duration.

3.4. Real-time optimization
With our actuation, tracking, simulation and calibration in

tow, we proceed to our real-time optimization. Our goal is to
minimize the difference between an input target image T(p) and
the physical sprayed image P(p). We assume that our simulated
sprayed image approximates its physical counterpart: C(p, t) ≈
P(p, t) ∀p,∀t. This is empirically confirmed in the following
section.

Given this, we proceed by breaking time into small steps
∆t = 100 ms, matching the response time over our radio-activated
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Figure 7: Our calibration fits a linear model for the rate β (on the left) and the
radius r (on the right) with respect to distance.

servomotor. Our tracking system runs at more than 20 Hz, so
we may assume that position b and direction n are known at the
beginning of the time step and also that we can accurately (via
first-order extrapolation) approximate their values at the end of
the time step (which has not yet taken place). For each time step,
we ask whether or not to spray with the current color B. We
pose this as an energy minimization problem, where our energy
can be written as a function of the simulated image at a point in
time:

E(C(t)) =
∑

p
‖T(p) − C(p, t)‖2, (9)

where we measure the color distance in CIE Lab for better
correspondence with human perception. For each step forward
in time, we would prefer to decrease this energy or at least keep
it constant. We compute the predicted error at the next time
step E(C(t + ∆t)) both for spraying with B and for not spraying
by linearly extrapolating the trajectory. If the energy decreases
more than a certain small threshold (accounting for unknown
noise and error), then we choose to spray, triggering the actuator.
If not, the actuator waits for the next time step and the energy
and simulation remain the same. We update the simulation
C(p, t + ∆t) according to this decision as soon as the trajectory
for t → t + ∆t is known.

We additionally have a more conservative mode, which com-
pares E(C(t+∆t)) if spraying with any one of the available colors
and not spraying. We choose to spray with B if this choice has
the minimal expected energy. Intuitively, this assumes that some
time in the future the user will pass by the same region with
other, possibly more beneficial, paint colors. All our results were
produced starting with the conservative mode and switching to
the normal mode afterwards.

Finally, we also show simulated results where at each time
step we choose the best predicted improvement among all avail-
able colors. This mode presumes a device with multiple spray
cans attached simultaneously (which we have not built in prac-
tice), but provides some insights on the benefits and limitations
of our system. In Figure 12 and in the supplemental material,
we refer to this mode as the optimal strategy.

3.5. Feedback and visualization

To provide guidance to the user, we display a pseudocolor
visualization of the current error E(C(t)) (Equation (9)) on a

potential residual energy

switch to 
white

switch to 
black

0 84 5 76321
time (minutes)

Figure 8: The potential residual depends on the current color. When near zero,
the user is prompted to switch colors.

nearby monitor (see Figure 3). This visualization helps espe-
cially during the first passes over the canvas when the target
content is just starting to appear. Additionally, to facilitate the
user’s positioning, we display a cursor and a range correspond-
ing to the area of the canvas targeted by the spray can given its
current position and orientation.

We also plot the maximum possible amount of energy that
may be reduced using the current color, or potential residual. For
each pixel, we compute whether adding paint with the current
color B would decrease or increase the overall energy. We solve
a tiny optimization problem for each pixel pi:

argmin
αi

‖T(pi) − (C(pi, t) + αi (B − C(pi, t))) ‖2, (10)

subject to αi > 0,

where the non-negativity constraint ensures that paint is added
and not removed. This is easily solved by first solving without
the positivity constraint:

α∗i =
(B − C(pi, t))T (T − C(pi, t))
(B − C(pi, t))T (B − C(pi, t))

, (11)

and then only keeping the result if positive: αi = max(α∗i , 0).
The total potential residual RB(t) for a given color B is the

sum of the individual per-pixel residuals masked by whether αi

is positive:

RB(t) =
∑

pi

‖T(pi) − C(pi, t)‖2 αi > 0,
0 otherwise.

(12)

This quantity proves very useful in practice, see Figure 8 for
a visualization. If the potential residual for the current color
RB1 (t) vanishes, then no more progress can be made with the
current color. Hence, this is a hint to the user that a paint color
switch is in order. Once the paint can is exchanged, the potential
residual for the new color RB2 (t) is recomputed and the user may
continue iterating until satisfaction.

We also provide the user a per-pixel visualization of the
potential benefit. We map the numerator of Equation (11) to a
hue color between blue (negative effect) and red (positive ef-
fect), passing by green (no benefit). Indeed, this quantity is
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Original images (subfigures (a)) source: Flickr Creative Commons & Wikimedia Commons.

Figure 9: Chaplin, the Boxer and the Toucan have been physically realized. These demonstrate how closely our simulation (b) matches the physical realization (c) and
recover a low frequency version of the target (a). Additionally, we show difference images between the target and the physical painting in the bottom right corners.

close to zero when the painting matches the target, in which
case adding more paint can only make things worse, or matches
the current paint color, in which case adding more paint would
have no effect. When the current paint color differs from the
painting, there is a potential benefit in spraying. The dot product
in Equation (11) is positive/negative if adding the current paint
color would improve/degrade the painting, respectively. There-
fore, the user can also rely on this visualization to paint in the
positive-effect areas.

4. Results

We have validated our system by spray painting a set of pho-
tographs, as shown in Figures 2, 9, 10, 11, 12 and the accompa-
nying video. Table 1 presents some statistics of our experiments.

A typical painting session begins by registering the cameras
with respect to the wall. Then the user can directly start spraying
the chosen input image. An extract of a typical painting session
is shown in Figure 3. A monitor showing the current potential
residual helps the user determine which part of the image may
be improved with the current color. When satisfied with the
first layer, the user switches the spray can to a different color
and continues. The energy rapidly decreases and then stabilizes
after a while, and the potential residual is a good indicator when
to switch cans (see also Figure 8). A session usually lasts be-
tween 10 and 15 minutes for one A0-format-sized canvas for
grayscale images, and about 25 to 30 minutes for color paintings,
which require more color switches. The accompanying video
demonstrates a full painting session.

Painting on a physical canvas. Due to the difficulty of obtaining
permission to spray paint a building, and the challenges aris-
ing from unpredictable weather conditions (e.g. wind, rain), we
opted to paint on paper sheets of A0 size. This also facilitated
convenient archiving and scanning of our results. To create
larger paintings, we divided the input images into segments ar-
ranged in a grid, each corresponding to a single paper sheet, and

spray painted each sheet separately. Figure 9 and 11 present
four physical paintings realized with our system. The Snail (Fig-
ure 2) is a larger-scale example realized by combining twelve A0
sheets, covering a total surface of almost 12 m2. These results
empirically validate that our spraying model closely matches
the physical process and truly scales to large canvases by sim-
ply translating the setup. Additionally, we present difference
images, which show how our system is able to reproduce the
low-frequency features of the target image (for more details we
refer the reader to our supplemental material).

Painting on a virtual canvas. In addition to physical spray paint-
ing, we ran several virtual simulations using a large LCD display
as our virtual canvas coupled with either our tracking system or a
mouse (no tilt in this case) to define the spray can trajectory. For
virtual paintings larger than the display, we split the image into a
grid and paint each region in succession, as in the physical setup,
while always considering a single, larger virtual canvas. As such,
painting at the border of a region can affect the neighboring
regions, thus avoiding artifacts due to mismatch between indi-
vidual paper sheets. This shows again how our system scales by
simply translating the tracking setup to the current working area.
In theory, our framework even parallelizes: different painters in
charge of each color could work simultaneously. In Figure 10
we evaluate our virtual setup on the target images from Shilkrot
et al. [15]. We use different types of paint and different painting
tools resulting in different aesthetics. While their results can
appear aesthetically more pleasing, our paintings usually match
our simulations more closely, because we prevent effects which
we cannot replicate in simulation (e.g. paint advection or run-
offs). A more quantitative comparison is difficult, because this
would require using both systems in the same settings.

Painting aesthetics. In Figure 12 and in our supplemental mate-
rial, we show how our system retains enough freedom to allow
for very different painting aesthetics. In particular, the pointillis-
tic style of our physical results can be attenuated by changing
some of the properties of the device (e.g. trigger duration), the
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Original images (top insets) source: www.123rf.com, used with permission.

Figure 10: The Tiger and Frog are two large-scale examples realized virtually
with our system. We only use up to five different paint colors. While being
limited in the color spectrum, our optimization in CIE Lab space is able to find a
perceptually acceptable match. The two inset images show the target, as well as
Shilkrot et al.’s results.

specifications of the spray can (e.g. deposition profile), the tra-
jectory (e.g. human vs. robot), and the optimization strategy
(e.g. conservative vs. normal mode). We refer the reader to our
supplemental webpage for more examples.

5. Discussion and future work

Analogous to the “sculpting by numbers” approach of Rivers
et al. [11], we do not aim to train the user to become a skilled,

Table 1: Statistics about our datasets and experiments.

Image #A0 Sheets Size (m2) Painting time (min) #Color switches

Boxer 2 1.7×1.2 13 4
Toucan 2 1.7×1.2 21 6
Chaplin 2 1.2×1.7 30 12
Snail 12 4.7×2.5 80 26
Clown 4 1.5×1.7 52 21
Chameleon 5.2×3.0 129 7
Frog 3.5×3.3 72 5
Tiger 4.5×3.0 85 5

(a)

(b)

(c)

Original image (subfigure (a)) source: Flickr Creative Commons.

Figure 11: The Clown is a medium-size painting realized with six colors. Guided
by the user, our system is able to recover important semantic features, even at
this limited resolution.

unassisted spray painter, nor are we expecting to reach the qual-
ity of professional artists. Instead, our system provides the basic
technology to spray paint an input image. Without it, a novice
would only produce a rough abstraction of the image, especially
for the scale we target. However, our current system does not
offer a very creative user experience and considerably limits the
artistic freedom of the user. As in Shilkrot et al.’s airbrushing sys-
tem [15], adding an override trigger to our device could improve
creativity at the expense of automation. Doing so empowers the
user to paint manually while the system only acts as a fail-safe.
Our high fidelity online simulation could become the bedrock of
creative or educational systems. Our system enables researchers
to explore multiple future directions (e.g. automation, user inter-
action, quality, training) either by completely replacing the user
by a robot with full control over the trajectory, or by leveraging
the user’s creativity with more complex tools such as stencils, or
even by training the user by developing a guidance system.

Several improvements could push the quality of our results
or practicality of our system further. We would like to optimize
the design and performance of our device to allow better and
faster control over the spray response. Our system currently
works best with high-contrast images that are not dominated by
high frequency detail. We rely on our small time intervals for
actuation to blend colors in a soft way, but a more direct approach
would need to control the pressure precisely. This would require
us to build a much more sophisticated – but not necessarily much
more expensive – device or switch to a different spraying tool.
Another direction could be to design a special cap with aperture
control. While these modifications are interesting engineering
problems and could significantly aid in reconstructing smooth
gradients and high frequencies, their integration in our current
optimization would be relatively straightforward. Moreover, our
simulation and optimization run mostly on the GPU and perform
one order of magnitude faster than the servomotor actuation rate.
Therefore, using a higher quality servomotor would directly
impact the quality of the paintings.

We used an affordable and efficient tracking solution to proto-
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(a) (b)

(c)

(d)

(e)

(f)

Original image (subfigure (a)) source: www.123rf.com, used with permission.

Figure 12: (a) Target, (b) Result made by the user with our physical setup, (c)
Optimization/triggering time ∆t = 2sec with the same setup, (d) Different nozzle
with larger deposition radius r and rate β and the normal strategy, (e) Different
nozzle with small dispersion radius r and the conservative strategy, (f) Generated
diagonal scanline trajectory with optimal strategy

type our painting setup, and custom-made state-of-the-art track-
ing is out of the scope of this project. Nevertheless, we believe
than one direction for improving the quality of the paintings lies
in using more sophisticated tracking technology and advanced
tracking algorithms. When relying solely on a vision-based sys-
tem, the lighting conditions can become an issue. It would also
be beneficial to make the setup even more lightweight, eliminat-
ing the external cameras. A vision-based tracker fully embedded
on the spray can, while appealing, seems extremely challenging
due to restricted view, airborne paint particles, lack of suitable
features to track, etc. It would be interesting to explore the use
of other types of sensors (e.g. inertial or time-of-flight).

Our feedback display already serves as a good visual aid to
guide the user, but an interesting avenue for future work would
be to investigate other interfaces to train inexperienced users. We
considered other options, such as projecting information directly
onto the wall, into virtual reality glasses, or onto a phone/tablet
attached to the spray can.

Finally, even though we are able to produce color paintings,
we believe more investigation of the suitable color spaces and
color mixing models would prove useful. Moreover, in our
model, colors can mix, but we believe that some features can
become incredibly challenging to reproduce if the choice of ini-
tial colors was inadequate. An interesting (though challenging)
idea for future work would be to suggest colors to buy, given an
input image and a paint catalog.

6. Conclusion

We presented an interactive system and an online spray paint-
ing simulation algorithm, enabling novice users to paint large-
scale murals of arbitrary input photographs. Our system aids
the user in tasks that are difficult for humans, especially when
lacking artistic training and experience: it automatically tracks
the position of the spray can relative to the mural and makes
decisions regarding the amount of paint to spray, based on an on-
line simulation of the spraying process. We devise a lightweight
calibration method and a fast spraying simulation resulting in
close matching between our simulation and the murals. We
presented a number of physically-realized and simulated murals
that demonstrate the flexibility of our system. We hope that
this work will inspire further interactive, creative applications of
computer graphics in physical environments.
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