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Figure 1: We compare BSDF and solid-angle (SA) point sampling to our line sampling and its MIS with BSDF sampling at equal time (three
seconds). As shown by the mean relative squared error (MRSE), line samples provide a clear benefit in soft shadows, but the glossy material is
handled better by MISing additionally with BSDF sampling.

Abstract
We develop a unified framework for combining point and line samples in direct lighting calculations. While line samples have
proven beneficial in a variety of rendering contexts, their application in direct lighting has been limited due to a lack of formulas
for evaluating advanced BRDFs along a line and performance tied to the orientation of occluders in the scene. We lift these
limitations by elevating line samples to a shared higher-dimensional space with point samples. Our key insight is to separate the
probability distribution functions of line samples and points that lie along a line sample. This simple conceptual change allows
us to apply multiple importance sampling (MIS) between points and lines, and lines with each other, in order to leverage their
respective strengths. We also show how to improve the convergence rate of MIS between points and lines in an unbiased way
using a novel discontinuity-smoothing balance heuristic. We verify through a set of rendering experiments that our proposed
MISing of points and lines, and lines with each other, reduces variance of the direct lighting estimate while supporting an
increased range of BSDFs compared to analytic line integration.

CCS Concepts
• Computing methodologies → Ray tracing; Visibility; • Mathematics of computing → Stochastic processes;

1. Introduction

Despite decades of progress, physically accurate direct illumination
remains a challenging problem. At any shading point in the scene,
direct illumination requires computing a two-dimensional integral of
incident light modulated by the material’s reflectance properties over
the visible regions of the light sources. Since this integral cannot be
computed analytically in the general setting, it is typically approx-
imated numerically. Monte Carlo integration has prevailed as the
dominant approach because it can approximate integrals while only
requiring the ability to evaluate the integrand at a number of sample
point locations. Traditionally, evaluating such samples correspond

to tracing shadow rays. The price to be paid for this flexibility is
that Monte Carlo integration suffers from noise and many samples
are often necessary to reduce this noise in the presence of complex
visibility discontinuities and materials.

Recently, Billen and Dutré [BD16] proposed an alternative ap-
proach which poses direct illumination not as a 2D Monte Carlo
point sampling problem, but as a 1D Monte Carlo line sampling
problem. Such line samples can dramatically improve the quality of
soft shadows, and can even provide an improved rate of convergence.
Unfortunately, direct lighting with line samples is conceptually and
computationally more challenging since evaluating each sample in
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fact requires deriving and computing a 1D analytic integral for each
type of light/material combination. Since each line sample must be
evaluated analytically, the technique currently only supports Lam-
bertian and Phong BSDFs, and remains incompatible with more
complex microfacet-based materials. Additionally, since the idea
is relatively recent, line sampling does not yet have the same array
of powerful importance sampling strategies as point sampling. Un-
fortunately, while it would be desirable to combine the strengths of
line samples with the flexibility and generality of point samples for
direct illumination, this combination remains elusive since the two
classes are expressed in different mathematical frameworks.

Contributions. In this paper we take the first steps to bridge the
gap between these two forms of Monte Carlo integration. One of
our main contributions is showing that Monte Carlo line sampling
can be viewed equivalently as Monte Carlo point sampling with
a joint probability density function that importance samples the
visibility function. Our theory allows us to leverage lines in the pres-
ence of arbitrary materials while retaining their variance reduction
in soft shadows (see Fig. 1). Since line sampling is just a form of
point sampling in our framework, we adapt recent methods for point
sampling [UFK13] to distribute lines proportionally to solid angle,
reducing variance even compared to Billen and Dutré’s [BD16]
analytic line evaluation. Since points and lines of all orientations
share a common sampling space, we can combine lines with points,
and differently oriented lines with each other, to form more robust
estimators using multiple importance sampling (MIS) [VG95b].
Moreover, we show how to inject the additional visibility infor-
mation gained from line samples into a discontinuity-smoothing
MIS heuristic which we found allows us, in many cases, to retain
line sampling’s improved convergence rate even when combined
with point sampling. We implement our approach in PBRT, where
we outperform both point sampling and analytic line sampling on
scenes with simple materials, and we trivially extend to scenes with
arbitrary materials not previously supported by analytic integration.

2. Related Work

Since Cook et al. [CPC84] introduced MC integration to graphics,
the vast majority of MC rendering research has focused on point
sampling, resulting in a vast arsenal of advanced (importance) sam-
pling techniques for a variety of rendering sub-problems. We refer
to standard texts [PJH16] on the subject, and instead focus on the
less explored area of line sampling and its combination with points.

MC line sampling and analytic integration in rendering. Re-
cently, researchers have increasingly started employing Monte
Carlo-like estimators using line or segment samples for rendering
problems as diverse as anti-aliased scan-conversion [JP00; Max86;
Max90], motion blur [GDA10], depth of field [TPD*12], hair ren-
dering [BGA12], volumetric [BJ17; GKH*13; HCJ13; JNSJ11;
JNT*11; JZJ08; KGH*14; NNDJ12a; NNDJ12b; SZLG10] and
transient [JMM*14; MGJ*19; MJGJ17] light transport, and soft
shadows from hemispherical [GBA11], area [BD16] or environ-
ment [NBMJ14] lights. We build most directly on the work of Billen
and Dutré [BD16], who proposed an efficient intersection approach
to evaluate shadow line samples, and coupled this with an analytic
integration of the shading integrand along visible line segments. We

directly reuse their intersection routine, but instead of using their
analytic integration, cast line sampling as an MC point sampling
problem for increased flexibility.

While such higher-dimensional (nD) samples often provide an
impressive reduction in integration error, they are typically more
expensive since evaluating each such sample ultimately requires
actually integrating these n dimensions. nD sampling can there-
fore leverage and provide a theoretical bridge to analytic solu-
tions to rendering sub-problems, such as the so-called airlight in-
tegral [PP09; SRNN05], or analytic lighting on diffuse and glossy
surfaces [Arv95b; Arv95c; BP93; BXH*18; CA00; CA01; NON85;
Pic92; WR18]. Unfortunately, nD sampling is limited since it can
only be applied to problems that admit analytic evaluations, and,
despite recent progress [Hei18], it does not currently offer the same
arsenal of importance sampling techniques amassed for points. We
offer a practical way to address these problems by reinterpreting
line samples in direct illumination as equivalent point samples.

Combining with point sampling. Multiple importance sampling
(MIS) [VG95b] has proven to be one of the single most impor-
tant tools for robustly leveraging several competing point sampling
strategies in MC integration. Unfortunately, since nD samples and
point samples operate in different dimensional spaces, it is not
possible to directly combine them using MIS. Researchers have
therefore resorted to combining such analytic nD samples with
points either via unbiased control variates [BXH*18] or biased ratio
estimators [HHM18]. Prior work [BD16; SMJ17] has shown that
different orientations of nD samples (e.g. horizontal vs. vertical
lines on an area light source) can also have dramatically different
variances based on how the samples align with features of the in-
tegrand. It would therefore be desirable to leverage multiple line
sampling strategies for increased robustness. Unfortunately, such
differently oriented lines operate on different effective integrands so
they cannot be directly combined with MIS. We solve these prob-
lems by elevating all line samples to equivalent point samples in a
shared higher-dimensional space. This allows robustly combining
lines with each other and with arbitrary point sampling strategies
using MIS. This is conceptually similar to (though much simpler
than) extending [GKDS12; HGJ*17; HPJ12] standard path space to
enable MISing (bidirectional [LW93; VG95a]) path tracing [ICG86;
Kaj86] and photon mapping [Jen01; Jen96] techniques.

Variance and convergence analysis. Recent work [Dur11;
PSC*15; SJ17; SK13; SNJ*14; SSC*19] has established a firm
mathematical connection between the properties of MC point sam-
pling and the magnitude and convergence rate of MC integration
error. The error depends on the dimensionality and smoothness of
the integrand, and the spectral properties of the MC sampling pattern,
with various flavors of stratified sampling [Coo86; CSW94; Ken13]
provably leading to asymptotically faster convergence rates. Singh
et al. [SMJ17] established a theoretical connection between these
point sampling results and the observed behavior of nD sampling by
noting that nD samples 1) reduce the dimensionality of the integra-
tion problem, and 2) produce a smoothed effective integrand, both of
which can contribute to an improved convergence rate. Most recently,
Singh et al. [SSC*19] noted that seemingly innocuous changes like
BSDF vs. solid-angle or surface-area sampling can lead to different
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convergence rates due to the introduction or inhibition of discontinu-
ities. This becomes important when combining strategies since MIS
inherits the worst of the constituent convergence rates. To mitigate
this, they propose a biased discontinuity-smoothing approach to re-
tain a good convergence rate, though only for unoccluded integrands.
We propose an unbiased way to improve convergence rates by ma-
nipulating the MIS weights, and additionally show how leveraging
line samples allows us to extend these improvements to a limited
extent to previously unimproved penumbra regions.

3. Background & Problem Statement

Direct Lighting. The outgoing radiance Lo at a shadepoint x to-
wards the eye e is the integral of the radiance emitted Le from all
points l on the surface area A of a light modulated by the BSDF fr,
geometry term G, and binary visibility function V (see inset below):

Lo(e,x) =
∫
A

fr(e,x, l)G(x, l)V (x, l)Le(x, l)dA(l), where (1)

G(x, l) = (~ωxl ·~nx)
+(~ωlx ·~nl)

+

‖x− l‖2 . (2)

We use bold symbols (x) to
denote points, arrows (~ω)
to decorate unit direction
vectors, and ()+ clamps the
enclosed quantity to zero.
In the general case, Eq. (1)
is impractical to compute
in closed form, so we resort
to approximating it using Monte Carlo.

Abstracting away the details, we can write Eq. (1) more compactly
as a simple two-dimensional integration problem:

Lo =
∫
U

∫
V

f (u,v)dvdu, (3)

with f (u,v) = fr(e,x, luv)G(x, luv)V (x, luv)Le(x, luv), (4)

where for conceptual simplicity we also assume a coordinate system
aligned with the light so luv = (u,v,0) and~nl = (0,0,1), see Fig. 2.

Monte Carlo Integration. In this simplified form, an MC estima-
tor of direct illumination chooses N random points ui,vi according
to some joint probability density function (PDF) p(ui,vi) and av-
erages the integrand evaluated at these locations weighted by the
inverse PDF:

Lo =
∫
U

∫
V

f (u,v)dvdu ≈ 〈Lo〉uv =
1
N

N

∑
i=1

f (ui,vi)

p(ui,vi)
. (5)

The efficiency of such MC estimators depends critically on the
sampling PDF. Ideally we want to choose a PDF that is exactly
proportional to the integrand, but this is generally not available. A
common strategy is therefore to choose a PDF that is proportional
to some portion of the integrand, for instance proportional to the
BSDF, the geometry term (solid-angle sampling), or the emitted
radiance (surface-area sampling). Each of these choices provides
variance reduction in complementary settings. To obtain the benefits
of S different PDF strategies with Ns samples each, it is tempting to

Figure 2: Left: Setup of the general line sampling algorithm. First,
a line sample is chosen along the ~v axis. Next, a shadow triangle
connecting the line sample and shading point is intersected with
the scene and shadowed regions are culled from the line sample.
Middle to right: Visualization of point and horizontal line sampling
strategies over the light source when there are occluders, whose
shadow projections are shown. Traditional point samples may land
in occluded regions, whereas with line samples we can ensure points
are generated only in unoccluded regions.

simply average their estimators,

〈Lo〉avg
uv =

1
S

S

∑
s=1

(
1

Ns

Ns

∑
i=1

f (ui,vi)

ps(ui,vi)

)
, (6)

but since variance is additive, any sample with high variance will
pollute the averaged result.

Multiple importance sampling. A more robust strategy is to
downweight each potentially high-variance sample before it has
a chance to pollute the average, using MIS [VG95b]:

〈Lo〉mis
uv =

1
S

S

∑
s=1

(
1

Ns

Ns

∑
i=1

ws(ui,vi)
f (ui,vi)

ps(ui,vi)

)
. (7)

A popular and provably good choice of weight function is the bal-
ance heuristic:

ws(ui,vi) =
Ns ps(ui,vi)

∑ j N j p j(ui,vi)
. (8)

Effectively, MIS assumes a sampling strategy is poor at locations
where its PDF is low compared to other strategies. Crucially, MIS
requires that the estimators all compute the same integral, and the
PDFs are expressed wrt a common measure before comparison.

Line sampling. Instead of sampling points, Billen and Dutré
[BD16] recently proposed to sample lines along the light and in-
tegrate the contribution along their lengths analytically. There is
a continuum of possible line directions. For instance, using the
notation of Eq. (3), horizontal line sampling computes

Lo =
∫
V

fu(v)dv ≈ 〈Lo〉v =
1
N

N

∑
i=1

fu(vi)

p(vi)
, (9)

while vertical line sampling computes

Lo =
∫
U

fv(u)du ≈ 〈Lo〉u =
1
N

N

∑
i=1

fv(ui)

p(ui)
, (10)

where fu(v) =
∫
U

f (u,v) du, and fv(u) =
∫
V

f (u,v) dv (11)
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are one-dimensional integrands which arise from analytically pre-
integrating f (u,v) along u or v respectively.

Billen and Dutré’s approach first samples a line offset, e.g. accord-
ing to p(vi) for horizontal lines. It then traces a “shadow triangle”
through the scene (see Fig. 2) to determine all intervals along the
line sample where V = 1, and integrates the remaining portions of
fu(vi) analytically along each interval.

Billen and Dutré [BD16] explained the improved performance
of line samples by virtue of their reduced MC integration dimen-
sionality, and Singh et al. [SMJ17] later explained this from a
frequency perspective by interpreting lines as point sampling a
lower-dimensional, smoothed integrand. In either view, lines pro-
vide impressive variance reduction (and even convergence rate im-
provement), but they are limited to material and lighting properties
that admit efficient analytic line integration. Unfortunately, neither
interpretation allows us to combine with MIS the benefits of line
sampling in different orientations or point importance sampling
strategies. This is because the integrands for different line orienta-
tions (11) are different from one another, and are different than the
2D point sampling integrand (4). This is what we address.

4. Method

Our main contribution is unifying point sampling and line sampling
into a common sampling space so that their relative strengths can be
combined using MIS. We use a horizontal line as an example below,
but the same ideas apply to vertical lines by swapping u and v.

The 2D point-sampling integrand (5) is clearly different from
the 1D line-sampling integrands (11) since the former requires two
random numbers, while the latter only require one. Conceptually,
however, we know that these estimators are actually computing the
same quantity. Our key insight is that we can interpret an analytic
1D horizontal line sample as a 2D point sample with joint PDF
p(ui,vi) = p(vi)p(ui | vi) that uses some marginal PDF p(vi) to
choose a line offset vi and then the ideal conditional PDF

p(ui | vi) =
f (ui,vi)∫
U f (u,vi) du

=
f (ui,vi)

fu(vi)
(12)

to choose a location ui along the line. Inserting this into Eq. (5),
reduces it to Eq. (9):

〈Lo〉uv =
f (ui,vi)

p(vi)p(ui | vi)
= ����f (ui,vi)

p(vi)
���f (ui,vi)

fu(vi)

=
fu(vi)

p(vi)
= 〈Lo〉v, (13)

where we have omitted the averaging across N samples for brevity.

By definition, if an MC sample is drawn from an ideal conditional
PDF, it would return the same (exact) result for the conditional
integration along U regardless of the actual sampled location ui;
hence, in some sense this collapses the dimensionality of the inte-
gration as the u component of the 2D sample is never needed. While
Eq. (13) shows that using p(vi) in Eq. (9) or p(vi)p(ui | vi) in Eq. (5)
is mathematically equivalent, in practice the former only requires
analytically integrating along the line, but the latter additionally
requires generating a point sample along the line proportional to
the integrand. Importantly, only the latter technique provides an
effective 2D PDF which we can use to MIS with point sampling or
with vertical lines.

While Billen and Dutré [BD16] derived expressions for ana-
lytically integrating the geometry term multiplied by a diffuse or
Phong [Pho75] BSDF along the line, the expressions are quite in-
volved and producing a point sample proportional to these functions
would further require inverting them. Instead, we can still benefit
from a line sample by coupling it with simpler, non-ideal conditional
PDFs, which do not perfectly cancel out all terms of the integrand
along the line, but do leverage a line’s core strengths.

Interpreted as a 2D importance sampling strategy, the reason line
sampling performs well is because it importance samples the binary
visibility function along the line sample (see Fig. 2). For instance,
for a given vi, p(ui | vi) only generates a ui in regions where V = 1
(except in cases where the entire line sample is occluded). This
has the benefit of focusing samples in the visible regions (reducing
variance), but also eliminating the discontinuities in the conditional
integrand (improving smoothness and convergence). By explicitly
sampling points along a line using simple conditional PDFs, we
retain this key strength. We propose two such PDFs in the following
subsection, which we show are effective despite their imperfection.

4.1. Joint line importance sampling.

Uniform surface-area-based line sampling. Billen and Dutré
[BD16] proposed sampling a line’s offset proportional to its length.
On a quad light, this corresponds to sampling v such that:

p(vi) =
ui−ui

area of light source
, (14)

where [ui,ui] are the u-bounds of line sample vi. A simple approach
would be to couple this with uniform sampling of u within the visible
intervals, which results in the following PDF:

p(ui | vi) =


1

∑
r∈Ri

ur−ur
if ui is inside a visible region,

0 otherwise,

(15)

where Ri is the set of all visible regions along line sample vi and
[ur,ur] are the u-bounds of visible region r. For unoccluded shade
points this corresponds to uniform surface area point sampling.
Occluded regions, however, benefit from the line sample only gener-
ating corresponding points within the visible region of the integrand.
Such penumbra regions improve considerably with line samples
compared to surface-area point sampling, but neither approach im-
portance samples the BSDF or geometry terms, which means they
both suffer from high variance for glossy BSDFs or shade points
close to a light source (see Fig. 3).

Uniform solid-angle-based line sampling. Uniformly sampling
the solid angle of the light source typically performs much better
than surface area sampling since it accounts not only for Le, but also
the inverse-squared distances and one of the cosines in the geometry
term (2). We adapt Ureña et al.’s [UFK13] approach to line samples,
allowing us to additionally importance sample the visibility.

Ureña et al.’s approach projects a quad light onto a unit sphere sur-
rounding the shade point x and then samples the resulting spherical
rectangleQ in a two-step process similar to ours (see inset figure).
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Figure 3: Even at one sample per pixel, our extension of solid angle
sampling to line samples dramatically reduces noise in soft shadows
(red) while simultaneously suppressing variance from the geometry
term near the light source (blue).

First, they choose line offset vi, yield-
ing an arc on Q. Then, they choose
ui within line vi by projecting the end-
points of the arc onto~y (an axis aligned
with vi) to yield bounds [hi,hi] and lin-
early interpolating between them.

We modify this approach to incorpo-
rate our line sampling routine and ac-
count for occlusions. Given a line offset vi chosen by their algorithm,
we intersect the shadow triangle formed by vi and x with the scene
to find occluded regions. We then project the endpoints [ur,ur] of all
visible regions ontoQ to form a set of arcs. Projecting the endpoints
of each arc onto~y yields a set of height bounds [hr,hr] for all visible
regions, within which we sample hi uniformly.

Analogously to surface-area-based line sampling, we can separate
the joint PDF of this strategy into a marginal and conditional PDF.
While Ureña et al. provide sampling routines from which we could
derive both the conditional and marginal PDF, we already know the
joint PDF p(ui,vi) = 1/Ω(Q), where Ω(Q) is the solid angle ofQ,
in the unoccluded case. The marginal PDF is therefore

p(vi) =
p(ui,vi)

pvis(ui | vi)
=

1
Ω(Q)pvis(ui | vi)

, (16)

where pvis(ui | vi) denotes a conditional PDF assuming full visibility.
Given a vi, Ureña et al. uniformly sample an hi over the entire [hi,hi]
interval and map this hi to a ui, leading to

pvis(ui | vi) =
pvis(hi | vi)

J
, (17)

where J = dui
dhi

is the h-to-u Jacobian, and pvis(hi | vi) =
1

hi−hi
.

To account for the occluders, we instead sample hi uniformly
within the visible h-intervals and then map hi to ui as before. The
conditional PDF in the occluded case is

pocc(ui | vi) =
pocc(hi | vi)

J
, (18)

where pocc(hi | vi) sums over all visible interval lengths as in
Eq. (15), but with h substituted for u. While J is trivial to find,
it is unnecessary to compute in practice due to the problem’s con-
struction. Multiplying Eq. (18) by Eq. (16) and expanding gives us
our joint PDF in the occluded scenario,

p(ui,vi) =
�J(hi−hi)

Ω(Q)�J ∑
r∈Ri

hr−hr
=

hi−hi

Ω(Q)∑
r∈Ri

hr−hr
, (19)

where we have omitted the zero case for brevity. For unoccluded
regions, p(ui,vi) simply reduces to 1/Ω(Q) just like point sam-
pling [UFK13]. Note that this joint PDF is exactly like that of
surface-area sampling, except with solid angle substituted for area
and h substituted for u. It can be converted to surface area measure
by the usual geometry Jacobian, ~ωlx·~nl

‖x−l‖2 .

4.2. MIS between lines and points

Solid-angle line sampling works reasonably well for diffuse scenes.
However, two issues remain: 1) the relative alignment of the line
samples with the occluder dramatically influences the benefits in
penumbra regions, and 2) with any orientation of lines, the variance
increases as the BSDF becomes more glossy since it is not impor-
tance sampled. To mitigate both of these issues, and arrive at a more
robust estimator, we leverage our point-sampling interpretation of
lines to MIS differently oriented lines with each other and with
BSDF point importance sampling.

In order to MIS between point and line strategies, we need the
ability to evaluate their PDFs given a point luv on the light source.
For point sampling, such formulas are well-known. For line samples,
we evaluate p(vi)p(ui | vi) (Eqs. (14)–(18)). A drawback to this
strategy is that computing MIS weights requires evaluating p(ui | vi),
which requires a line sample-scene intersection to find occluded
regions of vi; however, in practice, we have found the variance
reduction achieved by MIS favorable even in equal-time scenarios.

4.3. Discontinuity-smoothing MIS heuristic

Though MIS allows us to combine line and point sampling while
mitigating the high variance of any individual strategy, the result-
ing estimator will take on the worst of the constituent estimators’
convergence rates. When using uncorrelated random sampling, each
estimator has a convergence rate of O(N−1), so this is not an issue.
However, stratified sampling can improve the convergence rate of 2D
integration to O(N−1.5) for discontinuous integrands and O(N−2)
for smooth integrands [PSC*15]. Singh et al. [SSC*19] recently
showed that BSDF vs. surface-area sampling achieve different con-
vergence rates because the former treats the light boundary as an
integrand discontinuity, while the latter pushes this discontinuity to
the boundary of the integration domain, allowing unoccluded shade
points to “see” a smooth integrand. They proposed a biased solution
to artificially smooth the light source boundary for BSDF-based
sampling, allowing it, and the MIS of both strategies, to retain an im-
proved O(N−2) convergence, but only for unoccluded shade points.
We propose to solve the same problem in an unbiased way, and can
use the additional information provided by line sample to extend a
limited improvement even for partially occluded integrands.
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(a) no smoothing
(b) fixed-width

smoothing
(c) variable-width

smoothing

Figure 4: MIS weights over a quad light source with two triangle
occluders as seen by a BSDF sampling routine without smoothing
(left), with fixed-width discontinuity smoothing (middle), and with
variable-width discontinuity smoothing (right). With fixed-width
smoothing, the discontinuities at the light and occluder boundaries
are smoothed away in the MIS weights. With variable-width smooth-
ing, discontinuities at occluder vertices are also smoothed.

We begin by rewriting Eq. (7) as:

〈Lo〉mis
uv =

1
S

S

∑
s=1

(
1

Ns

Ns

∑
i=1

f eff
s (ui,vi)

ps(ui,vi)

)
, where (20)

f eff
s (ui,vi) = ws(ui,vi) f (ui,vi) (21)

is the effective integrand “seen” by strategy s during MIS. Our key
insight is that if we could design the MIS weights to ensure the
effective integrand seen by each Monte Carlo integration strategy is
smooth, then we could obtain better convergence rates (as long as
the PDFs ps are themselves not discontinuous).

Let us consider three sampling strategies: horizontal (V ) and
vertical (U) lines, as well as BSDF sampling B, with corresponding
MIS weighting functions ws for s ∈ {U,V,B}. While strategies U
and V do not suffer from a discontinuity due to the light source
boundary, we’d like to remove the discontinuity from the BSDF
strategy B by having wB smoothly transition to zero for points luv
that approach the light boundary. Doing so, the effective integrand
would appear to be a light source with a smoothly blurred boundary.
We can accomplish this by rewriting the balance heuristic (8) as

ws(ui,vi) =
Ns p′s(ui,vi)

∑ j N j p′j(ui,vi)
(22)

where p′s = ps for s ∈ {U,V}, but for the BSDF strategy we will
multiply it by a function that smoothly decreases to zero as u and
v approach the edge of the light: p′B(ui,vi) = m̂(ui)m̂(vi)pB(ui,vi).
Normalizing by some distance parameter dm, we have:

m̂(ui) = m
(

ui−ui

dm

)
·m
(

ui−ui

dm

)
(23)

and likewise for vi, where [ui,ui] are the u-bounds of the light source
and m is a quadratic ease-out curve: m(t) =−〈t〉2 +2〈t〉 where 〈t〉
is t clamped to [0,1]. We found using dm equal to half the smallest
dimension of the light to be effective.

By intersecting a line sample with the scene, we can also detect
how close a point sample is to an occluder. In this case, we replace
ui and ui with ur and ur in Eq. (23) for the visible region r it lies
in. While this accounts for most discontinuities, there may also be

discontinuities lurking at occluder vertices where a line slips on or
off the occluder altogether (see Fig. 4b). To account for this, we
shrink distance dm as the line approaches an occluder vertex. We use
the length of the occluded regions neighboring each visible region
boundary, docc and docc, to determine the amount by which to shrink
the smoothstep, such that:

m̂(ui) = m
(

ui−ur

m(docc/dm)

)
·m

(
ur−ui

m
(

docc/dm

)) (24)

for occluder edges. We multiply the smoothsteps of the light bound-
aries and the occluder edges to achieve all-around smoothness. Fig. 4
visualizes how this influences the MIS weights for a partially oc-
cluded shade point.

5. Results

We implemented our novel algorithms as an integrator in
PBRT [PJH16] and perform variance analysis using the empiri-
cal error analysis framework of Subr et al. [SSJ16]. We compare our
results in a variety of scenes to state-of-the-art line sampling [BD16]
and solid angle point sampling [UFK13].

MIS between line directions. We begin by testing the efficacy of
multiple importance sampling between line directions. We illustrate
a simple best- and worst-case scenario with a test scene of a quad
floating in a Cornell box beneath a quad light (Fig. 5). For both the
MIS and average estimators we use a multijittered sampler [CSW94]
and allocate half the total samples to each component strategy by
splitting and rescaling. Each pixel we analyze has a completely
continuous integrand in one line direction (best-case) and a sharply
discontinuous one in the other (worst-case).

We can see that the convergence rate of the best-case line direc-
tion, O(N−3), is steeper than the worst case, O(N−2), and that
both the MIS and average estimators inherit the worse convergence
rate of the two, as expected. However, while the variance of the
average estimator is tied closely to the worse line direction, we can
see that MIS is able to act as a moderating influence and find a
middle ground between the two.

MIS between lines and points. Next, we test the efficacy of mul-
tiple importance sampling between line sampling and microfacet
BSDF point sampling. The scene in Fig. 6 shows a row of occluders
sitting on glossy strips with microfacet BSDFs of varying rough-
ness. We again use a multijittered sampler and split and rescale the
samples evenly between the strategies. We analyze the convergence
of several pixels, one with a rough BSDF and one with a very glossy
BSDF. Regardless of material glossiness, our MIS approach is more
robust than BSDF point or solid-angle line sampling alone, and
consistently achieves a lower variance than the average estimator.

Discontinuity-smoothing MIS heuristic. We verify that our
discontinuity-smoothing MIS heuristic improves the convergence
rate of MIS using stratified sampling in Fig. 7. For the unoccluded
pixel (A), which benefits only from smoothed edges of the light, the
convergence rate improves from O(N−1.4) without to O(N−2.04)
with smoothing, almost achieving the same convergence rate as lines
alone. For the occluded pixel (B), which benefits from smoothed

© 2019 The Author(s)
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Surface-area sampling Solid-angle sampling
Pixel A Pixel B Pixel A Pixel B

Figure 5: We illustrate the benefits of MIS between best- and worst-case line directions for both surface-area lines (left) and solid-angle lines
(right). Line 1 and Line 2 are two perpendicular line directions on the light source, drawn in blue and red, respectively, in the image. MIS
between the two directions consistently finds a middle ground and outperforms the average strategy. Dashed lines show average time over all
trials to evaluate n light samples.

Pixel A Pixel B Pixel C

Figure 6: We illustrate the benefits of MIS between a microfacet BSDF point strategy and solid-angle line strategy, where Line 1 and Line 2
are two perpendicular line directions on the light source. MIS consistently outperforms BSDF sampling or the worse of the two line directions
alone, as well as the straight average of the strategies. Dashed lines show average time over all trials to evaluate n light samples.

edges of both the light and occluder, the improvement is more mod-
est, from O(N−1.53) without to O(N−1.68) with smoothing.

Equal-time comparisons. Lastly, we compare our novel line sam-
pling framework to existing line and point sampling schemes at
equal time. Our primary metric for comparison is the mean relative
square error (MRSE), defined as 1

n ∑
n
i=1(pi− p̂i)

2/(p̂i
2 + ε), where

pi and p̂i are the i-th pixels in the approximate and reference images,
respectively, and ε = 1×10−6 avoids division by zero.

For these comparisons, we use a random sampler with one light
sample per scene intersection. We use an equal-render time of two

A

B

Pixel A Pixel B

Figure 7: Our discontinuity-smoothing balance heuristic allows us
to retain the variance reduction from line sampling and the improved
convergence rate from stratification [CSW94] for unoccluded (A)
pixels. Partially occluded pixels (B) also see a slightly improved
convergence rate. Dashed lines show average time over all trials to
evaluate n light samples.

seconds for the Cornell Box scene (Fig. 8), three seconds for the
Monoliths scene (Fig. 1), and four seconds for the Veach-inspired
MIS scene (Fig. 10). In Fig. 8, we also compare to Billen and
Dutré’s analytic line integration scheme, and find that at equal time
our method outperforms their approach in the zoomed regions. Our
method also consistently achieves lowest MRSE in shadowed re-
gions, though in unshadowed regions, faster strategies can often
evaluate more samples in the allotted time.

In Fig. 9, we compare MISing point and line samples with dif-
ferent ratios in equal-time renders (150s) of a kitchen scene with a
lowering window shade. In several cases, we see that tweaking the
ratio slightly leads to a clear tradeoff between reducing variance in
the shiny table region and reducing variance in the towel’s shadow
region, even though the overall MRSE of the image changes little.
This illustrates that the relative effectiveness of different sampling
strategies may vary over a diverse scene, yet MIS is successful in
bridging the difference in the general case. The ratio 1 points : 3
lines, in particular, consistently achieves the lowest MRSE over the
entire image, which suggests that line samples are key players even
in an equal-time scenario with a complex scene.

Additional results. While our current implementation does not
support line-sampling textured emittered, our MIS formulation al-
lows us to combine our line samples with point samples that do
importance sample the texture (Fig. 11). The supplemental material
contains additional results, including equal-sample and five-row
versions of Fig. 9, and an interactive comparison of the results.
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Reference

Full MRSE:

MRSE:

Lines (parallel)
[BD16]

2.6×10−1

1.2×10−2

Solid angle points
[UFK13]

2.0×10−1

1.4×10−3

Avg solid angle
lines [Ours]

1.0×10−1

1.4×10−3

MIS solid angle
lines [Ours]

1.0×10−1

2.6×10−3

MRSE: 1.5×100 1.9×100 5.1×10−1 3.3×10−1

Figure 8: MRSE of various sampling strategies in a Cornell box at equal time (two seconds). MRSE for the full image is given above the two
rows and for each zoom-in beneath the corresponding row. Our average and MIS routines use two perpendicular line directions on the light
source. The average routine (column 4) acts as a baseline for comparison against MIS, where line samples are simply averaged instead of
weighted. We achieve the best MRSE in the shadowed region next to the red wall, while in an unshadowed region faster methods have an edge.

Full scene Reference 4 points : 0 lines 3 points : 1 line 2 points : 2 lines 1 point : 3 lines 0 points : 4 lines
Full MRSEFull MRSE 3.7×10−13.7×10−1 3.3×10−13.3×10−1 9.0×10−19.0×10−1 3.2×10−13.2×10−1 1.1×1001.1×100

MRSEMRSE 6.0×10−26.0×10−2 1.1×10−11.1×10−1 2.3×10−12.3×10−1 4.1×10−14.1×10−1 7.9×1007.9×100

MRSEMRSE 4.6×10−14.6×10−1 1.4×10−11.4×10−1 8.2×10−28.2×10−2 1.4×10−11.4×10−1 1.1×10−11.1×10−1

Full MRSEFull MRSE 5.6×10−15.6×10−1 2.4×10−12.4×10−1 2.4×10−12.4×10−1 2.2×10−12.2×10−1 5.2×10−15.2×10−1

MRSEMRSE 9.4×10−29.4×10−2 1.3×10−11.3×10−1 3.1×10−13.1×10−1 8.5×10−18.5×10−1 2.3×1012.3×101

MRSEMRSE 5.8×10−15.8×10−1 2.0×10−12.0×10−1 1.1×10−11.1×10−1 2.5×10−12.5×10−1 1.3×10−11.3×10−1

Full MRSEFull MRSE 1.9×1001.9×100 1.1×10−11.1×10−1 1.0×10−11.0×10−1 7.7×10−27.7×10−2 1.5×10−11.5×10−1

MRSEMRSE 1.0×1001.0×100 1.4×1001.4×100 2.1×1002.1×100 1.4×1001.4×100 2.7×1002.7×100

MRSEMRSE 5.0×1005.0×100 4.9×10−24.9×10−2 5.7×10−25.7×10−2 7.6×10−27.6×10−2 6.2×10−26.2×10−2

Figure 9: At equal time (150s), we compare the effect of MISing between BSDF point samples and vertical solid-angle line samples using
different ratios. At each surface intersection, we use four light samples divvied according to the ratio above each column. Best MRSE for each
row is highlighted in blue. The BSDF strategy clearly dominates on the shiny table near the light source, but struggles in the penumbra region
behind the towel. At equal time, MIS (specifically, the split 1 point : 3 lines) consistently achieves the best MRSE across the full image.

6. Limitations and Future Work

Line sample-scene intersections. We share the same primary limi-
tation as Billen and Dutré in that the line sample-scene intersections
required to determine visible line regions dominate the overall run-
time, especially since we must perform extra intersections in order
to evaluate line sampling PDFs. We found that, on average, tracing
a line sample took 1.2–55× as long as tracing a shadow ray for
the scenes in this paper, depending on their complexity (see sup-
plemental for a full comparison). We have shown that despite this
limitation, our framework has both an improved convergence rate
over points and better performance in shadowed regions of quick
renders; however, for scenes with many occluders or little image

space occupied by shadows, point strategies may be able to achieve
a better result in equal time. While ray-scene intersections build on
40+ years of optimization research, we believe there is ample room
for optimizing the line sample-scene intersection routine, further
amplifying the benefits of line samples.

Solid-angle sampling. Due to the nature of Ureña et al.’s algorithm,
our solid-angle line sampling is currently limited to sampling line di-
rections aligned with edges of the light source. It should be possible
to overcome this limitation by breaking the spherical rectangle into
spherical triangles and using Arvo’s [Arv95a] algorithm instead. It
may also be possible to generalize our use of Ureña et al.’s approach
to support arbitrarily oriented lines and polygonal emitters by line
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Reference MRSE Solid angle points [UFK13] 4.5×10−1 Solid angle lines [Ours] 4.2×10−1

BSDF 54.8×100 MIS BSDF + solid angle points 2.0×10−1 MIS BSDF + solid angle lines [Ours] 6.8×10−2

Figure 10: We remodel Veach’s classic MIS scene to include occluders. The plates use microfacet distributions which increase in roughness
from top to bottom. As expected, BSDF sampling performs best in the upper right region of the outer product and solid-angle methods perform
best in the lower left region. For our line strategies, we choose to use horizontal lines on the light source. At equal time (four seconds), our
MIS between BSDF and lines has the lowest MRSE across the entire image. Our line methods are clearly most effective at reducing noise
around shadow edges, while MIS between BSDF and solid-angle points reduces noise further than ours in some areas (see glossiest plate with
largest light source) due to its speed.

sampling the light’s bounding quad and trimming the line samples
to the extent of the actual emitter. Our surface-area line sampling
handles any arbitrary line direction on the light source.

Smoothing MIS heuristic. Our smoothing MIS heuristic is effec-
tive at eliminating discontinuities in simple scenarios (see Fig. 4);
however, the improvement in the occluded pixel’s variance and con-
vergence rate is more modest than the unoccluded pixel in Fig. 7.
Designing a more robust smoothing MIS heuristic that works well
in the general case would be an interesting direction for future work.

7. Conclusion

We developed a unified framework for combining point and line
samples for efficient MC approximation of direct illumination. We
demonstrated that the simple conceptual change of separating a 2D
point PDF into marginal and conditional terms creates a general
shared space for both point and line samples, and opens up new
possibilities for combining the strengths of each. We extended an
existing solid-angle point sampling scheme to lines, resulting in
a new hybrid strategy that importance samples more terms in the
direct lighting integral than either surface-area lines or solid-angle
points. Lastly, we showed how to leverage the information found
during a line sample-scene visibility intersection to smooth the
integration domain of less-aware point strategies, resulting in an
improved convergence rate for some scenarios.
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