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Abstract—We propose a novel design for a do-it-yourself hyperspectral imaging system which operates by taking multiple photographs
through tunable, polarization-induced, spectral filters. Prior approaches in this do-it-yourself arena achieve hyperspectral imaging by
selecting from a discrete set of spectra baked into existing products. In contrast, our approach is capable of generating a continuous
family of broadband transmission spectra by simple rotations of stacked polarizers and waveplates. This greatly expands the potential
range of representable spectra from a fixed-dimensional to an arbitrary-dimensional space. We analyze the theoretical spectral gamut of
our approach and demonstrate its viability for spectral surface reflectance reconstruction both in simulation and with a low-cost physical
prototype. Our prototype demonstrates that our approach can achieve comparable quality to prior work at reduced cost, while the new
design space holds ample opportunity for increased quality and flexibility with professional manufacturing.
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1 INTRODUCTION

EVERY color in the vivid medley that surround us is
composed of a spectrum of wavelengths. Digital cameras

(and our eyes) project this continuous spectrum down to
only three values, roughly corresponding to short (blue),
medium (green), and long (red) wavelengths, throwing away
most of the spectral information. While digital cameras are
designed to replicate human perception faithfully, which
make them well suited to capturing the aesthetic qualities of a
scene, this information loss results in metamerism – infinitely
many differing spectra that are nevertheless perceptually
indistinguishable from one another.

Instruments capable of attaining high-fidelity spectral in-
formation are typically expensive, costing thousands to tens
of thousands of dollars, and accessible only to research or
industrial institutions. Note that we include in this category
not only instruments billed as “hyperspectral cameras,” but
also a range of other optical instruments such as fluorometers
and spectrophotometers. Such instruments are often used
to study medical tissue samples and microorganisms or
cells treated with fluorescent dyes, for example. Spectral
information is useful, however, even in a variety of settings
outside of well-funded research laboratories, such as tracking
the aging of wines and beers, dating historic paintings,
spotting harmful algal blooms in waterways, or determining
the composition of stars or nebulae through telescopes.
Collected spectral data could also be used as input to spectral
renderers [1], [2] to faithfully simulate realistic images.

Many recent papers have taken up the gauntlet of
do-it-yourself spectral reconstruction [3]–[10]. A common
approach to this problem is to observe the spectral response
of a subject under several spectrally varying environments,
e.g. observing the subject under illuminants with different
emission spectra or sensors with different spectral response
curves. These methods have typically been limited to choos-
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ing spectral variants from discrete sets of fixed spectra. In this
work, we propose a novel design for do-it-yourself spectral
reconstruction via spectrally tunable filters comprised of
polarizers and waveplates that are capable of creating a con-
tinuum of transmission spectra, greatly expanding the space
of spectrally varying environments that can be produced.
While many have noticed the mesmerizing aesthetic effect
these filters are capable of producing [11], this phenomenon
has also been used in other scientific contexts, for example
tracking the position and orientation of objects in an indoor
scene [12]. While our theory could apply to polarizers and
waveplates at any price range, we realize our design on
a portable, low-cost prototype constructed from only an
ordinary digital camera, lens filters obtainable at any casual
photography store, and clear packing tape. We explore the
capabilities of this prototype to acquire spectral surface
material properties using spatial or temporal multiplexing
of our filters (or both), and demonstrate that it can achieve
comparable quality to prior work at reduced cost.

2 RELATED WORK

Commercial hyperspectral cameras (such as Olympus’s
FV3000 Confocal Laser Scanning Microscope or Thorlabs’
Hyperspectral Imaging Cerna Rig) typically acquire a series
of monochromatic images using a series of narrow bandpass
filters (less than 10 nm) in order to capture every spectral
band in the visible wavelength range individually. These
setups typically cost thousands of dollars and have a
microscope-like capture stage, restricting the subjects of inter-
est to be small and flat. Alternate approaches to hyperspectral
imaging typically leverage wavelength-dependent effects
such as dispersion, diffraction, or birefringence in order to
acquire spectral information.

Dispersion-based approaches
Coded aperture single-shot imaging (CASSI) techniques [13]–
[16] place a coded binary mask in front of a dispersive
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Fig. 1: Our filters, built from a stack of waveplates and polarizers, create a vivid array of transmission spectra that allow us
to reconstruct the spectra of incoming light (far right: solid: ground truth, dashed: our reconstructions).

prism, spreading the spectral information over a small spatial
neighborhood on the sensor. Du et al. [17] found that using
even a simple checkerboard mask could recover spectral
information. These setups have typically been confined to
the laboratory due to the need for precise calibration and
fabrication of the tiny, high-resolution aperture mask.

Notably, in the DIY space, Baek et al. [3] recover spectral
information by taking a single photograph through a glass
prism in front of an ordinary digital camera. Their approach
harnesses cues from color fringing at the edges of objects in
the scene in order to reconstruct the incoming spectra. While
compact and inexpensive, their approach relies on having
sufficient sharp edges in the scene and struggles with spiky
spectra. Similarly, Hostettler et al. [18] leverage dispersion
to project (not capture) color images by filtering white light
through glass prisms and masks printed on transparencies.

Diffraction-based approaches
Computed tomography techniques use a diffraction grating
to transform spectral into spatial information [19], [20].
In order to combat the spatial-spectral resolution tradeoff,
Saragadam and Sankaranarayana [21] use an adaptive
approach that alternates between acquiring spectral and
spatial information using a diffraction grating and a coded
aperture. Habel et al. [4] create a simplified diffraction-based
hyperspectral camera by attaching a PVC pipe outfitted with
several lenses and a diffraction grating to the front lens
of an ordinary digital camera. Their approach, however,
requires many scientific optical elements and a lengthy
calibration process with extra equipment. Jeon et al. [22]
simplify further by placing one custom diffractive element
on top of a bare sensor, but fabricating the diffractive element
requires photolithography and reactive-ion etching on a silica
wafer. Monakhova et al. [23] replace the diffractive element
with a tiny spectral filter array on the bare sensor, which also
must be fabricated in a lab.

Birefringence-based approaches
Lyot filters use stacks of birefringent crystals in order to
create narrow-bandpass filters, often used for tuning lasers.
However, the shape of the transmission spectrum of these
filters is fixed at manufacture time, although the transmission
peak location may be shifted by rotation or voltage appli-
cation. In contrast, our method creates transmission spectra
that span the full visible spectrum but are tunable in shape.

In a similar vein to dispersion- or diffraction-based
approaches, birefringence can also be used to split incoming
light into diverging ordinary and extraordinary rays [24]–[27].
However, we harness the polarization-altering properties of
the waveplates to create spectral filters, not to split light into
diverging rays for spatial multiplexing.

In concurrent work, Sankaranarayanan et al. [28] harness
the voltage-modulated birefringence of liquid crystals in
order to create a programmable filter array that can be placed
on top of a digital sensor. Their approach can be seen as a
variation of our own that is able to achieve high accuracy
via more expensive hardware that requires more engineering
expertise to build and more extensive calibration.

Upsampling from RGB
Others have mapped RGB values to spectra directly by fitting
box functions [29]–[31], basis functions derived from a large
database [32], or smooth parametric models [33], [34]. Unlike
our method, these approaches do not attempt to capture the
spectral properties of a specific scene, rather they propose a
general mapping from RGB to spectra.

Deep-learning-based approaches
Like many image processing tasks, deep learning has also
shown promise for hyperspectral imaging, either by learning
RGB upsampling from examples [35]–[39] or by fusing
diffusion- or diffraction-based approaches with deep learning
(see [40] for a recent survey). However, hyperspectral image
datasets are still relatively small and sparse and may not
apply to scientific settings. Notably, in the DIY space, Zhao
et al. [5] train a neural network to reconstruct spectra from
images taken through a mask of randomly distributed ink
droplets printed by an ordinary consumer printer.

Linear-reconstruction-based approaches
Most related to our approach is the cornucopia of do-it-
yourself, linear-reconstruction-based hyperspectral imaging
systems that have been proposed in recent years. These
typically take several photographic measurements of a scene
while modulating the spectra of illuminants [6]–[8], filters
over an illuminant [9], or sensor responses [10], [41]. The
overarching theory behind these approaches is to observe
the response of the spectra of interest under different spectral
environments, and then piece together those observations into
a linear system and solve for the unknown spectra.



While we adopt the same mathematical framework as
these prior works, our approach differs in several key ways.
The above methods are limited to choosing from a discrete
set of possible spectral environments, whereas ours allows
for continuous spectral variation through the design of our
filters (Sec. 4). We also do not share some of the limitations
specific to other design spaces, for example we are not limited
to indoor spaces, unlike a system with controlled illuminants,
nor do we need to compute homographies for image reg-
istration, as one would for a system with multiple sensors.
With our spectrally varying filters built from polarizers and
waveplates, taking a measurement is as easy as rotating
the optical elements. Lastly, our prototype of the proposed
method is especially affordable, using only components that
can be acquired at any casual photography store, and does
not require calibration with expensive laboratory equipment.

3 IMAGE FORMATION MODEL

(Throughout this work, we denote scalars and functions in
lowercase (x), vectors in bold lowercase (x), and matrices in bold
uppercase (X)). A digital camera assigns an intensity to color
channel k at pixel p by integrating the scene’s light spectrum
with the channel’s spectral response curve ck(λ) over all
visible wavelengths Λ:

pk =

∫︂
Λ
ck(λ) r(λ) e(λ) dλ. (1)

Here, we have separated the scene into an illuminant
spectrum e(λ) and the surface reflectance spectrum r(λ)
of an object. If a filter with transmission spectrum t(λ) is
placed in front of the camera lens (or illuminant), the image
formation model becomes:

pk =

∫︂
Λ
ck(λ) t(λ) r(λ) e(λ) dλ. (2)

All linear-reconstruction-based approaches share this funda-
mental mathematical form, which we can abstract further by
condensing the above quantities into an unknown spectrum
u(λ) and a (known) measurement spectrum m(λ):

pk =

∫︂
Λ
m(λ)u(λ) dλ = ⟨m, u⟩. (3)

Typically m(λ) = ck(λ) t(λ) e(λ) and reflectance r(λ) is the
unknown u(λ) we wish to solve for. However, u(λ) could
be any of the individual quantities above (or a combination).
Likewise, any or all of the components ck(λ), t(λ), or e(λ)
could be modulated in order to vary the spectral environ-
ment and provide further information toward recovering
u(λ) (see Table 1 for a breakdown of m(λ) versus u(λ)
for prior work). On the right-hand side of Eq. (3), we
replace the integral with inner product notation ⟨·,·⟩. This
could be the inner product integral across wavelengths
or a more general inner product that first represents the
spectra in a lower-dimensional basis space. Given M
distinct measurement spectra1 m1(λ), m2(λ), . . . ,mM (λ)
and corresponding pixel measurements p1, p2, . . . , pM , the

1. All approaches that use RGB cameras inherently vary ck(λ),
producing three measurements with three separate color channels in
one capture.

aforementioned linear-reconstruction-based methods try to
minimize the following loss:

L = argmin
u

M∑︂
i=1

(pi − ⟨mi, u⟩)2 . (4)

We propose a novel approach toward deducing the
unknown spectrum whose key strength is the creation of
a continuous family of measurement spectra m(λ) of arbi-
trarily large dimensionality (Sec. 4). Given this continuous
design space, we then address how we choose discrete sets of
m(λ) in practice (Sec. 5.1). Once a set of measurement spectra
m1(λ), m2(λ), . . . ,mM (λ) are chosen and associated pixel
measurements p1, p2, . . . , pM acquired, we solve Eq. (4) by
assembling them into a linear system and finding a least-
squares solution to the unknown spectra u(λ) (Sec. 5.2).
Lastly, we discuss applications of our method to surface
reflectance (Sec. 6).

4 FILTER DESIGN

Previous work has chosen measurement components such as
sensors, illuminants, or filters from discrete sets of existing
products. While every distinct measurement provides some
information for spectral reconstruction, there is no way
to tailor the measurement devices to produce spectra that
would prove most useful or target missing information. For
example, camera response spectra tend to be very similar,
and if one did not have the benefit of laboratory calibration
it would be difficult to distinguish metameric spectra based
on subtle differences in pixel intensities.

We address this problem by introducing tunable, broad-
band spectral filters capable of creating a continuous range of
transmission spectra that can be calculated analytically. These
filters consist of waveplates, or wave retarders, sandwiched
between two linear polarizers (Fig. 2). The continuous rota-
tions of these optical elements generate a continuous space
of spectra, which grows arbitrarily large as waveplates are
added to the system. Conceptually similar to how dispersion
and diffraction transform spectral information into spatial
information, our filters transform spectral information into
polarized information (and back to spectral). We describe
the forward model that accurately predicts this optical
transformation (Sec. 4.1) and analyze the theoretical spectral
gamut that is achievable with different numbers of optical
elements and orientation measurements (Sec. 4.2). Finally,
we use a simple, greedy algorithm to prescribe a set of filter

TABLE 1: We categorize related linear-reconstruction-based
approaches according to whether the illuminant e(λ), the
filter spectrum t(λ), or camera response c(λ) are known
( ), unknown ( ), or not used (–), and whether these are
modulated in a continuous ( ) or discrete ( ) manner.

r(λ) e(λ) t(λ) c(λ)

Park et al. [8] –
Han et al. [6] –

Hidaka et al. [7] –
Oh et al. [10] –

Chi and Ben-Ezra [9]
Ours



Cuts amplitude of orthogonal
pol. component

Shifts phase of orthogonal pol.
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pol. component

(a) (b) (c) (d) (e) (f) (g)
Incoming light Linear polarizer Vertically polarized light Waveplate λ-dependent polarization Linear polarizer Outgoing light

Fig. 2: A beam of light is portrayed as a “bundle” of fibers, each with its own wavelength (color), amplitude (diameter),
and polarization state (ellipse/line in the cutaway). Incoming light (a) passes through the first linear polarizer (b), which
transmits only the polarization component of each fiber aligned with its transmission axis (c). Then, the light passes through
the waveplate (d), which causes a wavelength- and orientation-dependent phase shift – linear polarization is transformed into
another polarization state, generally elliptical polarization (e). In this illustration, long wavelengths are affected least strongly
and short wavelengths affected most strongly. Lastly, the light passes through the second linear polarizer (f), or “analyzer”,
which again transmits only the polarization component aligned with its transmission axis. The compound effect of the
optical elements together is wavelength-dependent transmission (g).

configurations that can achieve good spectral reconstructions
given a fixed measurement budget (Sec. 5.1).

4.1 Polarized light

A light wave may be linearly polarized, circularly polarized,
or elliptically polarized (the general case), corresponding
to the shape that the tip of the light wave’s electric field
vector traces as the wave propagates through space. The
polarization state of a beam of light comprised of many
individual waves can be described by a four-component
Stokes vector [42]:

s =

⎡⎢⎢⎣
s0
s1
s2
s3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
�

↔ − ↕
↕− ↕

⟲ − ⟳

⎤⎥⎥⎦ , (5)

where s0 is the total radiance, s1 is horizontal (0◦) minus
vertical (90◦) linearly polarized radiance, s2 is 45◦ minus
135◦ linearly polarized radiance, and s4 is right-hand minus
left-hand circularly polarized radiance. Each of s1, s2, and
s3 lies in the domain [−s0, s0]. The degree of polarization
(DOP) of the light can be quantified as

√
s21 + s22 + s23 / s0,

where DOP = 0 is completely unpolarized light, DOP = 1
is completely polarized light, and 0 < DOP < 1 is partially
polarized light. For example, a beam of light with radiance
= 1 that is completely unpolarized would have Stokes vector
s = [1, 0, 0, 0]

⊤, whereas light that is completely vertically
polarized would have Stokes vector s = [1,−1, 0, 0]

⊤.
A Stokes vector can be transformed into another by a 4×4

Mueller matrix, which represents an interaction of light with
a real-world material, such as a linear polarizer, waveplate,
or surface. Our filters require the Mueller matrix of a linear
polarizer at angle θ:

TLP(θ) = 0.5

⎡⎢⎢⎣
1 c s 0
c c2 cs 0
s cs s2 0
0 0 0 0

⎤⎥⎥⎦ , (6)

and the Mueller matrix of a waveplate with wavelength-
dependent phase shift Γ(λ) at angle θ:

TW(Γ(λ), θ)=

⎡⎢⎢⎣
1 0 0 0
0 c2 + s2 cos Γ cs(1− cos Γ) s sin Γ
0 cs(1− cos Γ) c2 cos Γ + s2 −c sin Γ
0 −s sin Γ c sin Γ cos Γ

⎤⎥⎥⎦,
(7)

where c = cos 2θ and s = sin 2θ. The phase shift Γ(λ) =
2π∆nd /λ depends on the birefringence ∆n of the material,
which is the difference in index of refraction between the or-
dinary and extraordinary rays, thickness d of the waveplate,
and wavelength λ. Birefringence causes the orthogonally
polarized components of light to travel at different speeds
through the material, which creates a phase delay that alters
the polarization state of the light.

We can chain together the Mueller matrices of every
optical element in the system to realize the full optical effect
of the filter:

Tf(λ; Θ
j
n) = TLP (θn)TW (Γn−1(λ), θn−1) · · ·TW (Γ1(λ), θ1)TLP (0

◦)
(8)

where there are n − 1 waveplates and the thicknesses
d1, . . . , dn−1 and angles θ1, . . . , θn−1 are tunable parameters.
The final tunable parameter is the rotation of the analyzer
θn.2 We call a particular choice j of these parameters Θj

n a
configuration of our filter design where n is the number of
degrees of freedom.

While the rotation angles are continuous variables, we
choose the thicknesses from a discrete set of existing wave-
plates. Once the parameters are chosen, the transmission
spectrum t(λ; Θj

n) of a filter can be calculated by passing
in radiance-normalized unpolarized light, s1 := [1, 0, 0, 0]

⊤,
and isolating the first Stoke’s element:

t(λ; Θj
n) = s⊤1 Tf(λ; Θ

j
n) s1. (9)

2. Since only the relative rotation of the two polarizers change the
filter’s spectrum, we fix one polarizer at 0◦ and together the two
polarizers only add one degree of freedom.



Note that t(λ; Θj
n) > 0 except in two degenerate cases: either

the waveplate produces a phase shift for λ that results in
exactly an orthogonal polarization state to the analyzer, or the
polarizers are orthogonal to each other and the waveplate
is parallel to either of the polarizers. Other than those two
cases, t(λ; Θj

n) is non-zero and provides a value that could
potentially aid in reconstruction.

This system assumes that light entering the filter is
unpolarized, otherwise the transmission calculation may
be inaccurate. We did not run into any related issues in
practice; however, special care may need to be taken around
illuminants or surfaces that can create polarization, such as
LEDs or specular reflections.

Now that we have described the analytic forward model
of our filters, we can move on to exploring the space of
transmission spectra they are able to achieve. Fig. 1 shows
example transmission spectra.

4.2 Gamut of achievable spectra
Let us first formalize the space of achievable spectra Fn.
Once a set of waveplates is chosen, there are n independent
continuous degrees of freedom: the rotation angles of the
waveplates θ1, . . . , θn−1 and the rotation angle of the ana-
lyzer θn. Fn is the space of transmission spectra t(λ; Θj

n)
induced by any possible configuration Θj

n.
Note that Fn is infinite, but compact (in the set theoretical

sense). This is easy to see since each θi ∈ Θj
n is the rotation

angle of a filter element and thus bounded in [0, 2π], and
the Mueller calculus operations that produce a transmission
spectrum are non-singular. This lets us define the spectral
gamut of Fn as a subset of the infinite dimensional space
of all possible transmission spectra, analogous to the color
gamut of a particular display, for example.

To get a sense of the number of linearly independent
spectra our filter design can produce, we investigate the
dimensionality of Fn. Note that this is not simply equal to n,
the number of degrees of freedom of our filter, because
the relation (9) between configuration and transmission
spectrum is highly non-linear. Unfortunately, it is challenging
to analytically find an orthonormal basis for Fn. Instead, we
run principle component analysis (PCA) on a discrete set
of sample spectra drawn from Fn for n ∈ 1, . . . , 100. We
define the effective dimensionality kn of Fn as the number of
linear basis functions derived from PCA that explain 99.9%
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Fig. 3: As we increase the number of waveplates, the effective
dimensionality of the space of achievable spectra increases.
This makes it possible to predict how many useful distinct
measurements a particular filter setup can provide.

of the variance in the sampled dataset. The effective basis
set is then the first kn basis functions retrieved via PCA,
f1(λ), . . . , fkn

(λ). Our empirical experiments confirm that
kn grows arbitrarily large as we add waveplates to our setup
(see Fig. 3).

Additionally, the basis functions derived from PCA
provide a convenient distance metric ∥t(λ; Θ1

n) − t(λ; Θ2
n)∥

between two elements in Fn. The Euclidean distance in
this low-dimensional space fundamentally measures how
“different” the transmission spectra produced by two distinct
configurations Θ1

n and Θ2
n are. By plotting the achievable

transmission spectra Fn in our basis space, giving us a gamut
plot as shown in Fig. 4, we can verify that spectra with a large
distance between them are, in fact, substantially different.

We have shown that the gamut of achievable transmission
is theoretically wide enough to serve as a good basis to
measure a wide range of unknown spectra. Still, it is not
obvious how to pick a discrete set of filters from Fn to most
accurately reconstruct an arbitrary measurement spectrum.
We discuss our approach to solve this problem next.

5 METHODS

5.1 Filter choice
One advantage of a system with a small discrete set of choices
is that it is straightforward to determine the optimal subset
to use. However, our system has both discrete (which wave-
plates to use and in what order) and continuous (rotation
angle) variables. If we were to run an optimization to find the

F3 at f4 = 0.2

400 500 600 700

F2

400 500 600 700

0.0

0.5

1.0

Fig. 4: In the top row we plot points sampled in F2 (left) and
from a slice through F3 (right). Recall that each point in Fn is
a transmission spectrum t(λ; Θj

n). To visualize these spectra
we plot their projection to sRGB space. F2 has the effective
dimensionality k2 = 2 and hence is easy to visualize. For
F3, k3 = 4 and we have 4 basis functions: f1, f2, f3, f4. For
visualization purposes, we choose to vary the f1, f2 and f3
components along the x, y and z-axes respectively and keep
the remaining component fixed. In the bottom row we show
the full spectra for the extreme points highlighted in the
respective spaces above. Note that the spectra are different
and we can produce a larger number of distinct spectra in
F3 than in F2.



optimal parameters that minimize the reconstruction error of
a large reflectance dataset, this would be a mixed integer non-
linear optimization problem, which are notoriously difficult
to solve and for which few solvers are readily available.
Alternately, we could chop up the continuous parameters
into discrete sets and try to run a global optimization such
as an evolutionary algorithm to find the optimal subset of
filters; however, this would be intractable time-wise since
the dataset of achievable filters is too large. For example,
[9] use an evolutionary algorithm to choose an optimal
subset of 8 to 16 theatrical filters out of 230 total, and
their optimizations ran for a few days. For our problem
this approach is not practical since even a coarse five-degree
increment discretization of a two-waveplate system would
create a dataset of 186,624 filters.

Instead, we draw from our analysis in Sec. 4.2 to devise a
simple strategy that we found is both efficient and produces
good results. Given a fixed measurement budget, we would
like to choose filters so as to fill in as much missing
information in the unknown spectrum as possible. We do this
by choosing filters whose spectra are most distant or stratified
within the space of all possible filters – a measure we can
quantify using the low-dimensional basis space described
in Sec. 4.2. This will naturally provide measurements that
are distinct from one another in different areas of the visible
spectrum, providing distinguishing information to hone our
estimate of the unknown spectrum.

We first create a large random dataset of filter candidates
(typically 5,000) and project them down to a low-dimensional
space using principal component analysis. When building
the dataset, we reject any randomly built filter with an
average transmission below 20%. Given a fixed budget
of M measurements, we run a fast, approximate, greedy
algorithm [43], [44] to find a cluster of M points in this
low-dimensional filter space that maximize their minimum
intracluster distance in Euclidean space. We first choose any
filter in the dataset, then run a search for the filter in the
dataset with the maximum distance from the initial point
and add it to our cluster. We repeat this process iteratively, at
each stage finding the filter in the dataset with the maximum
distance from all previously chosen filters, until the fixed
cluster size has been reached (see Alg. 1). The combined
runtime of both creating a random dataset of 5,000 filters and
running the greedy algorithm to choose a subset of two to
ten filters is under ten seconds.

To validate our stratified choice algorithm, we compare
the performance of its choice of filter set against 5,000
randomly chosen filter sets on the reconstruction loss of
a set of 200 noise-perturbed measurements (σ = 0.05 with
0 < p < 1) of Munsell chip reflectance spectra for up to
20 measurements (Fig. 5). We also compare to the strategy
of choosing filters whose transmission spectra produce the
lowest condition number when stacked in a matrix, which is
analogous to the choice strategies from prior work [9], [10].
Our stratified choice strategy always achieves error within
one standard deviation of the random sets, and in most
cases achieves lower error than both the lowest condition
number strategy and the lower bound of the random sets’
standard deviation. Even though there are a few cases where
the condition number strategy outperforms ours, its behavior
is highly erratic and it often yields reconstruction loss above
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Fig. 5: Reconstruction loss of a random choice strategy, lowest
condition number strategy, and our strategy for choosing
filter sets given a fixed measurement budget. For random
choice, the mean reconstruction loss over 5,000 trials is
plotted with error bars for standard deviation. Dashed best-
fit lines are shown for the lowest condition number strategy
and our strategy. Our strategy consistently achieves error
within one standard deviation of the random set, and in
most cases performs consistently better than the other two
strategies.

one standard deviation of the random sets. In contrast, our
strategy shows more pronounced improvement over both
other strategies as the number of measurements increases.
This becomes especially relevant when we take advantage
of spatial multiplexing of our filters, which allows us to take
many measurements in a single photograph. Taking several
photographs with a fixed array of filters expands the number
of measurements rapidly.

To further explore the relationship between sample strat-
ification and reconstruction loss, in Fig. 6 we calculate the
minimum intracluster distance for each of the 5,000 randomly
chosen filter sets (binned into box plots), the lowest condition
number strategy (in green), and our algorithm’s choice (in
red) and plot their reconstruction loss for fixed numbers
of measurements (M). Although the median reconstruction
loss of the random filters remains relatively steady as the
minimum intracluster distance increases, there is a clear
inverse relationship between the variance of reconstruction
loss and minimum intracluster distance. This suggests that
while our stratified choice strategy may not always achieve
the absolute lowest reconstruction loss, it is likely to be a

ALGORITHM 1: Filter Choice

Input :S, a set of filter spectra
M , a fixed number of measurements

Output :S′, a subset of S of size M
S′ ← {S[0]} // initialize S′ to any element of

S

for i = 2, . . . , M do
find p ∈ S \ S′ which maximizes minx∈S′ ||x− p||

// find the point p which is most
distant from all of the already chosen
filters

S′ ← S′ ∪ {p}
end
return S′
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Fig. 6: Reconstruction loss of 5,000 randomly chosen filter
sets (binned into boxplots) versus the filter set chosen by
our stratified filter choice strategy (in red) and a minimum
condition number strategy (in green) for several fixed
measurement budgets (M). Each filter set has been projected
down to four-dimensional space and the minimum distance
between any two points within the set is plotted on the x-axis,
which have been binned for easy comparison. Each box plot
displays the minimum, first quartile, median, third quartile,
and maximum value for the data points in that bin. The
median values of each box plot are mapped to a color scale
from purple (low) to yellow (high).

reliably good choice.
We used two-waveplate filters in all our experiments,

since we determined through experimentation that the four-
dimensional space of achievable spectra with two-waveplate
filters is sufficient for spectra recovery.

5.2 Solving for unknown spectra

In order to find the spectrum u(λ) which minimizes the
loss in Eq. (4), we transform each continuous spectrum into
a vector by sampling it at a discrete set of wavelengths.
We denote the number of elements in the resulting spectral
vector λ.

We could in theory solve for unknown spectrum u ∈ Rλ

by finding the least-squares solution to the following linear
system: ⎡⎢⎢⎢⎣

m1

m2

...
mM

⎤⎥⎥⎥⎦
M×λ

u

λ×1

=

⎡⎢⎢⎢⎣
p1
p2
...

pM

⎤⎥⎥⎥⎦
M×1

(10)

where m is any spectral measurement vector, e.g. m1 = cR⊙
t1 ⊙ e and p1 is the pixel’s red intensity value under a filter
t1 and illuminant e (⊙ is component-wise multiplication).
We denote the spectral measurement matrix on the left-hand
side of Eq. (10) as M ∈ RM×λ and the pixel vector on the
right-hand side as p. Unless we have a very large number of
measurements, this system will be underdetermined given
that λ≫M (or arbitrarily determined by the size of λ).

It is well established that real-world reflectance spectra
live in a low-dimensional space [45]. We can therefore
transform Eq. (10) into an overdetermined system by first

representing u using a set of basis vectors bi computed from
a large database of 1,250 Munsell chips using PCA:

u ≈ Ba =

⎡⎢⎣ b1 b2 · · · b8

⎤⎥⎦
⎡⎢⎢⎢⎣
a1
a2
...
a8

⎤⎥⎥⎥⎦ . (11)

Like other related works [6]–[8], [10], we choose to use the
first eight basis functions, which account for over 99.7% of
the total variance. Inserting this into Eq. (10), we obtain the
modified system (MB)a = p,⎡⎢⎢⎢⎣

m1

m2

...
mM

⎤⎥⎥⎥⎦
⎡⎢⎣ b1 b2 · · · b8

⎤⎥⎦
M×8

a =

⎡⎢⎢⎢⎣
p1
p2
...

pM

⎤⎥⎥⎥⎦ , (12)

which we can now easily overconstrain with just a few
measurements and solve for the eight unknowns in a using
least squares.

We also impose a smoothness constraint, since reflectance
spectra in the real world transition smoothly between
wavelengths, and restrict the unknown spectra to be between
zero and one (see Oh et al. [10] for details on the matrix
formulation of these constraints).

5.3 Spectral resolution

The choice of λ, the number of elements which represent
a spectral vector, will determine the spectral resolution of
the system. A natural choice is to use the spectral resolution
of the basis functions used to construct the spectra. The
basis functions for reflectances, illuminants, sensor responses,
etc. are built from real-world datasets reported in varying
spectral resolutions that must be converted to a common
resolution before they can be combined in a linear system. We
chose the lowest resolution of these sources as the common
resolution for our reconstructions, which was 10 nm intervals
in the range 400 nm to 700 nm.

5.4 White balance correction

We initially borrowed Oh et al. [10]’s method to estimate
unknown surface reflectances and an unknown illuminant
simultaneously by alternating between solving for the re-
flectances and solving for the illuminant (which follows the
same logic, just switching which quantity is known versus
unknown). However, we noticed in our initial experiments
that some of the sRGB projections of the acquired spectra
did not match the sRGB projections of the ground truth,
indicating that our system may be biased. For example, we
assume that the polarizing and clear filters have wavelength-
independent transmission, which may not hold true in reality.
To account for this bias, we developed a preprocess for white
balance correction using the known reflectance spectra of
all the ColorChecker squares. During measurement, we take
a white balance photo of the ColorChecker with the filter
optical elements aligned at zero degrees, which in theory should
allow 50% wavelength-independent transmission (the first
linear polarizer attenuates incoming unpolarized light by
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Fig. 7: Recovered Calibrite ColorChecker reflectance spectra without and with white balance correction show good
agreement with ground truth (the color of each line is an sRGB projection of the recovered spectrum). The top row shows
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compare to the errors achieved by all possible combinations of the measurement photos (box plots). No matter which photos
are used, the variance of the reconstruction loss decreases as more measurements are added.

50%). Then, instead of estimating the unknown reflectance
and unknown illuminant simultaneously, we estimate a
white balance correction factor for the unknown illuminant
and sensor responses simultaneously by alternating least
squares (using our camera model’s reported response curves
as an initial guess), treating the reflectance spectra of the
ColorChecker squares as known. Any wavelength-dependent
bias should be baked into the recovered illuminant and
sensor responses. From here, we treat the illuminant and
sensor responses as knowns and estimate the unknown scene
spectra. We show in Sec. 6 how this correction improves the
results.

6 SPECTRAL REFLECTANCE RECOVERY

6.1 Physical capture setup

We took advantage of the wide array of photography filters
designed to screw into the lenses of ordinary digital cameras
in order to build our prototype. We took all measurements
with a Nikon D5100 DSLR camera, for which the sensor
responses are reported online [46]. For linear polarizers,
we used 52 mm Hoya linear polarizing filters, which are
designed to rotate freely. We attached each of our waveplates
(described below) to a 52 mm Nikon clear filter. These clear
filters can be “rotated” by being unscrewed partway. We
labeled angles of rotation relative to the linear polarizing axis
or the fast axis in five-degree increments all around the outer
rings of each filter (see Fig. 1). These filters have threads on
both sides, allowing them to be stacked on top of one another
to create our spectral filters.

We choose to use clear packing tapes as cheap waveplates,
whose birefringent properties arise from long polymers
stretched along the length of the tape. We used two types of
tape in our experiments, Scotch Sure Start packing tape
(d = 66.04µm) and Scotch Heavy Duty packing tape

(d = 78.74µm), thicknesses reported by the manufacturer.
To calculate the birefringence of our tapes, we used the
method of Beléndez et al. [47]: we take a set of measurements
of a tape sandwiched between two linear polarizers while
illuminated by laser pointers of known wavelengths. We
provide the details of this birefringence estimation setup
in our supplemental. Using this calibration method, we
retrieved an estimated birefringence of 0.00872 for the Sure
Start tape and 0.00936 for the Heavy Duty tape.

We provide detailed instructions for reproducing our
capture setups in the supplemental material.

6.2 Recovery of ColorChecker Spectra
We validate our system by recovering the reflectance spectra
of the squares of a Calibrite ColorChecker with known
reflectance spectra [48] using measurements of the Col-
orChecker taken through 10 distinct filters chosen by our
filter choice algorithm. Our spectral reconstructions with and
without the white balance correction step are shown in Fig. 7.

Throughout, we define sum squared error (SSE) as∑︁s
i=1

∑︁λ
j=1(ui,j − ûi,j)

2, where s is the number of Col-
orChecker squares, ui is the recovered value, and uî is
ground truth. To equalize the error contribution of all the
ColorChecker squares, we also calculate the mean relative
squared error (MRSE), defined as = 1

s
1
λ

∑︁s
i=1

∑︁λ
j=1(ui,j −

ûi,j)
2/(û2

i,j + ϵ), where ϵ = 1× 10−8 avoids division by zero.
Our system is able to recover the reflectance spectra of

most of the squares faithfully, but struggles the most with
the lightest gray squares. The shape of our reconstructions
and their deviations from ground truth closely match those
of best-case-scenario reconstructions using our method in
simulation (provided in our supplemental material) and also
those of prior linear-reconstruction-based work [10], which
suggests that the error is mainly due to the inherent limita-
tions of the linear-reconstruction-based problem formulation.
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We compare our results to Oh et al. [10], who propose
a do-it-yourself hyperspectral imaging setup using three
different digital cameras. Their approach is highly related
to our own, utilizing the same mathematical framework
with the only difference being how we each create distinct
measurement spectra, m(λ). The spectra graphs in Fig. 7
show qualitatively that our reconstructions are comparable,
slightly better in some places and slightly worse in others,
than those of Oh et al. [10]. We achieve similar SSE (ours:
2.67, theirs: 2.84) and MRSE (ours: 0.148, theirs: 0.110). Our
system is less expensive (requiring just one digital camera
and the filter elements, compared to three digital cameras),
and also does not require calibrated camera response curves
or calculating image homographies for registration. On the
other hand, Oh et al. [10]’s system requires less setup by the
user.

We also look at how the error of reconstruction behaves
as we vary the number of measurement photos used (from
2 to 10) and which measurement photos are used. In Fig. 7
(right), for a fixed measurement budget M ∈ [2, 10], we
calculate the reconstruction error of up to 500 randomly
chosen sets of size M of our measurement photos (“Arbitrary
order”). The top set of boxplots shows the distribution of
sum squared error (SSE) for this dataset and the bottom set
shows the mean relative squared error (MRSE). We compare
these random permutations to the order given by our filter
choice algorithm (“Given order”) – due to the greedy nature
of our algorithm, each additional measurement adds one
new filter configuration to the already existing set. The
variance of the error amongst all possible permutations is
high initially and tails off steadily as measurements are
added to the system, converging to a steady error value
by 10 measurements. The SSE and MRSE achieved by our
choice algorithm lie consistently below the median errors,
although it does not always achieve the absolute lowest
error. This suggests that the order provided by our filter
choice algorithm is a reliably good one, and that adding
more measurements should reliably reduce the overall error.

One possible factor that may account for some combinations
of measurements performing better than others is that some
measurements may be more affected by user error, e.g. the
angle of rotation may be off.

Our supplemental material provides more analysis of
possible sources of error on reconstructions. We found
that our reconstructions are most sensitive to errors in the
estimate of tape birefringence and thickness, and relatively
insensitive to errors in angles of rotation. Therefore, it is
especially important to mitigate error when performing the
birefringence calibration step. With carefully labeled angles,
estimating the angles of rotation should not be a significant
source of error in the reconstruction.

6.3 Recovery of an Unknown Spectrum by Mosaic Filter

One drawback of attaching a single tape to each clear filter is
that it takes time to set every element of the filter stack
to the proper angle before every measurement. We can
trade off temporal multiplexing for spatial multiplexing by
creating a grid of differently oriented waveplates on a single
“mosaic” filter. This technique allows us to create a single-shot
approach, where many measurements can be taken with
one photograph at the cost of the unknown spectrum of
interest needing to span the field of view. We demonstrate
using a mosaic filter with nine waveplate configurations to
acquire the reflectance spectrum of a Monstera deliciosa leaf
in Fig. 8. We show the resulting set of nine measurements
for a range of analyzer angles in the top row, illustrating
the kaleidoscope-like morphing of colors as the analyzer is
rotated. The reconstructed spectra that result from using each
measurement photo individually as a single-shot strategy
are shown in Fig. 8 (bottom-right, thin lines), as well as a
multi-shot reconstruction that uses all measurement photos
together, rotating the analyzer from 0◦ to 180◦ in increments
of 10◦ (bottom-right, thick line). The recovered reflectance
spectra clearly mirror the known absorption spectra of
chlorophyll a and chlorophyll b, the dominant pigments
in green plant leaves, whose absorption is minimal between
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500 and 600 nm [49]. The single-shot reconstructions are
smoother than the multi-shot reconstruction, demonstrating
that as more measurements are added to the system, the
relative importance of the smoothing term in the linear
system decreases. We leave the development of an adaptive
smoothing term that compensates for this effect to future
work.

One could extend this method to efficiently take even
more measurements by, for example, taking a video of the
continuous rotation of the analyzer and extracting the frames,
or shrinking the grid size to fit more waveplate squares on the
clear filter. Following that thought to its extreme, one could
imagine creating a Bayer-like mosaic where the grid is on the
scale of the camera sensor pixels. This would overcome the
limitation of needing the subject to span a large portion of
the image.

6.4 Recovery of Unknown Scene Spectra and Relighting
One application of hyperspectral imaging is relighting:
separating a scene’s spectra from its illuminant in order
to visualize it under a different illuminant. Relighting also
provides a layer of validation for our method in that we
would expect to be able to “relight” our retrieved spectra vir-
tually under the given spectrum of any arbitrary illuminant
and have it match a captured image of the same scene under
that illuminant.

For this relighting experiment, we first took 10 measure-
ments of a scene using the filter configurations provided
by our filter choice algorithm under warm LED lights.
While we could use our white balance method described
in Sec. 5.4 to estimate the sensor responses and illuminant
simultaneously, there is no reliable way to control where
the spectral correction factors are distributed among the
estimated spectral responses or illuminant – this does not
matter for the purposes of retrieving the reflectance spectra,
but in this case we need to distribute any such corrections
into the sensor responses and leave the illuminant spectrum
unaltered. Therefore, we acquire a ground truth illuminant
spectrum with a Sekonic C-7000 SpectroMaster spectrometer
and estimate sensor responses, along with any necessary
correction factor, using this ground truth illuminant. We
downsized each measurement photo to 205×309 and solved
for the reflectance spectra at each pixel, treating the ground
truth illuminant and estimated sensor responses as known.
We then relit the scene both in simulation and in real life to
assess the accuracy of our reconstructions.

The results of our relighting experiment are shown in
Fig. 9. We tried to use a variety of illuminants in order to test
the robustness of our reconstructions – their emission spectra
acquired with our spectrometer are shown in the leftmost
column, normalized to their maximum value. For reference
images, we took an image of our scene without any filters



over the camera lens under each illuminant. We tried as much
as possible to place the light sources in the same position
relative to our scene, although the original measurement
photos were taken under more spatially distributed overhead
lighting and create less intense highlights and shadows.
For our virtually relit images, we projected the product of
the illuminant spectrum and our reconstructed reflectance
spectra to RGB using our estimated sensor responses. The
absolute difference in pixel value between the reference and
relit images (averaged among color channels) is shown in
the rightmost column. We adjusted the relative intensities
of the ground truth illuminant spectra to match the relative
exposure times of the reference images when performing the
relighting. The top row relights the scene using the original
illuminant used for reconstruction, and gives an idea of the
minimum possible error our method could achieve – the
agreement is very good, with only slight error at silhouette
edges and highlights. The rest of the images clearly show
slight differences in the locations and intensities of highlights
and shadows, and much of this difference can be attributed
to the physical shapes, locations, and intensities of the light
sources varying between photos. Generally, the colors and
their relative intensities match well between the reference
and relit images.

7 DISCUSSION, LIMITATIONS, & FUTURE WORK

We presented an approach for do-it-yourself hyperspectral
imaging utilizing a novel design for broadband spectral
filters that transform spectral information to and from
polarized information. These spectral filters, comprised
of polarizers and waveplates, can be tuned to produce a
continuous range of transmission spectra simply by rotating
their optical elements. We showed that the dimensionality of
the space of achievable transmission spectra grows arbitrarily
large as waveplates are added to the filter, and we addressed
the practical aspects of choosing a set of filters from this
continuous space to use for measurements.

While our choice of filters from a continuum is reasonable
and fast, it does not always achieve the global minimum
reconstruction loss when compared to a large random set.
Exploring other strategies for filter choice that perform better
in a reasonable time frame would be useful not only for
this particular system, but other linear-reconstruction-based
methods that choose measurement spectra from discrete sets.

We also noticed some chromatic aberrations toward the
outer edges of our filters that suggest the transmission
spectrum may not be homogeneous throughout. We suspect
this is due to light toward the edges of the filter entering at
an angle, violating our assumption of light entering normal
to the filter plane, which would cause it to doubly refract.
Further investigation via realistic rendering of birefringent
materials may yield insights into why this occurs.

Lastly, while we demonstrated the validity of our filter
design on a low-cost prototype, our design would be equally
valid using polarizers and waveplates of any quality. The
mechanism of our filters is highly related to how LCDs work
– each pixel consists of a liquid crystal sandwiched between
two polarizers whose polarizing properties are altered with
rapid electrical signals. Using liquid crystals with voltage-
modulated properties would turn the discrete choice of

waveplate properties into a continuous parameter that would
further expand the space of achievable spectra. Adapting
such a setup for our use case could allow for acquisition
speeds well beyond mechanical limits and also allow pixels to
operate independently of one another, perhaps coordinating
to gather different sets of information in parallel (see [40]
for an example of this in concurrent work). Our framework
opens up many exciting avenues for further exploration that
are variations of our core concept with varying hardware
implementations.
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