Convergence Analysis for Anisotropic Monte Carlo Sampling Spectra:

Supplementary Material

GURPRIT SINGH and WOJCIECH JAROSZ, Dartmouth College

ACM Reference format:

Gurprit Singh and Wojciech Jarosz. 2017. Convergence Analysis for Anisotropic

Monte Carlo Sampling Spectra: Supplementary Material. ACM Trans. Graph.
36, 4, Article 137 (July 2017), 22 pages.
DOI: 10.1145/3072959.3073656

1 SAMPLING POWER SPECTRA

Monomial approximation of radial power spectra. In this sec-
tion, we analyze the convergence tool proposed by Pilleboue et al.
[2015] and describe the notion behind confining the low-frequency
region of the expected power spectra to o 4N frequency. We start by
analyzing the regular sampling power spectrum. As shown in Fig. 1,
for N regular point samples in 1D the corresponding power spec-
trum in Fig. 1(b) contains replicas of the DC line, which is at the
center of Fig. 1(b). These replicas (aliases) are N (frequency) distance
away from the DC peak along the vertical axis (i.e. at v, = N). Now,
if we consider a 2D regular grid samples, the corresponding ex-
pected power spectrum contains only high energy peaks (no lines),
and the distribution of peaks is such that the horizontal and the
vertical location of the first peak (replica) from the DC component
is exactly at frequency VN. This idea can be generalized to higher
dimensions where the first peak is present at a frequency ¥N along
the canonical axes. This explains the fact why the regular sampling
power spectrum contains less and less peaks in the low frequency
region around the DC component as we keep increasing the number
of point samples.

This notion can be generalized to jitter and other stochastic (blue
noise) samplers, where the first peak in the jitter and/or blue noise
samplers can be obtained at a distance & YN from the DC compo-
nent, where & > 0. Note that, the « variable can be used to align
all different radial sampling power spectra such that in the low-
frequency region they all can be categorized, in an unbiased fashion,
according to their radial behavior.

Now, for our analysis, we normalize the frequency components
(v;) of the d-dimensional power spectrum with YN, which allows

us to write the Ps(v) in the normalized frequency form Pg ( v )
a YN

As aresult, we can represent the low-frequency region of the power
spectrum for different samplers in a unit region as illustrated in Fig. 2,
irrespective of the number of point samples N used to compute the
power spectrum. In general, higher the number of samples used
to compute the sampling power spectrum, the more accurate this
representation would get for a given power spectrum.
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(a) 1D point samples (b) Power spectrum of (a)

(c) 2D point samples

(d) Power spectrum of (c)

Fig. 1. Regular grid sampling pattern (first column) is shown with the
corresponding expected power spectra (second column) for both 1D (top
row) and 2D (bottom row) dimensions. In 1D, the first replica in the expected
power spectrum of regular samples is located at a frequency N from the
DC component, where N is the number of samples used to generate the
spectrum. In 2D, the first replica (peak) is located at a frequency VN from
the DC as shown in (d).

Monomial radial profile. To obtain the generalized monomial
profile for point samples, we first consider the case of jittered sam-
ples. The unnormalized power spectrum for jittered sampling power
spectrum can be written as:

N? DC component
(Ps(v)) =
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—
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N|1- l—[ Sinc(7v;)?| otherwise
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whereas, the fully normalized power spectrum can be written as:

1 DC component

Psv) =41
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—l1- l_[ Sinc(7v;)?| otherwise (
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Note that, if we consider samplers that generate the same number of
N samples at each realization, the corresponding fully normalized
sampling power spectrum would have its DC component value
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Fig. 2. The radial curve is scaled using a parameter so that the low-
frequency region could be well confined within the unit radial power axes.
Note that, once the a value is adjusted, for any number of samples, the
corresponding radial power spectrum would not scale with N, given that
we normalize the radial frequency variable p by ¢N.

equal to 1, as shown in Eq. (2). Jittered sampler belongs to this class
of samplers and, therefore, the variance due to jittered samples does
not depend on the DC component. Therefore, we are only interested
in the expected power spectrum at frequencies other than DC, which
for jittered samples in d-dimensions is provided in Eq. (2) as follows:

d
(Ps(v) = % (1 - ]_[Sincwwﬁ) (3)

where v; is the i-th dimension of frequency vector v. Pilleboue
et al. [2015] proposed a theoretical tool that allows to write the
(1 - H? Sinc(ﬂ'vi)z) term from Eq. (3), in the following radially
averaged form:

b
Yp - v<a¥N
=1ab YN :

Y otherwise

4

where p > 0 is the radial frequency and b = 2 for jitter sampling
pattern [Gabrielli and Torquato 2004; Torquato et al. 2006]. Substitut-
ing Eq. (4) for (1 - ]_[? Sinc(n’vi)z) in Eq. (3), we get the generalized
expected power spectrum form, which in radial frequency terms
can be written as follows:

b

o
(Ps(p)) = IN'N : )
Y otherwise

N

where Ps(-) represents the radial power spectrum. Note that, the
extra ﬁ factor in Eq. (5) is due to the factor 1/N in Eq. (3). This
generalized polynomial form of the expected sampling power spec-
trum is the same as the one proposed by Pilleboue et al. [2015], with
the only exception that in this case (Eq. (5)) we are using a fully
normalized power spectrum that gives an extra % factor in this
form.
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2 VARIANCE FORMULATION IN DISCRETIZED FORM

Following the variance formulation proposed by Pilleboue et al.
[2015]:

vartin) = [0 [ Pstom) pyomands. @

where p represents the radial component and n is a unit-length
vector residing on the (d —1)-dimensional sphere S?~! representing
the angular component of the frequency vector v = pn.

If we swap the order of integration as shown below:

varti) = [ [ s om) Py omdpan. ()

the inner integral correspond to the integration over all the radial
frequencies for a given direction n, whereas, the outer integral
corresponds to integration over all the directions. Lets denote the
inner integral as a function of n:

R = [ Psomy Py iy ®)

By using the linearity principal of definite integrals, we can rewrite
the outer integral in the variance formulation in the following form:

n; n,
Var (In) =](; Rgo(nl)dn+f Ry (ng) dn + ...
n

nm
+ f Ry () dn, ©
Nyp-1

where we can assume ny = 0 to ensure that the integral is over
a closed hypersphere (In 2D, n,, = 360° = 0°). For m — oo, the
domain of integration for each integral becomes infinitesimally
small. In the context of true infinitesimal calculus [Keisler 2012], we
can rewrite the above integral in the following form:

Var(Iy) = Ry’ (n1) Any + Ry°(n2) Ang + ...
+ Rgo(nm) Ang, , (10)

with m — oo, where the Ans doesn’t need to be of the same size.
This allows us to rewrite the variance formulation in the following
form:

m
Var(Iy) = lim ZR3°(H)Anm 11)
m—0oo
k=1

m oo
Var(iy) = fim ) [ Ptom) Pr(pmdpan, (12
which is the form proposed in Eq. (9) in the main paper.

3 SUM OF BIG O(-) NOTATIONS

For completeness sake, we show a proof of the following statement
(more details [Cormen et al. 2001]):

O(p(N)) + O(g(N)) = O(max(p(N), q(N))) (13)

where,
O(p(N)) =Cip(N) ¥ N = My, (14)
O(q(N)) = C2q(N) ¥ N 2 Mj. (15)
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where, C; > 0,Cy > 0 and M; € Z* /0 Now, consider M = My + My
and C = max(Cy, Cz2). By adding Eq. (14) and (15), we get:

O(p(N)) + O(q(N)) = C1p(N) + C2q(N) (16)
< C(p(N) +q(N)) (17)
< 2Cmax(p(N),q(N)) (18)

which implies:

O(p(N)) + O(q(N)) = O(max(p(N), q(N))) (19)

O

4 DETAILED PROOF: CONVERGENCE FROM SINGLE
DIRECTION

To show that the overall convergence rate of a sampling pattern
can be obtained from a particular direction of its sampling power
spectrum, we start by splitting the variance integral from Eq. 9 from
the main paper in-parts as follows:

Var(iy) < [ 51 (P (on)) Py (pma)dpoms
> [ f P (Ps(pnr)) Pr(png)dp| Ang,  (20)
k=2 VO

where, we have partitioned the summation by writing out one of
the direction from the rest of the m directions. Following Eq. (11)
from the main paper, we divide the integral over the rest of the m—1
directions in the low and high frequency regions while keeping the
first direction as it is:

Var(iy) < [ 5" (P (om) Py (pm)dpony
m Pk
- [ [Tt pstomn Promdn
k=2 LY0

+ f P (Ps(pni)) Prlpni)dp| Ang. (21)
Pk

Lets assume that the sampling power spectrum has a constant en-
ergy over the whole radial frequencies in the differential cone An;.
As aresult, ny direction can be approximated by a constant radial
profile (by = 0), whereas, for all other directions we assume to have
anon-zero monomial behavior (b > 0) in the low frequency region.
By plugging in the constant profile (Ps(v) = y/N), along direction
n; we can rewrite the whole integral as:

Var(IN)<f pd
0

m
directions

p
c | [ sy promod
k=2 0

v [ o s on) Prondp B (22
p

k

-1 %Pf (pny)dpAny

Here, the first integral in n; direction doesn’t depend on N. There-
fore, irrespective of what the underlying integrand f is, the integral

can be approximated by O(N _1) resulting in:

var (i) < 0( ;) + i[ [T o) 2y ondp

+ f P (Ps(pny) Pf(pnk)dp] Ang. (23)
Pk

To solve the integrals over the other m directions, we consider a
best and a worst case (from Eq. 10 from the main paper) for a given
class of functions [Brandolini et al. 2001, 2003] and use it directly
for P¢. Similarly, for the sampling power spectrum g, we insert
the monomial radial profile of degree by > 0 in the above equation
(Eq. 12 from the main paper). The resulting variance integral for the
worst case can be rewritten in the following form:

Cd1Vk | —d-1
LA A 24
+fpp NP dp] ng (24)
1 cr & po Hbr+d-1
- 0(—) L f 4
N N &\Jo  (apNg)be
f 7 ———dp +fp_2dp
Po Okak) k Pk

Here, py = ay Ni, which after plugging in above equation gives:

Ang. (25)

O(NNk) +O(N) by > 1

Since, the sum of O(-) notations is asymptotically dominated by the
worst O(-) behavior (Sec. 3). We can write the overall convergence
rate, using Eq. (26), in the following form:

Var(Iy) < 0(%) : 27)

This shows that, the asymptotic convergence rate of a sampling
pattern, with anisotropic sampling power spectra, is dominated by
the direction that has a constant radial behavior (which results in
the O(1/N) convergence rate). However, if none of the directions
has a constant profile behavior, the overall convergence rate can be
summarized from Eq. (26) in the following form:

Io) ( 1 ) Q< br<1
Var(Iy) < | \NNie ) infimum (28)
N_Nk) b =21

where, the overall convergence rate would be dominated by the k-th
direction having the minimum value of by, for by € (0, 1). Similarly,
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for the best case:

Var(I )<()(i) +i fpo d-1Yk [ _P by WA 9)
ariiN N 4o Po N N | SR
1 cr po Hbr+d-1
:0(—)+Yk fZU L —dp|ane.  (30)
N N k=2 0 (aka) k
implying:
UL 1 1
Var(Iy) <3 O —— +0(—), 31
r(In) kzz (NNkbk) N (31)

where, by > 0. Again, since the sum of O(-) notations is asymptoti-
cally dominated by the worst O(-) behavior. The overall convergence
rate is:

Var(Iy) < 0(%) (32)

However, from Eq. (31), if none of the directions has a constant
profile behavior, the overall convergence rate would be dominated
by the k-th direction having the minimum value of by, and can be
written in the following form:

1 b >0
Var(In) < O(NNkbk ) v (33)

infimum

]
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Fig. 3. Top row: (a) The expected power spectrum of multijittered samples with N = 256 samples is shown which has hairline anisotropic structures along the
canonical axes. This is because along the canonical axis the radial behavior has jittered profile with Ni = N = 256 strata whereas, along all other directions the
radial behvior has jittered profile with only Ni. = VN = 16 strata (blue vs. red arrows). Radial averaging (radial mean) masks the good anisotropic properties of
the sampler along the canonical axes. (b) The expected power spectrum of jittered samples is shown on the left side whereas the logarithmically scaled values
of this spectrum are shown on the right to emphasize the anisotropic structures present in the jittered spectrum. Middle and bottom row: The expected
power spectra and the corresponding expected radial mean spectra of jittered, multijittered, N-rooks and the correlated-multijittered sampling patterns is
shown. As we can see, jittered and multijittered have identically looking radial mean shape despite the dark cross region in the multi-jittered spectrum.
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XY uv XU YV

Stratified2d

Multijitter

Correlated-Multijitter

Stratified4d

N-rooks

Fig. 4. The expected power spectra is shown for different samplers which is computed using N = 4096 samples for randomly shuffled jittered (Stratified2d,
which is also known as uncorrelated jitter) sampler, randomly shuffled multijittered, randomly shuffled correlated-multijittered and Stratified4d (jittering
directly in 4D). The uncorrelated jittered sampling (which we refer to as random shuffling) involves sampling the original 2D subspaces (XY & UV) with
jittered samples and then connecting these two subspaces with random shuffling to form a 4D sampler. The same task can be performed for multjittered and
correlated-multijittered samples. In the mixed dimensions (XU, and YV) multijittered and correlated-multijittered exhibits the Latin-hypercube behaviour in
their power spectra. Latin-hypercube sampling power spectrum is also shown in the bottom row.
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XY uv XU YV

Sobol (not scrambled)

Halton (not scrambled)

Fig. 5. The expected power spectra for Sobol and Halton samplers is shown for the first four dimensions along different 2D projections (XY, UV, XU, YV).
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Fig. 6. Pixel 2: Here we illustrate the 4D light field for Pixel 2 of Fig. 7 from the main paper. The object behind Pixel 2 is rendered from different (u, v)
locations on the lens. These rendered images are tiled together with the center tile showing the image rendered from the center of the lens (u = 0, v = 0).
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Fig. 7. Pixel 2: Here we illustrate the inversely sheared 4D light field for Pixel 2 of Fig. 7 from the main paper, after tororidal wrapping. The original light
field is shown in Fig. 6. The object behind Pixel 2 is rendered from different (u, v) locations on the lens. These rendered images are tiled together with the
center tile showing the image rendered from the center of the lens (u = 0, v = 0), which is not affected by the shear.
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Fig. 8. Pixel 2: Slices in the mixed (XU and YV) dimensions are shown before and after inverse shearing the light field. XY is the image plane and UV is the

XU slices

XU slices sheared

YV slices

YV slices sheared

lens space.
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Fig. 9. The Cornell Box scene is rendered with no defocus blur to illustrate the high frequency texture underneath each pixel of each object (plane or disk)

that is generated using perlin noise. This scene is used in the main paper to investigate the impact of shearing the samples on the variance convergence rate
for the depth-of-field effect.
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Fig. 10. Point sets generated with N = 1024 samples for randomly shuffled jittered (Stratified2d, aka uncorrelated jittered), randomly shuffled multijittered,
randomly shuffled correlated-multijittered samplers. Stratified4d (jittering directly in 4D) is shown with N = 1296 samples. The corresponding expected
power spectra for each projection is shown in Fig. 4.
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Stratified2d

Multijitter

Stratified4d Correlated-Multijitter

N-rooks

Fig. 11. The XY coordinates shown in Fig. 10 are sheared w.r.t. the UV coordinates. As a result, the XY projection samples look less uniform due to the shearing
of the underlying stratification. The UV projection is unaffected since no transformation is applied on this projection.
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(a) (b) Pixel P (c) Pixel Q

Fig. 12. Bathroom scene:. We render a bathroom scene with a point light source and a finite size lens to ensure 4D underlying integral (due to depth of field
only) in each of the pixel. In the variance plots in (b) and (c) we do not observe any major improvements with existing samplers even after shearing because all
the pixels in this scene have varying depth. This results in a wedge shaped frequency content for all of the pixels. Since existing samplers have only hairline
anisotropy, the alignment between these low energy hairline structures w.r.t. the high energy wedge spectrum of the integrand (after shearing) is not enough
to get any variance or convergence improvement.
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Fig. 13. Pixel 2: Here we are illustarting the improvements in variance and convergence rate after shearing the samples for the Cornell Box scene which is
rendered with defocus blur (see Fig .7 of the main paper). Random sampler plot is shown for reference.
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Fig. 14. Pixel 3: Here we are illustarting the improvements in variance and convergence rate after shearing the samples for the Cornell Box scene which is
rendered with defocus blur (see Fig .7 of the main paper). Random sampler plot is shown for reference.
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Fig. 15. Pixel 4: Here we are illustarting the improvements in variance and convergence rate after shearing the samples for the Cornell Box scene which is
rendered with defocus blur (see Fig .7 of the main paper). Random sampler plot is shown for reference.
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Fig. 16. Pixel 5: Here we are illustarting the improvements in variance and convergence rate after shearing the samples for the Cornell Box scene which is
rendered with defocus blur (see Fig .7 of the main paper). Random sampler plot is shown for reference.

Variance Variance Variance Variance
Stratified2d-shear ON-") | Stratified2d-shear - Multijitter-shear | s CorrelatedMJ-shear
Multijitter-shear O(N~"2%)
1072 CorrelatedMJ-shear O(N-"-3%) 1072 1072 1072
LHC-shear O(N™")
Stratified4d-shear
Halton-shear O(N~"%)
1075 Sobol-shear O(N-'5) 10 5F 1075 1075
10°¢ 10°® 1078 1078
— Stratified2d-noshear O(N™}*
— Multijitter-noshear O(N-")
11| — CorrelatedMJ-noshear O(N") “ i »
107" __ | HC-noshear O(N-") 107 107 107
— Stratified4d-noshear .
— Halton-noshear O(N~"") — Random — Random — Random
— Sobol-noshear O(N-'1) — Stratified2d-noshear — Multijitter-noshear — CorrelatedMJ-noshear
1 10 100 1000  10* 10° 104\l 1 10 100 1000  10* 10° 104\‘ 1 10 100 1000  10* 10° 104\‘ 1 10 100 1000  10* 10° 104\‘
Variance Variance Variance Variance
-------- LHC-shear ---oe- Stratified4d-shear -------- Halton-shear «ueeees SObOI-shear
1072 1072 1072 1072
1075 1075, 1075 1075
1078 10°® 10°® 10°®
107" 107" 107" 107"
— Random — Random — Random : — Random
— LHC-noshear — Stratified4d-noshear — Halton-noshear — Sobol-noshear
1 10 100 1000 10* 10° 104\l 1 10 100 1000 10* 10° 104\‘ 1 10 100 1000 10* 10° 104\‘ 1 10 100 1000 10* 10° 104\‘

Fig. 17. Pixel 6: Here we are illustarting the improvements in variance and convergence rate after shearing the samples for the Cornell Box scene which is
rendered with defocus blur (see Fig .7 of the main paper). Random sampler plot is shown for reference.
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Fig. 18. Pixel 7: Here we are illustarting the improvements in variance and convergence rate after shearing the samples for the Cornell Box scene which is
rendered with defocus blur (see Fig .7 of the main paper). Random sampler plot is shown for reference.
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Fig. 19. Pixel 8: Here we are illustarting the improvements in variance and convergence rate after shearing the samples for the Cornell Box scene which is
rendered with defocus blur (see Fig .7 of the main paper). Random sampler plot is shown for reference.
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Fig. 20. Pixel 9: Here we show the variance plots for Pixel 9 (with one occluder) for the Cornell Box scene shown in Fig. 11 of the main paper. Top two rows
show convergence improvement when shearing is performed with respect to the minimum depth. Bottom two rows show convergence plots when shearing
is performed w.r.t the maximum depth in the pixel.
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Fig. 21. Pixel 10: Here we are illustarting the improvements in variance and convergence rate after shearing the samples for the Cornell Box scene which is
rendered with defocus blur (see Fig .7 of the main paper). Random sampler plot is shown for reference.
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Fig. 22. Pixel 11: Here we are illustarting the improvements in variance and convergence rate after shearing the samples for the Cornell Box scene which is
rendered with defocus blur (see Fig .7 of the main paper). Random sampler plot is shown for reference.
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Fig. 23. Pixel 12: Here we are illustarting the improvements in variance and convergence rate after shearing the samples for the Cornell Box scene which is
rendered with defocus blur (see Fig .7 of the main paper). Random sampler plot is shown for reference.
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Fig. 24. Pixel 13: Here we are illustarting the improvements in variance and convergence rate after shearing the samples for the Cornell Box scene which is
rendered with defocus blur (see Fig .7 of the main paper). Random sampler plot is shown for reference.
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Fig. 25. Pixel 14: Here we are illustarting the improvements in variance and convergence rate after shearing the samples for the Cornell Box scene which is
rendered with defocus blur (see Fig .7 of the main paper). Random sampler plot is shown for reference.
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