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In this document, we provide additional proofs and results to support
the theory presented in the main paper.

1. Additive expected power spectra

If we have two uncorrelated random variables (MC line estimators
in different directions using uncorrelated sample locations), then
their variances are additive. To mathematically represent the same in
the Fourier domain, we start by rewriting the Monte Carlo estimator
as a weighted sum of estimators over all m directions:
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where Py, is a sampling function along the k-th direction for Ny
samples and N = Y} | N; and Nj. This also let us write the sampling
function as:
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If we take the Fourier transform of this sampling function, then by
using the linearity property of the Fourier transform we get:
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Following the variance formulation from Eq. (4), from the main
paper, we would like to obtain the power spectrum of Py—which is
a weighted sum of sampling functions Py,—to write the variance.
We here claim that for uncorrelated random variables, we can write
the expected power spectrum of a sum of random variables as a
(weighted) sum of individual power spectra. In our case, for uncor-
related multiple directions, we can write the expected line sampling
power spectrum as a weighted sum of power spectra along each
individual direction, that is:
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Proof: We rely on the property that: the autocorrelation (R(7))
of the sum of two completely uncorrelated functions (the cross-
correlation is zero over all t) is the sum of the autocorrelations
of each function separately. Let us denote any two uncorrelated
(random variables) functions as g;(-) and g5 (), such that, the auto-
correlation of the sum of these two functions can be written as:

Rg11,(T) = R, (T) + R, (7) (6)

Using the addition theorem [Bra00], the Fourier transform of the
sum of two such functions can be written as:
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which implies that if we take the Fourier transform of (6), we obtain:
FRoyrey V) = TR, (V) + TRy, (V) - ®)

Since the power spectrum (7P) of any function g(-) is equivalent to
the Fourier transform (F) of the autocorrelation of g(-) (autocorre-
lation theorem [Bra00]), we can write:

Pg(v) = Fr,(V), )
Pg1+82(V) = TRy, ., (V) (10)

Using (8), we can rewrite above equation as:
Pgi+82(V) = Fr,, (V) + FR,, (V). (11

Using (9):

Pg1+g2(v) =Pgi1(v) +Pga(V) (12)
By taking the expected mean (-} of the above equation, we obtain:
(Pg1+82(v)) = (Pgi(v) +Pga(v)) (13)
= (Pg1(v)) +(Pg2(v)), (14)

where we use the linearity property of the expectation operator.
This shows that the expected power spectra of two uncorrelated
variables (functions) can be added. In our case, the expected power
spectra in multiple directions can be added together to obtained
the expected power spectrum of all the directions together, given
that all directions are generated in an uncorrelated fashion. Any
scaling factor associated to the Fourier spectrum gets squared while
computing the power spectrum which explains the N,g /N2 factor
in (5) and in the main paper (Eqgs. 16 and 17). O
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2. Theoretical convergence analysis

In the main paper, to derive theoretical convergence rates we restrict
our integrands to integrable functions of the form f(x)xq (x) with
f(x) is defined in Q, a bounded domain, with smooth boundary
(where o (x) is a characteristic function of Q) [BCTO1]. This can,
however, be extended to arbitrary bounded convex regions [BHIO3].
The worst case from this class of functions exhibits the power fall-

off of the order O (pf(dﬂ)) where p > 0 is a radial frequency.

Best and Worse case: To obtain the best and worse case conver-
gence rate for various samplers we first fix our integrand power
spectrum ’Pf(pnk), along each direction ny, to have the form:

c < Po,
pjl’g(Pnk)—{fp Po

0 otherwise.,

c < po,
andP}ly(pnk)—{.f it P <Po

cpp”©7 otherwise
5)

where 73}3 represents the best case power spectrum, P)ZV power

spectrum, ¢y > 0 is a constant and py € R™ /0 is finite. Note that,
in the main paper we may drop the superscripts for brevity and refer
implicitly to the case (best or worst) we are studying. These worst
and best case defintions are used to analytically derive convergence
rates for different sampling patterns by Pilleboue et al. [PSC*15].
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Figure 1: Points, Segments & Lines: The ambient occlusion rendered with points, segments (of length=1 radian) and line samples in the top
row. The reference is generated with N = 1024 line samples, the other images in the first row are generated with N = 4 samples. The bottom
row illustrates the impact of segments and lines over point samples on the convergence rate for Pixel A marked in red.
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Figure 2: Segment sampling (Pixel A): We compare the impact of segment lengths on the variance convergence rates while performing
MC integration using segment samples for the ambient occlusion scene from the main paper (Fig.7). Top two rows: Increasing the length of
segments does not affect the overall convergence for random and jittered samples. However, for 02Sequence sampler segment samples the
convergence rate is improving with the increase in length and with length = T (which is equivalent to line sample) it behaves exactly like line
samples. This can be explained from the fact that 02Sequence sampler has denser stratification in both 1D and 2D. As a result, segments
restrict the integrand energy more in the horizontal direction, thereby, aligning the integrand spectrum anisotropy more closely to the sampling
spectrum anisotropy [SJ17]. Bottom two rows: When sampling with uniform solid angle or cosine weighted solid angle, the fireflies introduced
due to the sin 0 and cos 0 terms in the MC estimator (see Eq. 25 in the main paper) makes the variance go haywire for long segments, however,
with small segments the sin® and cos 0 terms still balance the numerator terms thereby converging without any kinks in the plots.
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Figure 3: Visualizing Monte Carlo estimator for individual pixel with line segment sampling: In the top row, the renderings are generated
with N =9 jittered samples. The Monte Carlo estimator (Eq. 25 of the main paper) for pixel A is computed for point and segment samples
from various distributions and visualized in random number space (0, 1)2. The vertical axis correspond to © € [—n/2,1/2) and the horizontal
axis correspond to ¢ € [0,) in spherical coordinates. As the line segment length increases from 0.001 radians to T radians, the integral
gets pre-filtered with segment samples and tend to be a 1D function. At a segment length of ~, the integral becomes 1D function but only
with uniform spherical coordinate sampling for which the pdf is a constant term. For other pdfs (bottom two rows) we do not observe a 1D
function since the sin® term (in the case of uniform solid angle) and the cos0sin® term (in the case of cosine weighted solid angle) in these
pdfs—unlike point samples—does not cancel out in Eq.25 of the main paper:
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Figure 4: Segment sampling spectra (Pixel A): Fourier power spectrum computed with 16384 regular grid samples for integrand underneath
Pixel A for point samples in (a) and for segments with different length in (b,c,d). Since the integrand is convolved verrtically with finite length
segment samples the power spectrum varies less and less vertically with an increase segment length and becomes 1D for | = .
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Figure 5: Visualizing fireflies for line segment sampling: Above we show our scene rendered with various sampling methods. Observe that
for uniform solid angle sampling and the cosine weighted solid angle sampling, the rendering contains fireflies. This is a result of the effects of
the sin and cos terms in the denominator of the Monte Carlo estimator (Eq. 25 in the main paper) which doesn’t cancel out with the numerator
for segments. We also visualize the integrand underneath Pixel A in Fig. 3 to further analyze these fireflies.
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