
Fourier Analysis of Numerical Integration in
Monte Carlo Rendering: Theory and Practice

Understanding estimation error in Monte Carlo Image Synthesis

Kartic Subr, Gurprit Singh and Wojciech Jarosz



Copyright c© 2016 held by the owner/author(s)
SIGGRAPH 2016 COURSES, JULY 24-28, 2016, ANAHEIM, CA.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
third-party components of this work must be honored. For all other uses, contact the Owner/Author.
ACM 978-1-4503-4289-6/16/07.
http://dx.doi.org/10.1145/2897826.2927356

http://dx.doi.org/10.1145/2897826.2927356


Abstract
Since being introduced to graphics in the 1980s, Monte Carlo sampling and integration has become
the cornerstone of most modern rendering algorithms. Originally introduced to combat the effect
of aliasing when estimating pixels values, Monte Carlo has since become a more general tool
for solving complex, multi-dimensional integration problems in rendering. In this context, MC
integration involves sampling a function at various stochastically placed points to approximate an
integral, e.g. the radiance through a pixel integrated across the multi-dimensional space of possible
light transport paths. Unfortunately, this estimation is error-prone, and the visual manifestation of
this error depends critically on the properties of the integrand, placement of the stochastic sample
points used, and the type of problem (integration vs. reconstruction) that is being solved with these
samples.

We describe how errors present in rendered images may be analyzed as a function of the
spectral (Fourier domain) statistics of the underlying sampling patterns fed to the renderer. Fourier
analysis, along with the Nyquist theorem, has long been used in graphics to motivate more intelligent
sampling strategies which try to minimize errors due to noise and aliasing in the pixel reconstruction
problem. Only more recently, however, has the community started to apply these same Fourier
tools to analyze error in the Monte Carlo integration problem. Loosely speaking, in the context
of rendering a 2D image, these two problems are concerned with errors introduced across pixels
(reconstruction) vs. the errors introduced within any individual pixel (integration). In this course,
we focus on the latter, and survey the recent developments and insights that Fourier analyses have
provided about the magnitude and convergence rate of Monte Carlo integration error. We provide a
historical perspective of Monte Carlo in graphics, review the necessary mathematical background,
summarize the most recent developments, discuss the practical implications of these analyzes on the
design of Monte Carlo rendering algorithms, and identify important remaining research problems
that can propel the field forward.

Relationship to courses previously presented at SIGGRAPH
Physically based rendering is a broad area that subsumes many active sub-areas of research. Ren-
dering courses, which have been previously presented at SIGGRAPH, have focused on aspects
of physically-based shading computation, the benefits of specific algorithms for rendering, sum-
marization of state-of-the-art algorithms for light transport simulation, etc. There have also been
courses on the fundamentals of Monte Carlo and quasi Monte Carlo sampling in the context of
rendering. The focus of this course is complementary to previous rendering courses. We do not
expect (or require) the audience to have attended any of the aforementioned courses.

Fourier analysis is also extensively used in the design of computational displays and cameras.
Our focus on numerical integration is fundamentally different than those applications, where
integration happens physically (implicitly) by propagation of real light energy (e.g. blurring of
images due to a wide aperture). There have been conspicuously few courses on the application of
Fourier analysis at SIGGRAPH and we hope that the sections containing generalized treatment of
the problem will provide theoretical insights into applications other than rendering.

Intended audience, prerequisites and level of difficulty
This course is designed for graduate students and professionals seeking to understand Monte
Carlo rendering, Fourier analysis and/or errors due to sampling. We expect attendees to possess
undergraduate-level proficiency in probability theory and calculus. We will begin by reviewing
much of the intuition required for the appreciation of an intricate combination of Monte Carlo
rendering, Fourier analysis, sampling theory and probability, which is the focus of this course.
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Course Syllabus

Table 1: Course topics, overview and schedule

Section Description Speaker Dur.
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Photorealistic rendering

Sampling and reconstruction Subr 15Introduction

Monte Carlo (MC) rendering
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MC integration Subr 20Math.
Review

Fourier analysis of MC

Q. questions and/or break (5 mins)

Assessing sampling patterns

Beyond canonical domain Singh 15
Analysis of
error due to
sampling Manifestation of error

Classical MC & QMC

Blue noise Jarosz 15

Sampling
patterns:
State of the
art Patterns with targeted spectra

Q. questions and/or break (5 mins)

Case Studies Singh 10Experiments

Rendering test suite Subr 5

90 mins = 50 (theory) + 20 (practice) + 10 (state of the art) + 10 (Q.)
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1. Introduction

Persuading our sophisticated visual systems of the “realism” of computer graphics imagery is a
challenging task. This problem is exacerbated by the presence of fantastic objects and/or characters
embedded in the virtual scene, thereby loosening the notion of realism in the resulting depiction.
Realistic depiction is typically achieved by an artful combination of design considerations such as
the degree of detail in geometrical modelling of objects in the environment, application of plausible
models for dynamics, tactful animation of objects and characters, the choice of display technology
used to present the visuals to the observer, etc.

While the totality of the above decisions impacts the illusion of reality, the focus of this course
is on a vital component in the pipeline — the synthesis of photorealistic images given the various
models that describe the environment. The state of the art in the generation of plausible pictures
– which we will henceforth refer to as rendering – involves simulation of the physics of light.
The simulation of light transport is typically tedious and error-prone. Error-free rendering is a
computationally expensive process that needs to be performed repetitively, on every frame, to
generate high (production) quality video sequences.

1.1 Rendering

We refer to rendering as the process of producing a picture which represents a particular view
of an environment, captured using a virtual camera, at a given time. The input to the rendering
system, or renderer, is a detailed representation of all the objects in the scene. This representation
is typically provided in a scene description file that specifies the objects in the scene, their shapes,
their material properties (rough, smooth, shiny, diffuse, translucent, etc.), their motion parameters
and whether these objects emit light energy. In addition to the environment, the renderer is also
provided with a description of the virtual camera used to capture the rendered view including its
position, orientation, optical characteristics (any lenses, aperture, etc.), shutter parameters (exposure
time) and parameters of the virtual sensor (aspect ratio, optical sensitivity, etc.) embedded within it.

1.2 The interplay between reconstruction and integration

Images are typically represented and displayed on a regular grid. Rendering algorithms, however,
may estimate virtual measurements at arbitrarily points on the sensor. We refer to the process
of resampling the measurements I on a regular grid as 2D reconstruction. Some rendering algo-
rithms [18, 16, 45, 5] partition the space of paths (Ω in equation 4.1) explicitly into dimensions
that are dependent on the camera, such as exposure time and aperture, and those that depend on
the scene. Since the sensor is two-dimensional, exposure time is one-dimensional and the aperture
is two-dimensional, they estimate virtual measurements in a five-dimensional, camera-dependent
space. This involves a reconstruction in 5D followed by a further projection (integration) down to
the two-dimensional plane of the sensor. Such a partitioning is exploited for efficient rendering of
camera-dependent blur effects resulting from relative motion between the camera and the scene or
from defocus due to a finite (rather than infinitesemal) aperture.
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Figure 1.1: The renderer implicitly maps samples from some high-dimensional space to light paths
in a specified scene. The contributions of radiant light energy along these paths are recorded on
the image plane as virtual measurements. Three light paths (a,b,c) are shown along with their
canonical samples in the (hyper-) cube. The next two steps of rendering are integration along the
path-dimension (step 1) followed by reconstruction on a regular grid (step 2). In this course, we
focus on the impact of Fourier spectral properties of the canonical samples on the errors due to
numerical integration.

1.3 The role of sampling
There are two distinctly different applications of sampling in the rendering process (see figure 1.1).
One of them is for reconstruction, either in 2D or in 5D (as described above), and the other is for
estimation of integration, which lies at the core of light transport (equation 4.1). Most rendering
algorithms focus on the latter and perform reconstruction on a two-dimensional regular grid of
pixels. Path-tracing, a popular rendering algorithm, proceeds by estimating the virtual image
measurement at each pixel by averaging the values of the measurement contributions of a chosen
set of paths through each pixel. Each path in the chosen set is obtained via a mapping from a
sampling pattern (of appropriate dimensionality) to a set of rays in the scene. These sampling
patterns may be stochastic (Monte Carlo sampling) or deterministic patterns that satisfy desirable
criteria (Quasi-Monte Carlo). The statistics of the estimates of the virtual measurements yielded by
these two broad classes of algorithms are strikingly different, as is the mathematical machinery
used for their analyses.

1.4 Sources and manifestation of error
Error in the context of estimating global illumination [2] arises from three sources: inaccuracies
in the input data or simulation, errors due to discretization and computational errors such as loss
of precision. In this course, we focus on the first two sources. The rendered image is represented
on a discrete grid, while the distribution of the underlying light energy across the sensor is a
continuous function. A major source of error stems from this discretization. The underlying
continuous function is a high-dimensional integral at each point on the sensor (equation 4.1). Any
sampling-based approach used to estimate this function results in an approximation whose measured
deviation from the true function is known referred to as approximation error. Typically this error
manifests in rendered images as structured artifacts or noise.



2. Mathematical preliminaries

2.1 Random variables, expectation and variance

For the purpose of this course, it will suffice to think of random variates simply as variables whose
value is subject to chance. For formal definitions of random variables and functions of random
variables, we refer interested readers to introductory textbooks on probability or Monte Carlo
simulation [41]. We will restrict ourselves to continuous random variables, denoted using bold
capital letters (X, Yi, etc.), that assume values in some domain D . The relative likelihood for
continuous random variables to take on a given value is specified using a (normalized) probability
density function (pdf) g : D → R. We denote that X is distributed according to g(x) by X∼ g(x).
The probability that the random variable lies in a subdomain Di ⊂D is obtained as P(X ∈Di) =∫
Di

g(x) dx.

A function φ : D → R evaluated at a location specified by a random variable, φ(X), is also a
random variable. In this course, we are primarily concerned by the first two moments of random
variables (specifically functions of random variables). The first moment, or “average value” of
a random variable is captured by the mathematical concept of the expected value of the random
variable. We denote the expected value of X as E [φ(X)]g ≡

∫
D

φ(x) g(x) dx.

If the pdf has an expected value, the variance of the random variable is its second central
moment which we denote V [φ(X)]g ≡ E

[
φ 2(X)

]
g−E [φ(X)]2g. When X is distributed uniformly

within the domain (i.e. g(x) is a constant), we drop the subscript and write the expectation as
E [φ(X)] and the variance as V [φ(X)].

2.2 Estimators

Consider Monte Carlo estimation of the multidimensional integral I =
∫
D

f (x) dx, x ∈D .A simple

primary MC estimator for I is µ̃1 ≡ f (X), X ∈D . When X is distributed uniformly, the estimator
is unbiased. That is, its expected value is the integral:E [µ̃1] = I. The function f (X) is itself a
random variable with an arbitrary distribution and, typically, a large variance. A more practical
MC estimator is obtained by averaging a fixed number of (say N) primary estimates: µ̃N =

∑ f (Xi)/N, i = 1,2, ...,N. Such secondary estimators are known to be unbiased and approach
Gaussian distributions as N is increased, if the primary estimator has finite variance.

2.3 The continuous Fourier transform

The process of solving differential equations is simplified by projecting relevant functions onto a
basis formed by eigenfunctions of the differential operator. The class of functions x→ eıωx forms a
natural choice since d

dx eıωx = ıω.eıωx. The projection of a given function, f : ℜ→C, results in a set
of coefficients — one coefficient corresponding to every function in the basis (so, per choice of ω).
If the basis is chosen so that it contains continuous (real) values of ω , the corresponding coefficients
may be viewed as a function of ω . f̂ : ℜ→ C. Under certain conditions 1 the relationship between

1 We refer readers to textbooks [7, 21] on the subject for a mathematically rigorous treatment.



f (x) and its coefficients of projection f̂ (ω) can be written as

f̂ (ω) =

∞∫
−∞

f (x) e−ı2πωx dx (2.1)

f (x) =

∞∫
−∞

f̂ (ω) eı2πωx dω. (2.2)

The integral transforms in eq. 2.1 and eq. 2.2 are known as the Fourier transform and the inverse
Fourier transform respectively. Due to Euler’s formula in complex analysis, eı2πωx = cos(2πωx)+
ısin(2πωx), the projection of functions onto complex exponentials is equivalent to a projection
onto sinusoids of frequencies given by 2πω . For this reason, ω is referred to as the frequency
variable and f̂ (ω) is said to be a representation of f (x) in the frequency domain. We denote the

Fourier transform pair using f (x) F⇐⇒ f̂ (ω). In summary, the continuous Fourier transform
decomposes a function on the infinite (real) domain into a continuous sum (integral) of sinsuoids of
continuous and unbounded set of frequencies. The set of continuous complex coefficients arising
from this decomposition is called the Fourier spectrum of the function.

2.4 Fourier series
The projection of periodic functions onto complex exponentials leads to a special case. Consider
a general periodic function fT (x) obtained by convolving a function f (x) with a Dirac comb
⊥⊥⊥T (x) with period T . Since fT (x) = f (x)⊗⊥⊥⊥T (x), the Fourier transformed periodic function
is a product f̂T (ω) = f̂ (ω)⊥̂⊥⊥T (ω) (due to the convolution theorem). Since ⊥̂⊥⊥T (ω) is also a
Dirac comb (with a period of 1/T in the frequency domain), the Fourier spectrum of fT (x) is only
non-zero at the set of locations where ⊥̂⊥⊥T (ω) is non-zero. Therefore, the Fourier spectrum of a
continuous periodic function is non-zero at discrete (regular) frequencies.

The inverse Fourier transform of the periodic function can then be written as a summation:

fT (x) = ∑
n∈Z

cn eı2πnx/T . (2.3)

The cn, known as the Fourier series coefficients, are obtained as

cn =
1
T

x0+T∫
x0

f (x) e−ı2πnx/T dx =
f̂ (n/T )

T
(2.4)

where x0 is any choice for x so that f (x) is integrable within [x0,x0 +T ]. Typically the complex
exponential in eq. 2.4 is expanded in terms of sin and cos , leading to two sets of coefficients.
This crucial observation, that even periodic functions with discontinuities may be expressed as
the sum of an infinite set of harmonics was made by Joseph Fourier in his study of heat. It
was subsequently rigorously proved by Fourier’s protégé, Peter Dirichlet, who also outlined
requirements for convergence of the Fourier series. Dirichlet’s results formed the theoretical
foundation which led to the derivation of the continuous Fourier transform.

2.5 Discrete time Fourier transform (DTFT)
Recall that the Fourier transform of a periodic function results in a discrete spectrum. Conversely,
the Fourier transform of a uniformly sampled continuous function results in a periodic Fourier
spectrum. Consider the a discrete function obtained by sampling by a Dirac comb. i. e. the function
is f (x).⊥⊥⊥s(x), where s is the sampling period. The resulting Fourier spectrum (of the discrete
function) will be the convolved spectrum, f̂ (ω)⊗⊥̂⊥⊥s(ω), which is periodic (with a period of
1/s).



2.6 The Discrete Fourier transform (DFT)

In practice, Fourier analysis is often performed on sampled functions that span a finite domain.
In most cases, the discrete function is also assumed to be replaced by its periodic version with a
period equal to the width of the domain. Combining the analysis for Fourier series and DTFT, we
can write the input function as fsT (x) = ( f (x).⊥⊥⊥s(x))⊗⊥⊥⊥T (x). The Fourier transform of this
discrete-time periodic function is ( f̂ (ω)⊗⊥̂⊥⊥s(ω)).⊥̂⊥⊥T (ω) which is periodic (with a period of
1/s) and discrete due to the frequency-domain sampling by ⊥̂⊥⊥T (ω).

Given data fn, n = 0,1, ...,N−1, the kth (k ∈ Z) coefficients of the DFT and IDFT are

ck =
N−1

∑
n=0

fn (cos(−2πkn/N)+ ısin(−2πkn/N)) and (2.5)

fn =
1
N

N−1

∑
k=0

ck (cos(−2πkn/N)+ ısin(−2πkn/N)) (2.6)

respectively. Due to periodicity, the domain of k is typically [0,N − 1]. The DFT is a linear,
invertible transformation FDFT : C→ C that exhibits most properties of the continuous Fourier
transform such as completeness and orthogonality. Also, important theorems such as the convolution
theorem, shift theorem, Plancherel’s and Parseval’s theorems also have their equivalents in the
context of the DFT. Naïve calculation of the N coefficients ck requires O(N2) computation since
each coefficient involves a summation over N terms. Fast Fourier Transform (FFT) algorithms
solve this with O(N logN) computation.

2.7 Power spectral density (PSD) and the periodogram

The energy of a signal f (x) is generally considered to be the integral of the square of the signal
(over its entire domain). Due to Parseval’s theorem, this may also be expressed as the integral, over
all frequencies, of the square (for real signals) of the Fourier transform of the signal. The integrand
in this expression of power, | f̂ (ω)|2, is referred to as the power spectrum of f (x).

Now consider a wide-sense stationary random processes, from which a single observation
is made. The data from this observation may be subjected to Fourier analysis and the PSD of
the observed data — called a periodogram — may be considered as an estimate of the PSD of
the generating process. Although the periodogram is not a good estimate [29, Sec.14.2.2], it is
convenient and hence popular [26].

We denote the PSD of f (x) as P f (ω), which represents the squared amplitude of the Fourier
coefficients at the frequency ω . While we use the same notation for stochastic signals, the
interpretation is slightly different. PS(ω) ≡ |Ŝ(ω)|2 denotes the power spectrum of a single
instance of a sampling function. This is not the PSD of the stochastic process, rather it is an
estimate of the periodogram E

[
|Ŝ(ω)|2

]
. The PSD of the stochastic process is |E

[
Ŝ(ω)

]
|2.

2.8 Sampling functions in the canonical domain and their spectra

We express sampling functions as the sum of weighted unit impulses, or Dirac Delta functions:

S(x) =

N
∑

i=1
wi δ(x− xi)

N
∑

i=1
wi

. (2.7)

where xi ∈ [0,1] are the sampled locations. Sampling of a continuous signal f (x) can then be
seen as multiplication by the sampling function, and the resulting sampled function is f (x) S(x).



If the samples are equally weighted, wi = 1/N. If the locations xi are random variables (chosen
stochastically), then the resulting sampling function is also a random variable defined across
instances of the sampled xi. We are mostly interested with this type of sampling functions, which
we will denote using boldface, S(x), to be consistent with our notation for random variables. We
denote the Fourier transformed sampling function using Ŝ(ω). Since this is also a random variable
defined over specific instances of N sample locations, we may define its expectation E

[
Ŝ(ω)

]
and

variance V
[
Ŝ(ω)

]
. The k-sample periodogram of the sampling function is obtained by averaging k

estimates of |Ŝ(ω)|2. The PSD of the sampling process is |E
[
Ŝ(ω)

]
|2. Clearly, in this case, the

periodogram is not an accurate estimator for the PSD, since averaging is performed without phase
information.

2.9 Normalizing Periodograms
Since periodograms characterise sample distributions, a common practical hurdle encountered
while comparing periodograms of different sampling patterns is that they are not on a common scale.
There is no well defined metric for such a comparison betweeen various sampling periodograms
and visual inspection is clearly insufficient. We propose a normalization procedure to enable fair
comparison. As a reference, we use the periodogram of random sampling for which we have
an analytical form: ||FS(ω)||2 = δ (ω)N2 +N. Dividing the random sampling periodogram by
the number of points N yields unity at ω 6= 0. Using a similar approach for the other sampling
periodograms, we propose to compute the power (magnitude squared Fourier coefficients) by
dividing the magnitude square coefficient values by N. i. e. ||FS(ω)||2/N. As a result of this
normalization, the periodograms would always converge to the power value of unity towards higher
frequencies, irrespective of the number of samples.

Heuristic for normalizing radially averaged periodograms
Once the above normalization is performed, we can compute the radially averaged periodograms
with power converging to unity at higher frequencies. Increasing the number of samples causes
energy to shift from the low frequency region of the radially averaged periodograms towards higher
frequencies. During comparison, we would like to avoid this scaling without compromising the
underlying information. So, we further divide the radial frequency variable ρ by 1

α
D√N

, where
D represents the dimensionality of the space and α > 0 is a parameter that be used to unify the
scales of different radially averaged periodograms. For regular sampling patterns, α = 1, since
the first Fourier peak is at a distance of D

√
N from the DC peak in the periodogram. As a result of

normalizing ρ , the radial periodogram exhibits a first peak at ρ = 1 for regular patterns (Fig. 5.8).
All averaged and radially averaged periodograms depicted in chapter 5 are obtained using the above
normalization heuristics.



Table 2.1: A summary of notation used in this course.

Symbol Definition

f (x) integrand

µ̃N estimate of I using N samples

X, Y, Xi, Yi random variates in domain D with probability density functions φ(.)

PS(ω) Power spectrum of a single instance of S(x) (periodogram)

P̆S(ρ) Radially-averaged power spectrum where ρ = ‖ω‖2.

S(x) F⇐⇒ Ŝ(ω) Fourier transform pair: integrand and its transform

S(x) F⇐⇒ Ŝ(ω) Fourier transform pair: sampling function and its transform

E [φ(X)] Expectation:
∫
D

x φ(x) dx

V [φ(X)] Variance :
∫
D

x φ 2(x) dx−
∫
D

x φ(x) dx





3. Sampling for reconstruction

The reconstruction problem entails approximating a function f : D → R as fa(xi), xi ∈ D , i =
1,2,3, ...,M given f (yi), yi ∈ D , j = 1,2,3, ...,N, where the sets of points {xi} and {y j} are
mutually exclusive. If fa(y j) = f (y j), ∀ j, the process is referred to as interpolation. This problem
has received much attention in the signal processing literature [30, chapters 5 & 6] as well as in the
rendering community [13, 11, 31, 6]. Such analyses have yielded effective reconstruction filters
that are used in modern renderers, especially in low-dimensional domains such as the image plane.

Reconstruction is akin to nonlinear regression [42], a popular problem in the statistics (and more
recently machine learning) literature, which offers effective solutions in high-dimensional settings
when the approximand exhibits stationarity or accurate solutions for smooth and low-dimensional
approximands. In rendering, the underlying functions represent a multitude of combinations
(products, convolutions and sums) of a variety of non-stationary processes such as spatio-directional
lighting, hard shadows, sharp reflections, textured materials, etc. The resulting discontinuities and
variations in the radiant light energy (radiance function) across space-angle-time pose immense
challenges which state of the art methods in non-linear regression are unable to cope with.

The reconstruction process generally consists of two steps. First, for any point x in the domain,
the influence of each of the f (y j) samples is specified using some weighting kernel on the distance
between x and yi (typically Euclidean). Then, at each of the xi, the approximate value is obtained
by summing up the distance-weighted contributions of each of the f (y j). Depending on the choice
of the kernel and the strategy for determining weights, the resulting methods are known by different
names: Kernel Smoothers, Radial Basis Functions, Shepherd’s method, etc.

3.1 Aliasing in reconstruction

The general reconstruction process (above) may be written in terms of the underlying function (or
signal). The samples, f (yi), yi ∈D , can be represented as the product of the true (often unknown)

function f (x) with a sampling function of the form S(x) =
N
∑
j=1

δ(x− y j). If K(r) represents the

kernel weight at a distance of r, the continuous approximand and its Fourier dual are

fa(x) = ( f (x).S(x))⊗K(x) F⇐⇒ f̂a(ω) =
(

f̂ (ω)⊗ Ŝ(ω)
)
.K̂(ω) (3.1)

where ⊗ denotes convolution. That is, the effect of sampling can be seen in the Fourier domain as
one of generating spurious replicas of f̂ created due to the convolution with Ŝ, which potentially
hinders perfect reconstruction. The kernel, on the other hand, can be viewed as a low-pass filter
which suppresses replicated, or aliased, copies of the true function’s spectrum at high frequencies.

If f (x) contains frequencies less than ωb (is band-limited), if the sampling spectrum does not
contain frequencies lower than 2ωb, and if the kernel is a low-pass filter suppressing frequencies
above ωb, the resulting reconstruction will be perfect. If these conditions are not satisfied, the
approximation will contain error. The first potential source of error is that f (x) is not bandlimited
and hence, regardless of the sampling function, the low-pass effect of the kernel results in the loss
of high-frequencies. The other main source of error is due to the sampling spectrum containing low
frequencies, which results in a f̂a that contains a superposition of f̂ (ω) with its aliased copies.



3.2 Antialiasing
The error introduced by aliasing either appears as coherent structure or as noise, depending on
the choice of sampling spectrum. Sampling on a regular grid corresponds to multiplication with
a Dirac-train or Shah function, whose Fourier spectrum remains a Shah function. If the samples
are not sufficiently dense in the image plane, the resulting spectrum contains impulses at lower
frequencies which cause aliasing in the form of regular structure that has been shown to be
particularly unpleasant to our perceptual system. If the function being reconstructed is bandlimited,
and in the absence of a sampling budget, the sampling rate may be increased to eliminate aliasing.
However, if the function contains arbitrarily high frequencies, a simple strategy is to introduce
randomness in the spectrum thereby transforming coherent artifacts into visual noise. This has
shown to be less objectionable to our visual systems.

3.3 Halftoning
Halftoning is the process of determining a sampling function S(x) so that a kernel density estimate
of the sampled function fa(x) = f (x).S(x) provides the best approximation to f (x). It is a special
case of reconstruction where the kernel is implicit and dependent on our visual systems. Halftoning
methods strive to identify sampling functions for which the perceived sampled function is as
close to f (x) as possible. This may be achieved by varying the distributions of the samples, by
weighting them or using a combination of both. Densely sampled regions of the sampled function
are perceived to have darker tone.

3.4 Antialiasing as integration
Antialiasing is commonly viewed as an integration problem. The value to be assigned to a pixel
is often estimated by averaging sampled values within a square around the pixel. That is, pixels
are viewed as little squares and the values assigned to pixels are obtained by integrating the
underlying function within their respective squares. On the contrary, if pixels are viewed as simply
being points on the image plane [44], this choice of integrating within the pixel appears to be an
arbitrary choice. That is, it corresponds to performing reconstruction on the image plane exactly
as in equation 3.1, with K(x) chosen to be a box with a width that is half the inter-pixel distance,
followed by resampling of fa(x) on a regular grid. Although this view of antialiasing is better than
not performing antialiasing, it is well known that the box-filter is not the ideal choice. Modern
renderers offer a variety of choices for the pixel reconstruction filter, since its choice is dependent
on the rendering algorithm chosen and the corresponding sampling patterns used for estimating
light energy arriving at the pixel [38, section 7.6].



4. Estimating integrals

It has long been known that the problem of numerical integration lies at the heart of rendering [37].
The main objective of rendering is to estimate the quantity of radiant light energy impinging on
the various pixels (or cells) distributed on a virtual observer’s camera (or eye). Current renderers
perform this via physically-based simulation of light, following its intricate combinations of
reflections within the scene. The virtual measurement I j at a point j on the sensor [48, ch.8] is

I j =
∫
Ω

f j(p̄) dµ(p̄) (4.1)

where the measurement contribution function, f j(p̄), is the importance-weighted radiance arriving
at j along the path p̄ and µ(p̄) is a measure on the space of all paths Ω. The paths p̄ span space as
well as time and may be of arbitrarily high dimensionality.

The exact nature of the integrand depends on the complexity and structure of the scene being
rendered, along with detailed modelling of the constituent materials and shapes. In general,
the integrand is high-dimensional, discontinuous and costly to evaluate. Each evaluation of the
integrand requires many rays to be traced within the environment, along with estimation of the
radiant light energy along that path formed by linking the rays together. The rendering community
strives to estimate such integrals with low error as well as low computational cost.

4.1 Numerical integration via sampling

Henceforth in this chapter, we abstract away the details about the integrand and domain of inte-
gration (equation 4.1) that is encountered in rendering. We study the integration problem in the
canonical domain. Our goal is to analyze the of quality of numerical integration, within the interval
[0,T ], of a function f : R 7→ R+. For example, a primary Monte Carlo estimator µ̃1 = f (Xi) for
the integral

I ≡ 1
T

T∫
0

f (x) dx (4.2)

is well known to be unbiased if the single sample Xi ∈ [0,T ] is drawn from a constant probability
distribution function (pdf) within the domain [0,T ]. i.e. E [µ̃1] = I. The corresponding secondary
estimator, obtained by averaging N primary estimates at different Xi has the same expected value.
However, the averaging scales the variance down by a factor of N. i.e. V [µ̃N] = V [µ̃1]/N.

4.2 Error due to sampling: Convergence rate, consistency, bias and variance

Numerical integration methods like Monte Carlo are very powerful in approximating the underlying
multi-dimensional integrand using stochastically generated samples, but the overall process is
highly prone to error. The nature of the error introduced depends on an intricate combination of
three factors: the distribution of the sample locations; the weighting used to accumulate sampled
contributions; and the arrangement (correlation) and structure of samples. The “error” of an
estimator, which refers to its mean squared error (MSE), typically reduces as the number of samples
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Figure 4.1: This figure highlights the difference in the analysis of sampling rates for error-free
reconstruction vs numerical integration of a bandlimited function. Fewer samples (factor of 2 per
dimension [5]) are sufficient for error-free numerical integration.

is increased. The rate at which this reduction occurs is known as the estimator’s convergence rate.
Estimators whose errors vanish in the limit are said to be consistent.

The MSE of an estimator is comprised of two different types of error: One that is associated
with the accuracy of the estimator, and another which describes the precision of the estimates. The
former, which is the deviation of the expected value from the true (or desired) result is known as
bias. The latter, which quantifies the uncertainty of the estimator is known as variance. The MSE
is expressed as the sum of the squared bias and the variance.

Consistent estimators, whether biased or unbiased, are desirable for image synthesis. Although
objectionable image artifacts may be produced by the use of naïvely-designed biased estimators
(say using regular sampling), in many cases consistent and biased estimators are used to reduce
noise as well as to improve convergence rates [23].

4.2.1 Manifestation of error in rendering
For a given scene configuration (hence fixed integrand), the error in the rendered image is primarily
dependent on the choice of sampling strategy. To a lesser extent, the error also depends on the
algorithm used for rendering (path-tracing, Metropolis light transport, etc.). The motivation behind
using stochastic sampling over regular samples was related to human perception. The bias caused
by using regularly placed samples is considered more objectionable [13, 11] to our visual systems
than its appearance as noise that is distributed across all frequencies (compare the strategies in the
first column of fig. 4.2).

Consider an image rendered using path tracing with 64 samples per pixel. Each pixel in the final
image can be viewed as a single instance of a secondary estimator, of the integral corresponding
to that pixel, using 64 samples. In theory, the variance of each of these estimates can only be
observed by rendering multiple images with 64 samples per pixel. In practice, even though the
integrand at each pixel is different, the radiance varies smoothly over many parts of the image. As a
result, if estimators for pixels in these smooth regions have high variance, their disagreement on
particular instances of the estimate (in the rendered image) leads to a noisy appearance. The larger
the disagreement of estimates in neighboring pixels in smooth regions, the noisier the image will
appear. In other words, an estimator with a higher variance will lead to a noisier image.

The manifestation of bias is less intuitive. Typically, estimators with a structured bias — such
as one that uses a regular sampling pattern — produce banded visual artifacts. In some cases, bias
leads to artifacts that are inconsistent with our expectation of realism. e. g. bright patches at points
where contact shadows are expected. Bias may also lead to incorrect estimates where the error is not
visually perceivable. Such estimators are desirable, particularly if they can simultaneously improve



samples on a regular grid (biased and consistent)

low-discrepancy sampler (biased and consistent)

random sampling (unbiased and consistent)

4 samples per pixel (spp) 16 spp 4096 spp

Figure 4.2: A comparison of rendered results obtained using 3 sampling strategies (rows) for
various sampling counts (columns). The images depict two shiny balls: A golden ball that is out
of focus and a mirrored ball that is moving rapidly through the plane in focus. All strategies lead
to consistent estimators, therefore the images in the third column are virtually indistinguishable.
The naïve, biased strategy of sampling on a regular grid leads to objectionable visual artifacts. A
more sophisticated approach — low-discrepancy sampling (middle row) — although biased, not
only eliminates the regular artifacts but also exhibits improved noise characteristics (for example in
the background region, using 16 samples) compared to unbiased estimates obtained using random
sampling (bottom row).



the visual noise. The solution to the inveterate problem of striking a reasonable compromise
between bias and variance, for efficiency, depends on the nature of the scene, choice of sampling
strategy, number of samples, etc.

The reduction of error, for a given sampling strategy, might be achieved by increasing the
number of samples. So, in the above example, rendering with 128 or 256 samples per pixel will
reduce noise. Some estimators (jittered sampling, QMC sampling) converge faster than others.
Even for a fixed sampling strategy, primary and secondary estimators have different distributions
and hence different statistics. Secondary estimators approach being Gaussian-distributed, as the
number of the fixed samples used is increased. Choosing the “best” estimator depends on the
application. For high-quality, offline rendering the estimator of choice will be the one with the
quickest convergence. On the other hand, for applications with a time-budget, the estimator with
the lowest error for the given budget of samples must be chosen.

4.2.2 Homogenization
The analytical characterization of both, bias as well as variance, across a general set of sampling
strategies is challenging. However, focusing on unbiased estimators makes it possible to express
error in the form of variance only. To apply this analysis to a wide variety of estimators, it would
be beneficial to first be able to transform them into unbiased estimators, albeit by introducing extra
variance. One way to mitigate the bias of an estimator is by ensuring that the sampling spectrum
only contains energy at the DC [46]. Inspired by the process of generating unbiased estimators from
randomly jittering a regular grid [40], Pilleboue et al [39] shifted each realization of the samples
by uniformly random amounts. They termed this process homogenization. In the point processes
literature homogenization refers to stationary point processes for which the average number of
points per some unit of extent such as length, area, volume, or time, is constant depending on the
underlying mathematical space.

4.3 Monte Carlo integration in the Fourier domain
Monte Carlo sampling can be represented as an inner product [14] of the integrand f (x) and a
random sampling pattern S(x) which is composed of a sum of impulses (delta functions) normalized
by the number of impulses (see Sec. 2.8). Since inner products are preserved under Fourier
Transforms, the naïve estimator can be expressed in the frequency domain as

µ̃N =
∫
D

f (x)S(x) dx =
∫
Ω

Ŝ(ω) f̂ ∗(ω) dω, (4.3)

where f̂ ∗(ω) is the complex conjugate of the Fourier transformed integrand. Since the goal is to
represent the spectrum of a stochastic process, which is generally not integrable over the infinite
domain, it is important that the integral is restricted to the finite domain D . The definite integral
can either be viewed as a multiplication by a box of the appropriate dimensions [46] or as a portion
of a periodic function on a toroidal domain [39]. The former leads to a ’virtual’ integrand which
subsumes the convolution by a sinc(()the Fourier transformed box), while the latter leads to a
discrete Fourier spectrum (see Sec. 2.4). This reformulation of numerical integration provides a
fresh perspective on the analysis of error. The derivation of MSE [14], convergence [39], bias
and variance [46] in terms of the statistics of the Fourier spectra of the sampling function and the
integrand provide valuable insight into the design of adaptive sampling strategies.

4.3.1 Qualitative assessment using periodograms
Following the seminal work by Robert Ulichney on blue noise dithering [47], sampling patterns
with minimal energy in the low frequency zone of their power spectra are believed to be preferable,



for applications such as stippling and numerical integration. Tools such as the periodogram and its
radially-averaged profile were introduced to the graphics community about three decades ago, and
were primarily used for qualitative comparisons of sampling patterns. These tools have been used
to compare the qualities of blue noise sampling patterns generated using various algorithms, and
have been extended for comparisons between spatially-varying sampling distributions [50].

4.3.2 Quantifying error using the statistics of sampling spectra

More recently, the focus has been on quantification of estimation error in the Fourier domain. That
is, the error of an estimator (e.g. µ̃1 for I in equation 4.2) has been expressed in terms of the Fourier
spectra of the integrand and sampling function. Durand [14] derived MSE as the inner product of
the spectral densities of the integrand and sampling function

E
[
(I− µ̃1)

2]= ∫
Ω

E
[
|Ŝ(ω)|2

]
| f̂ (ω)|2 dω =

∫
Ω

E [PS(ω)]P f (ω) dω, (4.4)

and verified that the convergence rate of the MSE of µ̃N is indeed 1/N. While Durand’s work
focused on the case of random sampling, more recently, Pilleboue et al [39] showed that this
holds for an entire class of (homogenized) sampling patterns. Further, they showed that since
homogenization eliminates bias, that this error is exactly the variance of the N-sample homogenized
estimator. i.e.

V [µ̃N] =
∫
Ω

E
[
|Ŝ(ω)|2

]
| f̂ (ω)|2 dω =

∫
Ω

E
[
PŜ(ω)

]
P f (ω) dω. (4.5)

In earlier work, Subr and Kautz [46] expressed the bias and variance of µ̃N separately in terms
of the spectra of the sampling pattern and integrand. They derived

E [I− µ̃N] = I−
∫
Ω

E
[
Ŝ(ω)

]
f̂ (ω) dω, and (4.6)

V [µ̃N] =
∫
Ω

V
[
Ŝ(ω)

]
| f̂ (ω)|2 dω (4.7)

as the expressions for bias and variance respectively. i.e. An estimator’s bias is dependant on the
relationship between the expected Fourier spectrum of the sampling pattern and the integrand’s
spectrum. The second equation, shows that the estimator’s variance is bounded by the variance
present in the sampling spectrum relative to the spectral density of the integrand.

4.3.3 Quantifying convergence using periodograms

The primary advantage of studying the variance of the homogenized estimator is that it en-
ables the derivation of convergence rates of various stochastic sampling patterns. To derive
the convergence rate of the variance, the radially averaged expected power spectra E

[
P̆S(ρ)

]
are used for mathematical convenience. While dealing with sampling patterns in a 2D domain,

P̆S(ρ) =
∫ ∫

δρ(ωx,ωy) PS(ωx,ωy) dωx dωy where δρ(ωx,ωy) = 1 if ω2
x +ω2

y = ρ2 and zero

otherwise. The analytical expressions of radial power spectra are not known for many sampling
strategies, but some mathematical tools have been proposed [39] to approximate the bounds of
their sampling power spectra. These approximated bounds can be used directly in equation (4.5) to
obtain convergence rates of the variance of homogenized estimators.



4.4 Analysis beyond the canonical domain

In rendering, Monte Carlo integration is not restricted to the Euclidean domain. For example, direct
and global illumination methods involve integration over a visible hemisphere of directions at the
surface hit points, and over the sphere of directions in the presence of participating media within
the scene. In this section we discuss a variety of such contexts. In particular, we focus on a closed
form formulation for variance in the ( hemi-)spherical domain.

4.4.1 Spherical domain

On the sphere, the most commonly used tool for spectral analysis is spherical harmonics (SH) [17],
which is analogous to Fourier analysis on a (hyper-) plane. While the bases for Fourier analysis
are chosen to be Eigenfunctions of the derivative operator on the plane, SH bases are chosen to be
Eigenfunctions of the rotation invariant differential operator (Laplacian) on the sphere and are

Y m
l (θ ,φ)≡

√
(2−δ0m)

(2l +1)
µ(S 2)

(l−m)!
(l +m)!

Pm
l (cosθ) exp(imφ) . (4.8)

Here, δi j is the Kronecker delta function, µ(S 2) = 4π , is the Lebesgue measure of a unit sphere,
Y m

l (θ ,φ) is the spherical harmonic basis function of degree l and order m and Pm
l (x) denotes the

asssociated Legendre Polynomials, for x ∈ [−1,1]. SH (Y m
l ) are orthonormal basis functions such

that any integrable function G on S 2 can be decomposed into SH components. as:

G(x) =
∞

∑
l=0

l

∑
m=−l

SG(l,m)Y m
l (x) , (4.9)

where SG(l,m) are the (complex) spectral coefficients of G(x). It can be easily shown that:

∫
S 2
||G(x)||2dω =

∞

∑
l=0

l

∑
m=−l

||SG(l,m)||2 . (4.10)

which is the Parseval’s theorem on the sphere. Analogously, the inner product between any
two arbitrary functions, G(x) and f (x) defined over a unit sphere, is related to their corresponding
spectral coefficients by:

∫
S 2

G(x) f(x)dx =
∞

∑
l=0

l

∑
m=−l

SG(l,m) ·S f (l,m) , (4.11)

where SG(l,m) = 〈G,Y m
l 〉 is the (l,m)-th spherical harmonic coefficients of G(x). The angular

mean power spectrum at a frequency band l is defined as the average energy distributed over
different m for a given l, as follows:

P̆G(l) :=
1

2l +1

l

∑
m=−l

‖SG(l,m)‖2 . (4.12)

The mean angular power spectrum P̆G(l) is invariant under a rotation of the coordinate system
([22, 28]), as they contain a sum over all orders m. A spherical harmonic power spectrum can be
defined with or without the averaging factor. In our formulation, we prefer to work with the average
power per degree, or power spectral density, P̆G(l), as this ensures that the spectral coefficients of
a spherical Dirac delta function are constant and independent of degree l ([20]).



Based on this background, variance expression for Monte Carlo integration can be derived [39]
in the spherical domain as:

Var(IN) = µ(S 2)
∞

∑
l=0

(2l +1)E [PS(l)]P̆ f (l) (4.13)

which gives the final expression for the variance in terms of the angular mean power spectra of both
the sampling pattern S and the integrand f .

4.4.2 Other domains
Recently, there has been interest in performing image synthesis by sampling in the gradient
domain [24]. The path-tracing problem is reformulated to cover a multi-dimensional space spanning
paths and pixels. Rather than estimating radiance at each pixel, these methods estimate the gradients
of radiance in the subspace of pixels. Finally, the image is reconstructed from the estimated
gradients. The primary benefit of applying the gradient operator is that it attenuates low-frequency
content of the integrand. While jittered sampling reduces error due to attenuation of low-frequencies
in the sampling pattern, gradient domain path tracing achieves its benefit by a similar effect in the
integrand (gradients). Although the gradient operator amplifies the energy at higher frequencies, it
has been observed to remain within practical range at the Nyquist rate.

The spectral analysis of error due to stochastic sampling makes assumptions about the sampling
strategy as well as the sampling domain. For extensions to domains with complex topology, or when
non-uniform sampling is used, it is possible that other mathematical tools may be required. For
example, Wei and Wang [51] proposed a formulation equivalent to Fourier analysis, but based on the
distribution of the differentials of sampling locations. The use of this Differential Domain Analysis
permits the comparison of sampling strategies with different distributions. e. g. two instances of
the same sampling strategy, but with different target sampling densities, can be identified to have
similar spectral properties. The advantages of the analysis are that it can be performed on general
domains, and for non-uniform sampling. However, its invariance to distributions makes it less
suitable for the analysis of error in integration.





5. Popular sampling patterns

In this chapter, we will describe sampling strategies that are popularly used in modern renderers. For
each of these, we provide insight on its error, explain the contexts where its behavior is best and/or
worst and also comment on its expected convergence rate using its homogenized periodogram. For
simplicity we will primarily discuss these sampling routines in the context of generating locations
within a canonical unit square interval in 2D, and briefly explain how each routine generalizes to
higher dimensions.

5.1 Classical

5.1.1 Independent random sampling

Figure 5.1: Random sampling pattern with N = 16 (left) and N = 64 samples (right).

Purely independent random sampling is the most basic form of sampling pattern. When
uniformly sampling a 2D square domain, the x and y coordinates of each point are computed from
independently drawn uniform pseudo-random numbers ξ ∈ [0,1). New sample points are generated
without regard to the previously generated sample points. Figure 5.1 shows an illustration of 16
and 64 independent random samples in a unit square.

One benefit of this approach is that the sampling routine is trivially progressive: we can
continually add new samples without needing to know how many total sample points we will
be generating. It is also trivial to generate samples in arbitrary dimensions by simply drawing
a canonical random number ξ for each dimension of a sample point. Unfortunately, however,
since samples are drawn completely independently, the resulting sampling patterns many contain
many samples which fall in close proximity while large regions of the sampling domain receive no
samples.

Independent random sampling leads to the most basic form of Monte Carlo integration. The
variance of a Monte Carlo estimator using independent random samples has a convergence rate of
O(N−1). This result can be easily derived from the definitions of expected value and variance, but
it can likewise be derived in the frequency domain from the periodogram of the sampling pattern.



An important characteristic of this convergence rate is that (in contrast to deterministic quadrature
techniques) the dimensionality of the integration problem does not appear in the expression for
the convergence rate. Monte Carlo integration using independent random samples therefore does
not suffer from the so-called “curve of dimensionality”. This is one of the reasons why Monte
Carlo techniques are so attractive for high-dimensional integration problems like the rendering of
global illumination. Unfortunately, this convergence rate also means that error will always go down
relatively slowly: we need four times as many samples to reduce the error by a factor of two.

Due to these limitations, many more sophisticated sampling techniques have been developed
over the years which relax the assumption of independence in the hopes of reducing variance or
improving convergence rate.

5.1.2 Stratified/Jittered sampling

Figure 5.2: Jitter sampling pattern with N = 16 (left) and N = 64 samples (right).

Stratified sampling divides the integration domain into a number of disjoint regions (a.k.a
“strata” or “cells”), and places one or more independent random samples within each region. Jittered
sampling, introduced to graphics by Cook and colleagues [11], is a restricted form of stratified
sampling where the strata are of equal size with each receiving exactly one sample. Jittered
sampling of a 2D unit square involves dividing the square into a grid of N = M×M square cells,
and placing a single sample randomly positioned inside each cell. For 2D, this process would result
in N2 samples. Figure 5.2 shows an illustration of 4×4 = 16 and 8×8 = 64 jittered sample points
in a unit square.

Jittered sampling considerably reduces the likelihood that many samples will fall within close
proximity, and, since each stratum is guaranteed one sample, also places a strict upper bound on
the size of any region void of any samples. These two properties considerably improve how well
evenly distributed the sample points are compared to independent random sampling. Unfortunately,
this improvement comes at the cost of some inconvenience. Jittered sampling is not progressive, so
we cannot continually add more samples, and we must know the total number of samples before
constructing the point set. Furthermore, the total number of samples is only set indirectly through
the number of subdivisions along each dimension. With the same number of subdivisions along
each dimension, the total number of samples has to be a perfect square in 2D, a perfect cube in 3D,
etc. This can be cumbersome, and becomes increasingly so as the dimensionality of the point set
grows. Setting the total number of samples with fine granularity becomes increasing difficult, e.g.
dividing each dimension of a five-dimensional domain into two cells results in 25 = 32samples



and increasing the divisions to three per dimension already increases the sample count to 35 = 243.
While it is possible to set an different number of subdivisions along each dimension to obtain
finer granularity, it is not easy to determine these values automatically or optimally for a particular
integration problem.

It can be shown that jittered sampling cannot increase the variance of a Monte Carlo estimator
compared to using independent random samples. In fact, it can often reduce variance considerably.
Moreover, analysis of the periodogram reveals that jittered sampling can result in asymptotically
better convergence rates of O

(
N−1.5

)
.

5.1.3 Uniform jittered sampling

Figure 5.3: Uniform jitter sampling pattern with two realisations of N = 64 samples.

Uniform jittered sampling is a further restriction of jittered sampling where the random location
of a point within its stratum is the same across the entire point set. In other words, a single jitter is
applied to all samples of a regular uniform pattern (as opposed to jittering each stratum’s sample
independently as in jittered/stratified sampling). For the 2D unit square, any single realization of a
uniform jittered sampling pattern is simply a randomly shifted rectangular grid pattern. Figure 5.3
shows two independent realizations of 64 uniform jittered points.

Uniform jitter sampling can be beneficial for some low-dimensional problems in rendering. For
instance, Pauly et al. [36] used uniform jittered sampling for performing the one-dimensional line
integral of radiance along each camera ray, and Ramamoorthi and colleagues [40] analyzed the
error of uniform jittered sampling for integrating visibility from area light sources.

5.1.4 Uncorrelated Jitter, N-Rooks, and Latin hypercube sampling
To overcome the issue of generating jittered sample points in high dimensions, Cook et al. [12]
proposed to randomly combine jittered sample sets over subspaces of the full domain. For instance,
to generate sample distributions for a nine dimensional space, we could separately partitioning
four two-dimensional subspaces (e.g. pixel area, camera lens area, reflection direction, and shadow
ray direction) as well as one one-dimensional subspace (time) and then combine the subspace
dimensions at random. He called this technique uncorrelated jittering.

In 2D, generating N samples would entail creating two separate 1D jittered point sets X and Y
with N samples each, and then using the samples in X as the x-coordinate of each 2D point, and
coupling each x with a y from Y in randomly permuted order. This construction ensures that, if
we were to divide the 2D domain into N rows and N columns, exactly one 2D sample project into



Figure 5.4: N-Rooks sampling pattern with N = 16 (left) and N = 64 samples (right).

any row or any column. Shirley [43] called this idea N-Rooks sampling since the sample positions
correspond to the arrangement of rooks on an N×N chessboard where none of the rooks can
capture another in a single move. Figure 5.4 shows an illustration of N-Rooks sampling patterns
with 16 and 64 points in a unit square.

Combining D randomly permuted 1D jittered samples in this way for arbitrary dimension D
is called Latin hypercube sampling. Like jittered sampling, we need to know the total number of
samples in advance, so this sampling approach is not progress. However, we can easily use an
arbitrary number of samples, and no longer have to deal with the difficulty of specifying a N = MD

samples for a D dimensional domain.
Jittered sampling and Latin-hypercube sampling are related, but offer different stratification

guarantees, and therefore have different variance reduction behavior. As an illustrative example,
a 2D jittered sampling pattern with N points will ensure that few samples can clump together in
2D, but as many as

√
N samples may project to exactly the same location along either of the two

axes (in other words, the projections actually correspond to
√

N strata with
√

N points in each
stratum). On the other hand, a 2D Latin-hypercube sampling pattern with N points provides less
guarantees of clumping reduction in 2D, but ensures that along either of the axis projections each
of the N sample points falls into a different stratum. Latin-hypercube sampling can lead to better
variance and convergence if the integrand does not depend strongly on some of the dimensions. In
the extreme, where the integrand depends only on the x coordinate, but not on y, Latin-hypercube
sampling would provide better stratification of the relevant dimensions than jittered sampling.

5.1.5 Multi-Jittered sampling
Chiu et al. [9] introduce multi-jittered sampling, which effectively enforces the stratification
guarantees of jittered sampling and N-rooks sampling simultaneously: for N = M×M points in
2D we generate exactly one sample in each of the M×M strata, but also guarantee that there is
exactly one sample in each of the N rows and N columns (projected strata along the coordinate
axes). Figure 5.5 shows an illustration of 4×4 = 16 and 8×8 = 64 multi-jittered sample points in
a unit square. In Figures 5.6, we summarize the Fourier power spectra of these sampling patterns.

5.2 Quasi-Monte Carlo & Low-discrepancy Sampling
Instead of using random samples, Quasi-Monte Carlo averages the integrand at carefully crafted
deterministic locations to approximate integrals. These locations are specially crafted to minimize



Figure 5.5: Multi-jitter sampling pattern with N = 16 (left) and N = 64 samples (right).

clumping in the hopes of reducing the variance or improving the convergence rate. One formal
definition of such clumping is discrepancy, which describes the maximum deviation between the
number of sample points in a region compared to the expected number of points that should fall
into that sized region. There are a vast number of such low-discrepancy sampling routines [32], but
we will briefly summarize just two such approaches as illustrative examples that can be used in
rendering.

5.2.1 The van der Corput sequence
The one-dimensional van der Corput sequence is one of the simplest examples of a low-discrepancy
sequence. It takes a prime number b as a base, and uses a deterministic procedure to transform a pos-
itive integer index i into a value in the unit one-dimensional interval [0,1). The deterministic process
that generates these values is often denoted as a function Φb(i) which divides the unit interval into b
equal-sized pieces, iterates over these fractional locations, then repeats the process by successively
subdividing those regions into b piece as well. For a base of 2, for instance, the interval is split into
halves, then fourths, then eights, etc., forming the sequence: {1/2, 1/4, 3/4, 1/8, 5/8, 3/8, 7/8, · · ·}. In
base 3, the sequence would be: {1/3, 2/3, 1/9, 4/9, 7/9, 2/9, 5/9, 8/9 · · ·}.

This procedure can be performed for any arbitrary prime base b, and iterating with increasing
index i effectively places the next point into the biggest “gap” in the current sequence. This
sequence is progressive, so the number of samples need not be known in advance, but it only
generates samples in one dimension.

5.2.2 Halton sequence
The Halton sequence has low-discrepancy, so the points tend to be more evenly distributed over
the entire domain. It also provides even more strict stratification guarantees than jittered, n-rooks,
or multi-jittered sampling, and is a progressive sequence. Figure 5.7 illustrates a Halton sequence
with 16 and 64 points in 2D.

5.2.3 Hammersley point sets
By sacrificing progressivity, the discrepancy of the Halton sequence can be further improved by
using a regular subdivision of the unit domain for the first dimension, and a Halton sequence for the
remaining dimensions. For instance, in 2D, the x dimension would be {0/4, 1/4, 2/4, 3/4}, and the y
dimension would take the van der Corput sequence of base b = 2. This modification of the Halton
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Figure 5.6: Illustration of random and some stochastic grid-based sampling patterns with the
corresponding Fourier expected power spectra and the corresponding radial mean of their expected
power spectra.

sequence is called the Hammersley sequence, which can create a even lower discrepancy point set
for arbitrary dimensions, but due to the first dimension being a regular sampling, knowledge of the
number of total samples is necessary. Figure 5.7 illustrates the Hammersley point set with 16 and
64 points in 2D. The corresponding sampling power spectra for Halton and Hammersley samples
(first two components) are summarised in Figures 5.8.

5.3 Blue noise

Any sampling pattern with Blue noise characteristics is suppose to be well distributed within the
spatial domain without containing any regular structures. The term Blue noise was coined by
Ulichney [47], who investivated a radially averaged power spectra of various sampling patterns. He
advocated three important features for an ideal radial power spectrum; First, its peak should be at



Figure 5.7: Halton (top) and Hammerslay (bottom) sampling pattern with N = 16 (left) and N = 64
samples (right).

the principal frequency. Second, the principal frequency marks a sharp transition level below which
little or no energy exists. And finally, the uncorrelated high-frequency fluctuations are characterized
by high-frequency white noise. Poisson Disk sampling pattern (shown in Fig. 5.9) closely resembles
the above features in the low frequency zone.

5.3.1 Poisson-disk sampling

Poisson Disk sampling patterns can be generated by simply assigning a disk with minimum
radius to each sample point and allowing new samples to get placed only outside the disk radii
of existing samples. Cook [11] proposed the first dart throwing algorithm for generating Poisson
Disk distributed point sets. Random samples are continually tested and only those that satisfy the
minimum distance constraint relative to samples already in the distribution are accepted.

For many years, dart-throwing was the only available method for accurate Poisson-disk sam-
pling. Its inefficiency led to the development of approximate Poisson Disk sampling algorithms.
For a more comprehensive summary of Poisson sampling methods developed in early years we
refer the interested readers to the survey by Lagae and Dutre [26].
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Figure 5.8: Illustration of some well known deterministic sampling patterns with the corresponding
Fourier expected power spectra and the corresponding radial mean of their expected power spectra.

5.3.2 Relaxation-based methods

There are many relaxation based methods for the generation of blue noise sample distributions.
Lloyd [27] which is a powerful and flexible iterative method, is commonly used to enhance the
spectral properties of existing distributions of points or similar entities. However, the results from
Lloyd’s method are satisfactory only to a limited extent. First, if the method is not stopped at a
suitable iteration step, the resulting point distributions will develop regularity artifacts. A reliable
universal termination criterion to prevent this behavior is unknown. Second, the adaptation to
given heterogenous density functions is suboptimal, requiring additional application-dependent
optimizations to improve the results.

Balzer and colleagues [4] present a variant of Lloyd’s method, termed capacity constrained
Voronoi tessellation (CCVT), which reliably converges towards distributions that exhibit no reg-
ularity artifacts and precisely adapt to given density functions. Like Lloyd’s method it can be
used to optimize arbitrary input point sets to increase their spectral properties while avoiding its
drawbacks. They apply the so called capacity constraint that enforces each point in a distribution
to have the same capacity. Intuitively, the capacity can be understood as the area of the point’s
corresponding Voronoi region weighted with the given density function. By demanding that each
point’s capacity is the same, Balzer et al. ensure that each point obtains equal importance in the
resulting distribution. This is a direct approach to generating uniform distributions, whereas Lloyd’s
method achieves such distributions only indirectly by relocating the sites into the corresponding
centroids.
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Figure 5.9: Illustration of some well known blue noise samplers with the corresponding Fourier
expected power spectra and the corresponding radial mean of their expected power spectra.

5.3.3 Tiling-based methods

There are some tile-based approaches that can be used to generate blue noise samples Tile-based
methods overcome the computational complexity of dart-throwing and/or relaxation based ap-
proaches in generating blue noise sampling patterns. In computer graphics community, two
tile-based approaches are well known: First approach uses a set of precomputed tiles [10, 25], with
each tile composed of multiple samples, and later use these tiles, in a sophisticated way, to pave the
sampling domain. Second approach employed tiles with one sample per tile [34, 33, 49] and uses
some relaxation-based schemes, with look-up tables, to improve the over all quality of samples.
Although many blue noise sample generation algorithms exist, none of them are easily extendable
to higher dimensions (> 3).

5.4 Interpreting and exploiting knowledge of the sampling spectra

Recently [39], it has been shown that the low frequency region of the radial power spectrum (of a
given sampling pattern) plays a crucial role in deciding the overall variance convergence rates of
sampling patterns used for Monte Carlo integration. Since blue noise sampling patterns contains
almost no radial energy in the low frequency region, they are of great interest for future research
to obtain fast results in rendering problems. Surprisingly, Poisson Disk samples have shown the
convergence rate of O

(
N−1

)
which is the same as given by purely random samples. This can

be explained by looking at the low frequency region in the radial power spectrum of Poisson
Disk samples (Fig. 5.9) which is not zero. The importance of the shape of the radial mean power
spectrum in the low frequency region demands methods and algorithms that could eventually allow
sample generation directly from a target Fourier spectrum.

5.4.1 Radially-averaged periodograms

Figures 5.6, 5.8 and 5.9 depict radially averaged periodograms of the various sampling strategies
described in this chapter. These spectra reveal two important characteristics of estimators built
using the corresponding sampling strategies.



First, the absence of energy in certain bands of the spectrum indicate that they will be efficient for
integrating functions with complementary spectra. e. g. Jitter, multi-jitter, Halton and Hammerseley
exhibit low energy in the low-frequency region. This makes these strategies efficient for estimating
integrals of low-frequency functions. Of these, regular sampling contains arbitrarily high values
at certain fixed mid- and high- frequencies, making it a poor choice if the integrand contains mid-
or high-frequencies. Second, the convergence rate of the corresponding estimators can be derived
as described in sec. 4.3.3, if the asymptotic behavior of the radially-averaged periodograms can
be characterized analytically. e. g. we expect, from visual inspection that jittered sampling (or
multi-jitter) will exhibit improved convergence compared to n-rooks sampling.

Understanding convergence rates
The convergence rate of these sampling patterns may be derived for a special class of functions [8]
using tools [39] that allow approixmation of the shape of radial power spectra using simple polyno-
mial profiles. It has been shown that the Poisson Disk sampler, despite its blue noise characteristics,
has a convergence rate of random Monte Carlo sampling (O

(
N−1

)
). The radially averaged peri-

odogram of Poisson Disk samples contains non-zero energy in the low frequency (approaching
DC) region, implying that averaged periodgram in this region can only be approximated (bounded)
using a constant profile. This similar to the case for radially averaged periodgram of random
samples. Consequently, Poisson Disk samples, when homogenized, do not show improved variance
convergence over random sampling. However, for CCVT [4], the radially averaged periodogram
approaches zero in the low frequency region as we move towards the DC peak (ρ = 0). It has been
shown that radially averaged periodogram of CCVT can be approximated by a quadratic profile
(b=2), which results in better variance convergence rate [39]. In Table 5.1, we summarise the
theoretically-derived convergence rates for some sampling patterns in terms of the dimensionality
D of the domain of integration.

Table 5.1: Convergence rates of different stochastic samplers

Sampler Best Case Worst Case

Random O
(
N−1

)
O
(
N−1

)
Jitter O

(
N−1− 2

D

)
O
(

N−1− 1
D

)
PoissonDisk O

(
N−1

)
O
(
N−1

)
CCVT O

(
N−1− 2

D

)
O
(

N−1− 1
D

)
5.4.2 Synthesis of sampling patterns with targeted spectral profiles

Since the theory expresses estimation error in terms of the spectral density of the integrand, indeed
it would be desirable to tailor the sampling strategy to the given integrand. Although many
methods have been proposed for obtaining spectral information about the integrand in special
cases [16, 45, 40, 3] as well as more generally [15, 5], this information has only been used to adapt
sampling rates and to design improved reconstruction filters. There has also been some work in
tailoring sampling particularly for the problem of anti-aliasing [1, 19]. The next, natural step would
be to synthesise customised sampling strategies, adaptively, for general integrands.

The importance of having spectral control on sampling methods has been explored. Many
methods are able to generate samples that satisfy pre-assigned Fourier characteristics. Parker and
colleagues [35] were the first to propose an algorithm for manipulating the power spectra of halftone
patterns with blue-noise characteristics. They developed an algorithm that could generate samples
whose spectral characteristics would match a given (input) step function. Zhou and colleagues [52]
constructed point sets matching given target Fourier power spectra, by performing gradient-descent
optimization on an energy derived from the autocorrelation function.



6. Software tool

In this chapter we explain the software toolkit provided in this course for empirical error analysis.
The tool may be used to:

• obtain visualizations of point-sets generated by a sampling pattern (sec. 6.3.1);
• visualize Fourier spectra (sec. 6.3.2);
• compare errors across Monte Carlo estimators that use different sampling strategies (sec. 6.3.3);
• The source code can also be used with Matlab (sec. 6.2);

Sampling is performed on 2D domains only (unit square) and therefore integrands are 2D as well.

6.1 The C++ tool

The software package is written in C++ and can directly compile on Windows, Linux and Mac OS
systems. Matlab scripts are also provided and explained in the next section.

6.1.1 Set up (Ubuntu)

The source code may be downloaded from the git repository https://github.com/sinbag/
EmpiricalErrorAnalysis. Before building the tool the following need to be installed: cmake,
CGAL, ZLIB. On Ubuntu, they may be installed using apt-get.

sudo apt-get install cmake
sudo apt-get install libcgal-dev
sudo apt-get install zlib1g-dev

To build the tool first create a build subdirectory; then run cmake and make within the build
directory. The bash commands are shown below.

git clone –recursive git://
cd NAME OF REPO
mkdir build
cd build
cmake ../
make
cd ..

The binary for empirical error analysis, ‘eea’, is located in the build directory. The ‘–recursive’
argument automatically clones submodules that are dependencies of the toolkit. Currently the
dependencies are: CGAL, OpenMP, Python (only for ‘--itype Pbrt’). Executing the binary without
any arguments will display a list of options that need to be specified. The command line arguments
for eea are divided into four sections in the following order:

https://github.com/sinbag/EmpiricalErrorAnalysis
https://github.com/sinbag/EmpiricalErrorAnalysis


./build/eea -S ... <-I ...> -A ... -G ...

Here,
-S precedes the type of samples to be used and associated parameters.
-I precedes the integrand type and its associated parameters
-A precedes analyzer name along with associated parameters
-G is a general section. e. g. to specify output filenames.

We will refer to these blocks of the command line as sampling, integrand, analysis and general
sections. The integrand section is only needed for some types of analyzers.

6.1.2 Parallelization

Intel TBB multithreading library is used for parallelization in the Fourier analyzer. The code has
been tested on Mac OS X and Linux and it works fine. FindTBB.cmake is provided within the
repository that can help find TBB installation on your system.

6.1.3 Sampling section

The switch ‘--stype’ is used to specify the type of sampling. Valid options for ’stype’ are Random,
Jittered, Grid, GJittered, BJittered and correspond to random sampling, jittered sampling, sampling
using the regular grid, Gaussian jitter and box jittered sampling respectively. GJittered and Bjittered
have associated parameters (width of the Gaussian and size of the box respectively) which may be
specified using appropriate switches. The full list of currently implemented sampler sections is:

-S --stype Random
-S --stype Jittered
-S --stype Grid
-S --stype GJittered --sigma 0.1
-S --stype BJittered –boxwidth 0.2

--sigma 0.1: Gaussian has a std.dev. that is 0.1 times resolution of the sampling grid
–boxwidth 0.2: uniform jitter but with width 0.2 times that of standard jittered sampling

GJittered and BJittered result in biased estimators. They tend towards unbiased as sigma
approaches infinity and boxwidth approaches unity respectively. In addition to the above samplers,
stubs have been provided for Poisson disk, Halton, Latin hypercube and Sobol sampling but the
core sampling routines are not implemented.

6.1.4 Integrand section

When an integrand is required for analysis, the switch ‘--itype’ is used to specify the type of
integrand. Valid options for ‘itype’ are QuadPix, PWConstant, Gaussian, Disk and Pbrt. They
correspond to integrating a binary quad within a square pixel, piecewise constant function within
the unit square, a Gaussian, a disk and regions of an image rendered using PBRT [38]. The full list
of options is



-I --itype QuadPix --points 0.1 0.2 0.4 0.3
-I --itype QuadPix --random
-I --itype PWConstant --npts 10
-I --itype Gaussian --center 0.3 0.4 --sigma 0.05 0.1
-I --itype Disk --center 0.6 0.25 --rad 0.45
-I --itype Pbrt --epath ... --spath ... --pypath ... --crop 0.5 0.54 0.54 0.54 \
. --pbrtstype stratified –refnspp 0 --img pbrt-eea.exr

--points: positions on LTRB of unit square. Binary integrand is 1 only inside the quad
formed
--random: random --points. Binary integrand is 1 only inside the quad formed by the 4
points
--npts: number of points for piecewise-constant integrand. Constants are set randomly
--center: specifies 2D location of the center in the unit square.
--sigma: standard deviations (along X,Y) of isotropic 2D Gaussian
--rad: radius of disk
--epath: full path to the pbrt executable
--spath: full path to the pbrt scene (.pbrt file)
--pypath: full path to the python script supplied
--crop: crop window within rendered image (PBRT’s relative coordinates)
--pbrtstype: implemented options are limited to random and stratified only
–refnspp: number of samples to be used to compute reference image
--img: output (rendered) image filename.

Except for Pbrt, all other integrand types define functions on the unit square. These functions
can be evaluated at the points sampled at the points generated by the sampler. The Pbrt integrand is
unique in its behaviour that it does not use the samples generated by the sampling section. Instead,
it uses its own sampler to generate the samples. The integrand domain is specified using the crop
window. All pixels within the crop window are averaged using the PBRT sampler and each call to
evaluate the Pbrt integrand results in one such averaged estimate.

6.1.5 Analysis section
The switch ’--atype’ is used to specify the type of analysis. Valid options for ’--atype’ are pts,
fourier, mse and var. These options are for visualizing points, for visualizing Fourier spectra of
the points, for computing the mean-squared-error and for computing variance. So the full list of
currently implemented analysis sections, with associated parameters, is:

-A --atype pts --nsamps 16 --nreps 1
-A --atype fourier --nsamps 16 --nreps 1 --tstep 3 --wstep 1.0
-A --atype mse --nsamps 16 --nreps 10
-A --atype var --nsamps 16 --nreps 20

--nsamps: number of samples to be drawn from the sampler in each repetition
--nreps: number of repetitions to use in the estimation
--tstep: write intermediate results after ‘tstep’ repetitions
--wstep: step size for frequency (can be fractional)

With mse (resp. var), the number of samples used and the resulting mean-squared error (resp.
variance) for the integrand specified in the integrand section is written to the output file. The prefix



for the output file is specified in the general section. With pts, ‘--nreps’ point sets can be generated
that get stored in a ‘.eps’ file whereas, with fourier, the expected sampling power spectrum and the
corresponding radially averaged power spectrum is generated after ‘--nreps’ specified realizations.
(intermediate expected power spectra can also be generated by setting ‘--tstep’.

6.2 MATLAB script and examples

The main scripts provided are in CollectConvData.m and PlotConvData.m for the generation of
data and plots respectively. Helpers are provided in GenSamplStruct.m and GenIntegStruct.m to
build structures containing the parameters with which the tool is called. The following snippet
describes how data may be generated using the tool from a matlab script.

6.2.1 Usage

% use helpers to generate sampling and integrand structures from parameters
s(1) = GenSamplStruct(’Jittered’, ”) ;
s(2) = GenSamplStruct(’Random’, ”) ;
s(3) = GenSamplStruct(’BJittered’, ’–boxwidth .3’) ;
i(1) = GenIntegStruct(’QuadPix’, [’--points ’ num2str(rand(1,4))]) ;
i(2) = GenIntegStruct(’PWConstant’, ’--npts 10 --random’) ;
% number of samples and repetitions for analyzer
ns = [9 36 100 1024] ;
nr = 50;
ofile = ’../out/test’;
binfile = ’../build/eea’ ;
atype = ’var’ ;
system ([’rm ’ ofile ’*.txt’]) ; % tool appends successive stats to the output file
data = CollectConvData(ns, nr, ofile, binfile, s, i, atype) ;

CollectConvData serves two functions. First it sets up the command line arguments for the tool.
Then, it collates the output produced by the tool. The resulting collated data may then be plotted
using PlotConvData(data).

6.2.2 Example 1: Comparing PBRT integrands

The following matlab script creates two sampling structures and 3 integrands. The variances in the
estimates due to all combinations of sampling strategies and integrands are collected for secondary
estimators using 4, 16, 64 and 100 samples (30 repetitions for each variance estimation). The output
is a convergence plot of all these estimator-integrand combinations and a scatter plot (dual of the
convergence plot) based on the the convergence and variance of 1-sample estimator (see fig. 6.4).



clear ;
s(1) = GenSamplStruct(’Jittered’, ”) ;
s(2) = GenSamplStruct(’Random’, ”) ;
i(1) = GenIntegStruct(’Pbrt’, ...
[ ’--epath /home/kartic/pbrt/pbrt-v3/pbrt ’ ...
’--spath /home/kartic/pbrt/pbrt-v3-scenes/breakfast/breakfast-crop.pbrt ’...
’--pypath /home/kartic/Projects/FAS2016/code/Analysis/python/pbrt-cl.py ’...
’--crop 0.335 0.36 0.688 0.7 --pbrtstype $$SAMP$$ –refnspp 0 --img pbrt-eea.exr’], ...
legend ) ;

legend = ’bunny’ ;
i(2) = GenIntegStruct(’Pbrt’, ...
[ ’--epath /home/kartic/pbrt/pbrt-v3/pbrt ’ ...
’--spath /home/kartic/pbrt/pbrt-v3-scenes/breakfast/breakfast-crop.pbrt ’...
’--pypath /home/kartic/Projects/FAS2016/code/Analysis/python/pbrt-cl.py ’...
’--crop 0.445 0.465 0.48 0.51 --pbrtstype $$SAMP$$ –refnspp 0 --img pbrt-eea.exr’], ...
legend ) ;

legend = ’floor’ ;
i(3) = GenIntegStruct(’Pbrt’, ...
[ ’--epath /home/kartic/pbrt/pbrt-v3/pbrt ’ ...
’--spath /home/kartic/pbrt/pbrt-v3-scenes/breakfast/breakfast-crop.pbrt ’...
’--pypath /home/kartic/Projects/FAS2016/code/Analysis/python/pbrt-cl.py ’...
’--crop 0.168 0.2 0.89 0.91 --pbrtstype $$SAMP$$ –refnspp 0 --img pbrt-eea.exr’], ...
legend ) ;

ns = [4 16 64 100] ;
nr = 30;
ofile = ’../out/test’;
binfile = ’../build/eea’ ;
atype = ’var’ ;

system ([’rm ’ ofile ’*.txt’]) ;
data = CollectConvData(ns, nr, ofile, binfile, s, i, atype) ;

$$SAMP$$ is replaced, within CollectConvData, by the sampling type corresponding to
s(1) and s(2).

The integrands are small patches in images rendered by PBRT. In this example, three different
patches are analysed in the same image (scene). The patches are specified using the ’--crop’ option.
The average value within the patch is taken to be one evaluation of the integrand, where each pixel
was rendered with an N-sample estimator (N=4,16,64,100). If the aim is to assess the variance at
one pixel, the cropwindow needs to be tight enough to contain just that pixel. Although the same
scene has been used in this example, patches from different scenes may be compared by modifying
the scene parameter.
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Figure 6.1: Example output plots for the code in sec. 6.2.2

6.2.3 Example 2: Comparing other integrands

clear;
% samplers
s(1) = GenSamplStruct(’Jittered’, ”) ;
s(2) = GenSamplStruct(’Random’, ”) ;
s(3) = GenSamplStruct(’BJittered’, ’–boxwidth .3’) ;
s(4) = GenSamplStruct(’BJittered’, ’–boxwidth .5’) ;
s(5) = GenSamplStruct(’GJittered’, ’--sigma .3’) ;
s(6) = GenSamplStruct(’GJittered’, ’--sigma .5’) ;

% Integrands
i(1) = GenIntegStruct(’QuadPix’, [’--points ’ num2str(rand(1,4))]) ;
i(2) = GenIntegStruct(’PWConstant’, ’--npts 100 --random’) ;
i(3) = GenIntegStruct(’Disk’, ’--center .5 .5 --rad .3’) ;

% Analysis Parameters
ns = [9 36 100 1024 4096] ;
nr = 250;
ofile = ’../out/test’;
binfile = ’../build/eea’ ;
atype = ’mse’ ;

system ([’rm ’ ofile ’*.txt’]) ;
tic
data = CollectConvData(ns, nr, ofile, binfile, s, i, atype) ;
toc

The above matlab code produces two plots (PDF format) with the prefix specified in ofile (see
fig. 6.2).

6.3 C++ examples

The software supports the following analyzers that can be executed directly from a command line:



10
0

10
2

10
4

10
−8

10
−6

10
−4

10
−2

10
0

log−#samples

lo
g−

m
se

Convergence plot

−2 −1.5 −1 −0.5
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

convergence rate (of squared error) 

lo
g−

m
se

 (
1−

sa
m

pl
e 

es
tim

at
or

)

Scatter plot

 

 

    Sampling (colour)
Jittered ...
Random ...
BJittered −−boxwidth .3...
BJittered −−boxwidth .5...
GJittered −−sigma .3...
GJittered −−sigma .5...

 Integrands (marker style)
QuadPix −−points 0.9133...
PWConstant −−npts 100 −−ra...
Disk −−center .5 .5 ...

Figure 6.2: Example output plots for the code in sec. 6.2.3

Realization 1 Realization 2 Realization 3

Figure 6.3: Example output point sets for the command line in sec. 6.3.1

6.3.1 Visualizing point sets
For visualizing point sets produced by different sampling strategies, no integrand section needs to
be specified. The sampling section describes the type of sampling along with any parameters. The
analysis section should be set to the type ‘pts’. The general section should specify the prefix for the
output file.

./build/eea -S --stype Jittered -A --atype pts --nsamps 1024 --nreps 1 -G --ofile points

Here,
--stype: sampler type (‘Jittered’).
--atype: Analyzer type (‘pts’)
--nsamps: Number of samples (‘4096’)
--nreps: Number of trials or realizations (‘3’)
--ofile: Prefix for your output filename (‘points’)

6.3.2 Visualizing Fourier spectra
For visualizing expected power spectra produced by different sampling strategies, no integrand
section needs to be specified. For ‘--atype fourier’, the sampling section describes the type of
sampling along with any parameters. The analysis section should be set to the type ‘fourier’. The
general section should specify the prefix for the output file.



1 realization After 6 realizations After 10 realizations

Figure 6.4: Example output expected power spectra averaged over a given number of realiations
(for the command line in sec. 6.3.2).

./build/eea -S --stype Jittered -A --atype fourier --nsamps 4096 --nreps 10 --tstep 2
--wstep 1 -G --ofile powerspectrum

Here,
--stype: sampler type (Jittered, Random, etc.).
--atype: Analyzer type (‘fourier’)
--nsamps: Number of samples (‘4096’)
--nreps: Number of trials or realizations (‘10’)
--tstep: Output intermediate result after given number of trial steps (‘2‘)
--wstep: Frequency step which is 1 for integer frequencies (it can be fractional)
--ofile: Prefix for your output filename (‘powerspectrum’) (could be anything)

6.3.3 Variance & MSE analyzer

Similar to matlab script, this package can be directly used to perform varianc and MSE analysis.
Below we are showing how to execute variance analyzer for analytic functions (Disk, Gaussian,
PWConstant and QuadPix).

./build/eea -S --stype Jittered -I --itype Gaussian --sigma 0.25 0.25 --center 0.5 0.5 -A
--atype var --nsamps 4096 --nreps 1000 -G --ofile gaussian

Here,
--stype: sampler type (Jittered, Random, etc.).
--atype: Analyzer type (‘fourier’)
--nsamps: Number of samples (‘4096’)
--nreps: Number of trials or realizations (‘10’)
--ofile: Prefix for your output filename (‘powerspectrum’) (could be anything)

To execute a Pbrt integrand, you can use the following command line:



./build/eea -S --stype Random -I --itype Pbrt --epath path-to-pbrt-v3-executable/pbrt
--spath path-to-pbrt-v3-scenes/anim-killeroos.pbrt --pypath path-to-python-script/pbrt-
cl.py --crop 0.25 0.75 0.25 0.75 --pbrtstype stratified --refnspp 1 --img pbrt-eea.exr -A
--atype var --nsamps 9 16 25 36 64 --nreps 200 -G --ofile pbrt-killeroos

Here,
--epath: pbrt executable path on your machine
--spath: pbrt scene file path
--pypath: path to the python script provided with this package
--crop: pbrt cropwindow coordinates that replaces existing coordinates
--pbrtstype: sampling pattern defined within pbrt
--refnspp: number of samples per pixel to compute the reference image
--img: image filename generated at each trial

Note that, the ‘--refnspp 1’ is kept to be minimum since reference image is not used to perform
variance analysis. Variance computation is performed using an online algorithm that takes as input
the mean value from the previous iteration. The python script is provided in the package in the
‘src/python/’ folder.

For MSE analyzer, the reference samples per pixel should be kept higher ‘--refnspp 4096’:

./build/eea -S --stype Random -I --itype Pbrt --epath path-to-pbrt-v3-executable/pbrt
--spath path-to-pbrt-v3-scenes/anim-killeroos.pbrt --pypath path-to-python-script/pbrt-
cl.py --crop 0.25 0.75 0.25 0.75 --pbrtstype stratified --refnspp 4096 --img pbrt-eea.exr
-A --atype mse --nsamps 9 16 25 36 64 --nreps 200 -G --ofile pbrt-killeroos

Here,
--epath: pbrt executable path on your machine
--spath: pbrt scene file path
--pypath: path to the python script provided with this package
--crop: pbrt cropwindow coordinates that replaces existing coordinates
--pbrtstype: sampling pattern defined within pbrt
--refnspp: number of samples per pixel to compute the reference image
--img: image filename generated at each trial
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