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MOTIVATION: Volume interaction only




VOLUMETRIC RENDERING
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VOLUMETRIC RENDERING: Rendering techniques

* Path tracing / Bidirectional path tracing



VOLUMETRIC RENDERING: Many techniques

* Path tracing / Bidirectional path tracing

* Density estimation:
* Volumetric Photon Mapping
* Photon Beam
* Photon Planes
* “Higher-order geometric primitives”




VOLUMETRIC RENDERING: Many techniques

* Path tracing / Bidirectional path tracing

* Density estimation:
* Volumetric Photon Mapping
* Photon Beam
* Photon Planes

(%
x*

* “Higher-order geometric primitives”
* Many lights:

 Virtual point lights

* Virtual spherical lights

* “Higher-order geometric primitives” \



MANY LIGHTS

* Many-light techniques have been introduced in “instant radiosity”
[Keller et al. 1997]

* Indirect illumination as a sum of direct illumination of virtual lights




MANY LIGHTS

Virtual point light contribution
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MANY LIGHTS
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Virtual point light contribution
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MANY LIGHTS
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e \VPL vs. short VRL




MANY LIGHTS: VRL
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Virtual ray lights contribution
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MANY LIGHTS: VRL
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Virtual ray lights contribution
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MANY LIGHTS: VRL vs. VPL
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VRL

Equal rendering time

VPL




MANY LIGHTS
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Realistic rendering :
* Unmanageable amount of virtual lights
* Cost linear with lights



MANY LIGHTS
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Realistic rendering:

* Unmanageable amount of virtual lights
* Cost linear with lights

Aim:
 Sub-linear cost
e Scalable methods

[Walter et al. 2005][Walter et al. 2006][Walter et al. 2012]
[Hasan et al. 2007][Ou et al. 2011][Bus et al. 2015]




SCALABILITY
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RELATED WORKS
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Previous works have already explored a combination of VRLs with
scalable techniques:

* Adaptive light-slice for virtual ray light [Frederickx al. 2015]

* Adaptive matrix column sampling and completion for rendering
participating media [Huo et al. 2016]



Our solution: Upper bound
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Our solution: Upper bound
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T (W) Tr(w(w,v))

w(u,v)?p(u,v)
: Constant within the VRL cluster
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Our solution: Upper bound
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wi (w, v)“p(u, v)
=Wy (u, v)Zp (u ‘ U)

Worst case when VRL and sensor ray are parallel.

p(v) <

1
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,with L,,, ,, the maximum length inside the cluster.



Our solution: Upper bound
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wi (u, v)*p(u, v)
= p(v)

Worst case when VRL and sensor ray are parallel.

p(v) <
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,with L,,, ,, the maximum length inside the cluster.
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Our solution: Upper bound
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Our solution: Light tree
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Agglomerative approach [Walter et al. 2008]:
- Not multithreaded
- Does not scale with high node overlapping O(N?)

What we need:
- Fast/Parallelizable

- Agglomerative principal



Our solution: Light tree
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Our solution: Light tree
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Step 1: Partition the space with sorting




Our solution: Light tree
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Step 2: Build local light tree that minimize the metric
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Our solution: Light tree

Step 3: Build final tree with agglomerative process




Results
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* Equal time comparison
* VPL with LC
* VRL

e Two metrics

e RMSE: sensitive to fireflies
e SMAPE: robust to fireflies

* Isotropic medium, only medium-medium interactions
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Summary
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Contributions:

* New bound for VRL cluster
e Efficient tree construction
* X10 Speedup



Questions ?



